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2Université Côte d’Azur, CNRS, GREDEG, Nice, France

3Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
∗These authors contributed equally

Abstract

How does cooperation arise in an evolutionary context? We ap-
proach this problem using a collective search paradigm where
interactions are dynamic and there is competition for rewards.
Using evolutionary simulations, we find that the unconditional
sharing of information can be an evolutionary advantageous
strategy without the need for conditional strategies or explicit
reciprocation. Shared information acts as a recruitment sig-
nal and facilitates the formation of a self-organized group.
Thus, the improved search efficiency of the collective bestows
byproduct benefits onto the original sharer. A key mecha-
nism is a visibility radius, where individuals have uncondi-
tional access to information about neighbors within a lim-
ited distance. Our results show that for a variety of initial
conditions—including populations initially devoid of prosocial
individuals—and across both static and dynamic fitness land-
scapes, we find strong selection pressure to evolve uncondi-
tional sharing.

Keywords: Collective search; cooperation; evolutionary sim-
ulations; pseudo-reciprocity; prosociality; swarm intelligence

Introduction
Social behavior is structured by the dynamics of the environ-
ment and how we interact with one another. Strategies that
thrive in one context may be poorly suited to others. How do
social behaviors arise in an evolutionary context? And can
the dynamics of social interactions support the emergence of
cooperation without appealing to conditional strategies?

Evolution is often summarized as “survival of the fittest”,
evoking a notion of fierce competition between individuals.
Where is there room for prosociality and cooperation in the
midst of evolutionary competition? One of the early chal-
lenges for Darwin’s theory of evolution (1859) was to explain
the origin of prosocial adaptations that improve the welfare
of others or one’s group as a whole, but at a potential cost to
the individual. Darwin’s explanation appealed to the notion
of group selection, where the costs of altruism are ultimately
justified by increased fitness for the group (Darwin, 1871).
Thus, groups with more prosocial members may outcompete
rival groups. Although group selection offers a potential path-
way for the emergence of cooperation, it often requires strong
assumptions, such as stable group structures and strong com-
petition between groups (Janssen & Goldstone, 2006). With-
out these assumptions, selection at the individual level can
undermine group selection. Thus, a comprehensive under-
standing of prosociality requires a theory of individual selec-
tion (Wilson & Wilson, 2007).

Theories of Cooperation
One traditional explanation for individual selection of proso-
ciality is through the mechanism of kin selection (also known
as inclusive fitness), where recipients of altruistic acts tend to
be genetically related to the donor (Nowak, 2006). Hamil-
ton’s law (1964) states that the costs of prosociality C must
be justified relative to the benefits of the recipient B by ac-
counting for the relatedness of individuals r such that C

B < r.
While kin selection explains prosociality between genetically
similar individuals, Hamilton’s law alone fails to account for
all the social behaviors we see in human society (Rand &
Nowak, 2013; Fehr & Fischbacher, 2003) and in animals
(e.g., Spottiswoode, Begg, & Begg, 2016; Brown, Brown,
& Shaffer, 1991). Many mechanisms have been proposed
in order to justify the evolution of cooperation towards non-
relatives, typically requiring an initial investment of a donor
towards a non-related individual with expectations of reci-
procity or benefits.

Conditional Cooperation. Theories of conditional coop-
eration operate on expectations of future reciprocity, where
seemingly prosocial behavior is ultimately grounded in self-
interest. Often described as impure altruism (Andreoni,
1989), both direct and indirect reciprocity appeal to condi-
tional strategies (e.g., tit for tat; Nowak & Sigmund, 1992),
where individuals conditionally cooperate with each other, so
long as future reciprocation is expected. Direct reciprocity
depends on multiple interactions with the same individual,
while indirect reciprocity typically relies on reputation sys-
tems, where cooperative behavior is used as a social signal
to third-parties (Nowak & Roch, 2007). Conditional cooper-
ation has been widely studied in the context of game theory,
yet simple mechanisms of social or spatial dynamics can also
explain the origins of cooperation (Nowak & May, 1992).

Unconditional Cooperation. Theories of unconditional
cooperation explain the origin of prosocial behavior through
changes in the interaction structure for the donor (Perc,
Gómez-Gardeñes, Szolnoki, Florı́a, & Moreno, 2013). Thus,
behaving prosocially can make it more likely to interact with
other prosocial individuals. Network reciprocity operates on
similar principles as kin selection, but where the cost-benefit
ratio is defined relative to interaction partners (Nowak, 2006).
This approach has shown that by situating agents on a net-
work (Ohtsuki, Hauert, Lieberman, & Nowak, 2006) or in a



spatial landscape (Nowak & May, 1992), prosocial individu-
als tend to interact more with similar partners, thus creating
self-organized regions where prosociality proliferates (Perc
et al., 2013). It is also possible to replace spatial similar-
ity or network connectivity with some arbitrary feature or tag
(Riolo, Cohen, & Axelrod, 2001), such that individuals with
similar features are more likely to interact with one another.
This provides a useful bridge between individual and group
level mechanisms, because it describes how groups can form
based on spatial, network, or feature similarity.

Two key assumption are made by these theories. The first is
that the initial population already includes multiple prosocial
individuals (Nowak & May, 1992; Ohtsuki et al., 2006). Yet
this doesn’t answer the crucial question of how cooperation
emerges ex nihilo. Secondly, the interaction structures are
more or less static: agents are either embedded in some spa-
tial location (Nowak & May, 1992), as a fixed node in a net-
work (Ohtsuki et al., 2006; Barkoczi, Analytis, & Wu, 2016),
or given a fixed feature tag (Riolo et al., 2001). While groups
can still emerge through the dynamics of evolution, interac-
tion partners remain relatively stationary (but see Janssen &
Goldstone, 2006) and individual dynamics (e.g., search be-
havior) are largely unaccounted for.

Pseudo-reciprocity is a related theory of unconditional co-
operation, where the key difference from network reciprocity
is that the fitness of the donor does not depend on the pheno-
type of the recipient. Thus, prosocial behavior can be ben-
eficial without depending on the presence of other proso-
cial individuals in a group. Prosociality can alter the so-
cial environment for the donor (e.g., by sharing information
about resources), such that the donor gains byproduct bene-
fits through self-interested behavior of the recipients (Connor,
1986; Brown et al., 1991). For example, Cliff Swallows
(Hirundo pyrrhonota) share information about the location of
insect swarms through a unique vocal signal (i.e., a food call),
which attracts other peers. While it is difficult to track the in-
sect swarms individually, the collective recruited by the infor-
mation sharer tracks the swarm more efficiently. Hence, even
without expectations of reciprocity (i.e., future vocal signals
from peers), each individual benefits by behaving prosocially
and sharing information (Brown et al., 1991). Thus, pseudo-
reciprocity offers a mechanism where individuals can be un-
conditionally prosocial towards all the members of the group,
rather than towards a restricted set of cooperative partners.

Goals and Scope
Here, we analyze the emergence of cooperation through shar-
ing information. We use evolutionary simulations to study
how individual selection pressure can give rise to sharing,
even from initial populations void of prosocial individuals.
We simulate agents searching for rewards on a high dimen-
sional fitness landscape, where the flow of information is dy-
namically and spatially defined. Agents have a binary phe-
notype that defines whether or not they share information
unconditionally to the rest of the population. We show that
this global sharing signal acts as a recruitment mechanism
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Figure 1: Evolutionary Simulations. a) We vary three main environ-
mental parameters: group size, the visibility radius, and competition
level. Group size k specifies the number of agents interacting to-
gether. Visibility radius r defines the maximum Chebyshev distance
between two agents where information can be passively observed.
Competition level c defines the decay rate of an exponential com-
petition function that determines how agents split rewards (higher
values of c result in splitting over larger distances. b) Each agent is
defined by a sharing policy (either sharer or non-sharer) and an in-
novation rate (between 0 and 1). c) We use evolutionary simulations
over 200 generations to see which individual genes emerge through
selection pressure and mutation.

that facilitates the self-organization of dynamic groups. Be-
cause groups are more effective at finding rewards than lone
individuals, we find that sharing emerges and dominates our
evolved populations across a large range of initial conditions
and in both static and dynamic fitness landscapes.

Collective Search Simulations
We use a multi-agent framework based on Bouhlel, Wu,
Hanaki, and Goldstone (2018), who found that sharing in-
formation can be beneficial to the donor, even in competitive
contexts and without expectations of reciprocity. The costs
of sharing information (through resources lost to competi-
tion) can be outweighed by the byproduct benefits of coop-
eration. A simple coordination mechanism of a local visi-
bility radius (i.e., nearby agents have access to each others’
rewards) facilitates the formation of a self-organized collec-
tive. Thus, sharing information acts as a recruitment sig-
nal, attracting others to the donor, and increasing the likeli-
hood of future social interactions (via the visibility radius).
These future interactions are the source of byproducts ben-
efits for the sharer. Here, we use evolutionary simulations
and more extreme levels of competition (compared to Bouh-
lel et al., 2018) in order to study how sharing interacts with
innovation, and under which initial conditions there exists in-
dividual selection pressure for unconditional sharing, lead-
ing to group-level cooperation (Goldstone & Janssen, 2005).
Code for reproducing these results is publicly available at
https://github.com/alantump/adaptiveSharingEvolution.

https://github.com/alantump/adaptiveSharingEvolution


Methods
Adopted from Bouhlel et al. (2018), we simulate groups of
k agents searching for rewards on a 10-dimensional1 fitness
landscape over T = 50 trials. On each trial t, agents can use
either individual or social information (see below) to search
for rewards on the fitness landscape. Payoffs are proportional
to the inverse Manhattan distance of agent i from a global
optimum Ω:

f (xti) =
1

1+‖xti−Ω‖1
(1)

where xti contains the coordinates for each dimension m =
1, ...,10 of the current location of agent i at trial t. The coor-
dinates of the global optimum Ω are sampled from a uniform
distribution U(1,10) for each dimension.

Competition. The payoffs f (xti) are subject to competi-
tion, which we implement by having agents split rewards
when occupying nearby spaces in the environment. Specif-
ically, we use a competition parameter c that defines an ex-
ponentially decaying competition metric C(xti,xt j) between
each pair of agents i and j:

C(xti,xt j) = exp(−
∥∥xti−xt j

∥∥
1

c
); (2)

Larger values of c induce higher competition over larger dis-
tances (see Fig. 1a), while in the limit of c→ 0, competition
only occurs when agents occupy the exact same solution (as
in Bouhlel et al., 2018). Splitting of rewards is proportional
to the sum of competition values for all other agents. Hence,
for location xti, the acquired reward is:

R(xti) =
f (xti)

1+∑ j 6=i C(xti,xt j)
(3)

Individual search. Each agent begins at a random starting
location, where each dimension is sampled from a uniform
distribution U(1,10). On every trial, each agent i stores the
location xt j and reward value R(xti) of both individually and
socially acquired information (see information sharing and
visibility radius). We use a local search strategy, where the
agent selects the location with the largest observed reward
value x∗ti up until time t, and then has an opportunity to inno-
vate on it by modifying each value in x∗ti by a discrete value
in {−1,0,1}.

We define the Innovation rate as the probability that an
agent innovates, where otherwise x∗ti is copied verbatim. If the
agent innovates, we modify each dimension of x∗ti by drawing
from a Binomial distribution centered on zero∼ B

(
2, 1

2

)
−1.

Intuitively, half of the time there is no change along that di-
mension, while changes of both −1 or +1 are equally likely,
each with a probability of 25%.

1 Bouhlel et al. (2018) studied environments of different dimen-
sionality, while here we use 10-dimensional environments as a pro-
totypical example.

Social information. Depending on their sharing policy,
agents are deterministically either sharers or non-sharers.
Sharers will unconditionally share information about both re-
ward location xti and value R(xti) to all other agents, while
non-sharers will withhold it. Sharing information is associ-
ated with an increased cost due to splitting rewards with imi-
tators, but can also confer byproduct benefits by broadcasting
high quality solutions, which are subsequently modified by
group members and improved upon, before being transmitted
back via the visibility radius or by other sharers.

In addition to the global sharing signal, we use a visibil-
ity radius as a feature of the environment. At each trial t,
agents passively provide information about reward locations
and magnitudes to other agents that are within visibility ra-
dius r. For any two agents i 6= j, agent j is visible to agent
i if the maximal distance between the two agents on any di-
mension (i.e., the Chebyshev distance) is not greater than the
visibility radius r:

DChebyshev(xti,xt j) = max
m
|dt

mi−dt
mi| ≤ r (4)

The visibility radius is a coordination mechanism that allows
for localized transmission of information. Whereas the shar-
ing signal is a global mechanism operating at all distances, the
local visibility radius allows for dynamic interaction struc-
tures to emerge and facilitates the spontaneous formation of
spatially coherent groups. Crucially, given the high dimen-
sionality and size of the search space, it is unlikely for any
two agents to fall within the same visibility radius without ex-
plicit information sharing. For example, there is 0.1% proba-
bility of two agent being visible to one another at initialization
for a radius of 2.

Evolutionary Simulations
Inspired by biological evolution, we embed the simulation
framework in an evolutionary algorithm, which uses selection
pressure and mutations over multiple generations to discover
which sets of behavioral parameters evolve. The evolution-
ary algorithm is well suited for our research question because
fitness-maximizing behavior (e.g., willingness to share infor-
mation) depends on the behavior of others in a game theoret-
ical context.

Initial conditions. Beginning with a population of 300
agents, each agent carries genes determining innovation rate
and sharing policy (i.e., sharer or non-sharer). We start with
an initial population consisting of only non-sharers to address
the question of how cooperative behavior can emerge ex ni-
hilo through individual selection. We vary the initial mean
innovation rate in the populations to ensure that the results
of the evolutionary algorithm are not dependent on the start-
ing conditions. The initial values for innovation rate were
sampled from a Beta distribution, with the mean of the distri-
bution sampled from a uniform distribution U(0,1).

For each generation, we repeatedly sample k agents from
the whole population. We simulate these agents performing
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Figure 2: Evolution of sharing and innovation over 200 generations.
a-b) An example where populations evolve high sharing and innova-
tion rates, with group size k = 6, visibility radius r = 4 and compe-
tition level c = 1/128. c-d) An example where individuals adopted
high innovation rates but did not evolve sharing, based on group size
k = 6, visibility radius r = 0 and competition level c = 2. Each col-
ored line represents the average parameter value within a population,
while the black line indicates the average across populations.

collective search, where behavior is determined by their ge-
netic makeup (innovation rate and sharing policy). We repeat
the simulation procedure over 300

k ×5 repetitions, resulting in
approximately 5 simulations per agent in each generation.

Selection and mutation. We select the agents with the
highest fitness to produce genetically similar offspring via
tournament selection. In this selection procedure, we re-
peatedly sample 7 random individuals from the population,
whereby the individual with the highest relative performance
passes its genes onto the next generation. This selection pro-
cess is repeated 300 times in order to produce a new gen-
eration of 300 agents. The genes of the new generation are
exposed to weak mutation to consistently ensure gene vari-
ation, where each gene has a probability of mutation. The
sharing gene mutates with p = .002, whereby a new sharing
policy is drawn from a binomial distribution ∼ B

(
1, 1

2

)
, with

the new policy equally likely to be sharer or non-sharer. The
innovation gene mutates with p = .02, whereby the previous
innovation is modified by adding Gaussian noise∼N(0,0.2).
The innovation rate was truncated between [0,1]. Note that
we chose the mutation probabilities and strengths to be high
enough to ensured constant variation in the gen pool.

The genetic algorithm repeats the process of fitness evalu-
ation, selection, and then reproduction with mutation for 200
generations to ensure the population converges to a stable
outcome. We ran 10 replications of this procedure and re-
port the average evolved parameters of the last 10 generations
(i.e., generations 190 to 200) over each of the 10 replications.
We systematically varied group size (k ∈ [2, ...14]), visibil-
ity radius (r ∈ [0,1,2,3,4]), and competition level (low = 1

128 ;
medium = 1; high = 2) to investigate how the structure of the
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Figure 3: Equilibrium results for different combinations of environ-
mental parameters. a) Agents evolved high sharing rates in low and
medium competitive environments, although sharing was found in
more restricted contexts under high competition (requiring smaller
groups and larger visibility radius values). b) Overall, we find high
levels of innovation, although we also see the trend that larger groups
evolve slightly lower innovation rates.

environment influences the selection of individual character-
istics (sharing and innovation).

Results
When exposed to selection pressure via the evolutionary al-
gorithm, the populations evolved different sharing and inno-
vation rates depending on the environmental parameters (see
Fig. 2 for examples). Figure 3 shows the proportion of sharers
and the innovation rate at equilibrium for different parameter
combinations, where yellow tiles indicate high levels of either
sharing or innovation.

Sharing evolves ex nihilo. Starting from initial conditions
of no sharers in the population, we find that sharing emerges
in the overwhelming majority of our simulation parameters,
and that sharing often dominates the population at close to
ceiling levels (Fig. 3a). However, we also discover the limits
of sharing as an adaptive strategy as we increase the level of
competition for rewards. Under high levels of competition,
only smaller groups with larger visibility radius are able to
support sharing.

Sharing and innovation co-evolve. We find that over the
entire parameter space, all populations evolved high innova-
tion rates (Fig. 3b), although not at ceiling level (i.e., yellow
tiles) compared to sharing behavior. Looking more closely,
we find relatively higher innovation rates in small groups
compared to large groups, with this effect most pronounced
under low or medium levels of competition. Yet, how are
sharing and innovation behaviors related to each other?

To further understand the interaction between strategies,
we ran additional simulations with innovation rate fixed at
low (25%), medium (50%) or high (100%) values. The re-
sults are shown in Figure 4, where we replicate the main find-
ings of the previous simulation for high innovation rate (top
row). However, we find that sharing becomes substantially
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Figure 4: Equilibrium results of sharing for fixed innovation rates
(rows) at various parameter combinations. When the innovation rate
is fixed at 100%, we largely replicate the results in Figure 3. How-
ever, when innovation is fixed at 50%, we find that sharing evolves
in a more restricted set of parameters and exclusively with a visibil-
ity radius of 1 or larger. When there is an innovation rate of 25%,
we find virtually no emergence of sharing.

less adaptive for populations with innovation fixed at low or
medium levels. Thus, innovation is an essential ingredient
for prosocial traits to develop, as has been shown in previ-
ous work on cultural transmission through iterative cycles of
imitation and innovation (Ehn & Laland, 2012; Wisdom &
Goldstone, 2011; Derex, Feron, Godelle, & Raymond, 2015).

Interim conclusion
We show that sharing can evolve across a variety of different
environments and in mixed groups with different proportions
of sharers and non-sharers. The selection pressure for shar-
ing can lead to it becoming a dominant trait prevalent in the
vast majority of the population. The spatial dynamics of this
simulation framework facilitated by a visibility radius lead
to a setting where selection pressure does not prioritize free-
riding and the group does not succumb to a tragedy of the
commons.

Dynamic Simulations
We now extend the framework to account for a changing en-
vironment, implemented by a wandering global optima. We
define the global optima Ωt and modify it on each time t
with a probability determined by the environmental change
rate pe. With probability pe, the environment’s global optima
changes, otherwise it stays the same (Ωt+1 = Ωt ). When the
environment changes, each coordinate of the global optima
dt

m ∈ Ωt has a 50% probability of being modified by +1 or
-1, and a 50% probability of remaining the same. This is the
same as the local search rule used by individual agents.

In order to account for the decreasing validity of past obser-
vations in a changing environment, we introduce a temporal
discount rate γ. Thus, the history of past observations main-
tained by each agent decays as a function of the elapsed time:

R̂(xti) = γ
τR(xti) (5)
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Figure 5: Equilibrium results in a dynamic environment. a) Again
we find high sharing rates in low and medium competitive environ-
ments, but now higher rates of environmental change reduced the
levels of sharing in the population. We also see stronger indications
of an interaction between group size and visibility radius, where a
larger visibility radius is required to coordinate larger groups and
support a larger sharing population. b) Across all parameters, we
find high levels of innovation emerge, although lower competition
and larger groups reduces the extent of innovation.

where R̂(xti) is the discounted reward and τ is the elapsed time
between the observation and the current time. Thus, agents
locally search around the reward location that has the largest
discounted reward R̂(xti). Both individually and socially ac-
quired information follow the same decay rate. In our simula-
tions we fixed the Discount rate γ= .99, which approximately
corresponds to a 10% discount after 10 trials.

Dynamic Results

Figure 5 shows the equilibrium results of our dynamic simu-
lations. Again, we find that sharing is a beneficial strategy un-
der many environmental conditions (Fig. 5a). Similar to the
static case, there are limits to the conditions under which shar-
ing emerges, particularly in highly competitive environments.
The relationship between the visibility radius and group size
becomes increasingly important, where a larger radius allows
sharing to emerge in larger groups. We also observe that the
evolved proportion of sharers decreases in more volatile en-
vironments (higher change rates) and in larger groups. This
interaction is not observed in the static environment, but may
be partially due to the increased difficulty of coordination and
because out-of-date information can harm instead of help oth-
ers (Boyd & Richerson, 1988; Henrich & Boyd, 1998). Ad-
ditionally, we find that environmental change increases the
evolved innovation rates (Fig. 5b). The intermediate levels
of innovation found in the static simulations are eclipsed by
even higher rates under environmental change.
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General Discussion
We use evolutionary simulations to show that for a variety
of initial conditions and across both static and dynamic fit-
ness landscapes, there exists individual selection pressure for
the unconditional sharing of information. To summarize the
effects of each environmental parameter on the equilibrium
characteristics of innovation and sharing, we fit a linear model
on the dynamic simulation results (Fig. 6). The size of the vis-
ibility radius contributes positively to the rate of sharers in the
evolved population, while group size, environmental change,
and competition all reduce the rate of sharers. Thus, the evo-
lution of cooperation in the absence of reciprocity operates at
a fine balance between coordination (via the visibility radius)
and discord (through competition and the communication of
out-of-date information).

In comparison, the environmental effects on innovation are
relatively small. We find relatively high levels of innovation
in all simulations. Environmental change had the strongest
influence on innovation, while higher competition also in-
creased innovation. Rather, the more interesting result of our
simulations involves the interaction between innovation and
sharing, which co-evolve and are dependent on one another
for producing the emergent behavior of collective search.

How do the dynamics of cooperation work? To get a
deeper understanding of how sharing improves the welfare
of the donor, we present a vignette of an agent who is ei-
ther a sharer or a non-sharer in a population of non-sharers
(Fig. 7). The sharer transmits a global signal that recruits
peers and gathers them within visible range (Fig. 7a, orange
line). This means that a sharer will have access to more social
information compared to a non-sharer by being closer to oth-
ers (Fig. 7a, blue line). Since we find high rates of innovation
in all simulations, any imitated information is also tweaked
and modified. Some of these modifications will improve upon
the originally copied solution. This creates a feedback cycle
of solutions that are consistently improved over time, which
can benefit the original sharer through local transmissions
within the visibility radius (Fig. 7b). Compared to a group
of non-sharers (blue line), the sharer is able to explore the re-
ward landscape better and achieve higher rewards despite the
stronger local competition (Fig. 7c, orange line).

In summary, as is the case with the Cliff Swallows (Brown
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Figure 7: How sharing leads to cooperation. These results are the
mean performance over 10,000 replications with a group size of
k = 6, a visibility radius of r = 2, a innovation rate of 1 and a compe-
tition level c = 1. a) The sharer (orange line) attracts other individu-
als within their visibility radius through the sharing signal, leading to
richer informational exchanges than compared to a non-sharer (blue
line). b) Individuals who imitate the shared information also inno-
vate, and thus passively provide improved information to the sharer
through the visibility radius. c) As a result, the sharer benefits from
passively gained information and acquires an overall higher pay-off
compared to individuals in a non-sharing group.

et al., 1991), sharers recruit peers within their visibility radius
and reap the byproduct benefits of passively acquired modi-
fications to the original solution. Intuitively, larger visibility
increases the ability of a group to stay connected with one
another. However, the global sharing signal is an essential
recruitment device that facilitates the formation of a group
in the first place. Group coherency facilitated by the visibil-
ity radius provides byproduct benefits to the originator of the
sharing signal, creating a feedback loop of imitation with in-
novation.

Conclusion

Through the lens of evolution, we show how individual se-
lection pressure can give rise to the unconditional sharing of
information. The sharing signal does not require expectations
of reciprocity in order to be beneficial, but rather directly ben-
efits the sharer through the byproducts of cooperation. Shared
information about a high reward acts as a recruitment signal,
which leads to the emergence of a self-organized collective
centered on the original donor. A key ingredient is a visibil-
ity radius, which allows individuals to observe the rewards of
neighbors within a fixed spatial distance. This visibility ra-
dius provides a simple yet effective coordination mechanism
that is grounded in simple spatial and social dynamics, creat-
ing complex patterns of emergent behavior.

More broadly, our results indicate that prosocial behaviour
can evolve from initial conditions devoid of other prosocial
individuals. While theories explaining the evolution of condi-
tional reciprocity have been very influential (Nowak & May,
1992; Ohtsuki et al., 2006), our results provide an explana-
tion for the initial emergence of prosocial individuals, which
is an essential requirement for both conditional cooperation
and group selection. Future implementation of conditional
strategies in our framework could provide further insight into
how various strategies co-evolve.
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