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At least in the far scrape-off layer of magnetically confined fusion plasmas transport is intermittent and non-diffusive
as observed by the appearance of plasma filaments. Transport codes using effective diffusion coefficients are still the
main workhorse investigating the scrape-off layer and divertor regions. An effective perpendicular diffusion coefficient
for intermittent filamentary dominated perpendicular transport in the scrape-off layer is motivated by the telegraph
equation, describing an exponentially decaying correlated random walk. On short time scales the telegraph equation
describes ballistic transport of filamentary structures with a typical velocity ub and correlation time τ . In stationary
conditions the corresponding diffusion coefficient is given by u2

bτ . Since ub and τ can be determined experimentally
it is proposed to use u2

bτ as an input for modeling or for interpretation of perpendicular transport in the far scrape-off
layer.

I. INTRODUCTION

A magnetically confined fusion plasma is surrounded by a
region of open field lines intersecting on material surfaces.
This region is called the scrape-off layer (SOL). It governs the
heat load on the plasma facing components, the power and
particle balance and the impurity dynamics. The SOL region
can be further divided into two regions, a near and a far SOL1.
The region close to the separatrix, called near SOL, exhibits
gradient lengths close to those in the edge of the confined re-
gion. The much flatter SOL profile away from the separatrix
is called the far SOL region. At least in the far SOL transport
is determined to a huge fraction by intermittently occurring
coherent structures of enhanced plasma pressure2–5. In the
poloidal cross-section or drift-plane they appear compact and
localized and are therefore called plasma blobs. These struc-
tures are also field-aligned6 and therefore also called plasma
filaments. Blobs are driven by the interchange instability7,8.
Due to these blobs the transport shows non-Gaussian statis-
tics with exponential tails and hence is non-diffusive. Due to
the rather flat gradients transport in the far SOL cannot be lo-
cally generated9 and the observed high fluctuation levels are
due to non-local transport10.

Transport codes like SOLPS11,12, EDGE2D13, EMC314,
UEDGE15 or SOLedge2D16 are still the main workhorses for
interpretative and predictive studies in the scrape-off layer
(SOL) and divertor region of magnetically confined fusion
plasmas. These transport codes include atomic, molecular and
plasma physical effects important for the SOL and divertor
region, but they do not treat turbulence self-consistently. In-
stead the transport is approximated by spatially varying effec-
tive diffusion or convection coefficients. This leads to prob-
lems illustrated in the following in simplified geometry. The
scrape-off layer in the poloidal cross-section of a tokamak is
shown on the l.h.s. in Fig. 1. In this simplified geometry the
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scrape-off layer is straightened out as shown on the r.h.s. in
Fig. 1. The straightened out scrape-off layer is bound by the
opposite-facing solid surfaces (divertor targets or limiters) at
the top and the bottom and to the left by the confined plasma.
The evolution of the density in such a straightened out SOL
can be provided by

∂
∂ t

n = D
∂ 2

∂ r2 n−uz
∂
∂ z

n+S, (1)

where r is a radial coordinate across the SOL and z a coor-
dinate parallel to the field lines from the inner to the outer
target. The radial transport is given by a diffusive ansatz
Γdi f f = −D ∂

∂ r n. This equation can be further simplified
by approximating the parallel speed by the ion sound speed
u∥ ≈ cs and the parallel derivative by the parallel connection
length ∂

∂ z ≈ 1/L∥. Neglecting sources and sinks, the gradient
scale length λn =−n/ ∂

∂ r n can be approximated by

λn =
√

DL∥/cs. (2)

For example in typical attached conditions in the near SOL
ASDEX Upgrade tokamak λn ∼ 10−2 m, cs ∼ 105 m/s and
L∥ ∼ 102 m, hence D ∼ 10−1 m2/s.

How to choose reasonable radial transport coefficients for
the SOL? Bohm predicted a diffusion coefficient of DB ≈
0.06Te/eB, which only depends on magnetic field and tem-
perature. The same holds for gyro-Bohm transport DgB =
(ρs/λn)Te/eB with ρs =

√
miTe/eB. Bohm and gyro-Bohm

transport provide diffusion coefficients not larger than some
m2/s in the SOL. In the following it is shown, how the dif-
fusion coefficients would vary in the case of the high den-
sity transition assuming no modifications in the sources and
sinks for the purpose of illustration. The density SOL length
λn changes from about 10 mm in attached conditions up to
45 mm at the end of the formation of the density shoulder17.
Assuming gyro-Bohm diffusion in this simple SOL model
Te ∼ λ 3

n , a temperature increase by a factor 90 is needed to ex-
plain such a transition. However, experimentally the temper-
ature is not found increasing nearly two orders of magnitude
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FIG. 1. The straightened out scrape-off layer concept. The private
flux region is indicated by PFR, the outer midplane by OMP.

approaching detached conditions. Assuming the temperature
unchanged in the simple SOL model, this corresponds to a
difference of a factor of 20 in the corresponding diffusion co-
efficient. Of course modifications in the sources and sinks are
essential for the understanding of the formation of the density
shoulder. A more detailed discussion on the neutral physics
and sources and sinks of the particle transport can be found
in Ref.18. To reproduce the shoulder formation in simulations
enhanced diffusion coefficients have to be assumed19.

How can such a high diffusion coefficient be motivated?
The broadening of λn is accompanied by a strong increase in
filamentary transport17,20, which is mainly convective. Would
a convective description of the SOL transport be more appro-
priate? In a convective ansatz the transport is given by Γconv =
Un. In a time independent approach diffusion and convection
are formally exchangeable by defining U =

√
Ddiffcs/L∥. In

this case convective and diffusive transport are equal Γconv =
Γdiff. Their combination seems to be described by convection
or (preferred) diffusion only. Only a factor of four is needed
in the convective velocity to explain the observed change in λn
during the density ramp up, this factor of four is also observed
in the blob velocity in the experiment21.

The radial velocity of the filaments (ub ∼ 100 m/s to km/s)
are much too high for effective convective velocities in the
transport codes. The discrepancy is usually understood by the
fact that the blobs appear only intermittently and not contin-
uously in the time signal. Therefore, the filamentary trans-
port should be weighted by the so-called blob duty cycle or
blob packing fraction fp (the blob frequency fb times the auto-
correlation time τb of the blobs). Using such a packing frac-
tion the effective convective velocity is about two orders of
magnitude lower than the typical filament velocity. Once the

blob packing fraction and the filament velocity are known, the
SOL length λn can be predicted22. Although the blob packing
fraction provides means to obtain reasonable diffusion coeffi-
cients or effective convective velocities, there are at least two
caveats using blob packing fractions. First, the packing frac-
tion should account for the density n in the particle transport
Γ = Un, instead the speed U = fpub is reduced. Hence, the
ratio of the time scales of the perpendicular and parallel dy-
namics are wrong. This intrinsically reduces the impact of the
radial transport as the parallel dynamics has more time to de-
plete the density upstream. Second, the blob packing fraction
depends on the blob generation process, which is highly non-
linear and not understood well. Attempts to predict fp can be
found in Refs.23,24. One describes an unknown (perpendicular
transport) by another unknown (blob packing fraction).

In the present contribution an effective diffusion coefficient
describing non-diffusive filamentary transport in the SOL is
motivated by the telegraph equation. The telegraph equation
describes nonlocal, ballistic transport on the time scale of the
plasma filaments and, as desired for transport codes, it pro-
vides a diffusive transport on equilibrium time scales. Further-
more, it is consistent with the correlation characteristics in the
SOL. After introducing the telegraph equation in Sec. II D, its
dynamic features are illustrated in Sec. II E. An order of mag-
nitude estimate of the effective diffusion coefficient is given
in Sec. III A and an example of an application with the trans-
port code SOLPS-ITER is shown in Sec. III B. Summary and
conclusion are given in Sec. IV.

II. CORRELATION BASED DIFFUSION

A. Approaches to sub- and super-di�usion

In general turbulent transport is non-diffusive. In 1926
Richardson introduced the concept of anomalous diffusion to
describe turbulent transport25. One way to describe anoma-
lous diffusion is by generalized random walks, so-called con-
tinuous time random walk, defined in terms of non- Gaus-
sian jump and waiting time probability distributions. Unlike
typical diffusion, where the mean square displacement scales
linearly with time ⟨∆x⟩2 ∼ Dt, anomalous diffusion26 differs
from this linear scaling and ⟨∆x⟩2 ∼ tν . In the continuous
time random walk framework the process is classified diffu-
sive for ν = 1, sub-diffusive for ν < 1 and super-diffusive for
ν > 1. An alternative approach to anomalous diffusion is pro-
vided by a fractional diffusion equation ∂ β

∂ tβ n = ∂ α

∂xα Dn where
the parameters α and β do not have to be integers. The pro-
cess can be classified by their ratio µ = β/α and is diffusive
for µ = 0.5, sub-diffusive for µ < 0.5 and super-diffusive for
µ > 0.5. Fractional diffusion has been studied in magnetically
confined plasmas before27–29, reduced resistive MHD turbu-
lence has been shown to be super-diffusive27, plasma core tur-
bulence is close to diffusive, but becomes sub-diffusive in the
presence of shear flows29. Where fractional calculus is inter-
esting for interpretation, fractional derivatives are difficult to
integrate in the numerical architecture of the already existing
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transport codes.

B. Concept of correlation based di�usion

A third concept of anomalous diffusion is correlation based
diffusion30. From the continuity equation

∂
∂ t

n+ur
∂n
∂ r

= S (3)

where the transport is represented by the second term on the
l.h.s. and S represents possible sources and sinks. To study
the impact of fluctuations, density and velocity are decom-
posed in background and fluctuating quantities n = n0+ ñ and
ur = ur0 + ũr. In Ref.30 the background is obtained by aver-
aging ⟨·⟩ the continuity equation over the ensemble of realiza-
tions. In the following, we will neglect the contribution of the
background radial velocity ur0, which is usually expected to
be small in a tokamak. In the original work30 the effect of ur0
can be found. The evolution of the background density is

∂
∂ t

n0 =−⟨ũr
∂ ñ
∂ r

⟩+S. (4)

Turbulent transport Γ = ⟨ũrñ⟩ is given by the second term. It
does not vanish, if density and radial velocity fluctuations are
correlated. The time evolution of the density perturbation is

∂
∂ t

ñ =−ũr
∂n0

∂ r
. (5)

This equation can be solved by integration

ñ(x, t) =−
∫ t

0
ũr(t ′)

∂n0

∂ r
dt ′ (6)

which can be inserted in the background equation (4)

∂
∂ t

n0 =
∫ t

0
⟨ũr(t)ũr(t ′)⟩

∂ 2n0

∂ r2 dt ′+S, (7)

here

C(t, t ′) = ⟨ũr(t)ũr(t ′)⟩ (8)

is the auto correlation function of the radial velocity. Linear
correlation can be represented by C(t, t ′) = C(t − t ′). There-
fore, transport depends on the auto-correlation function

∂
∂ t

n0 =
∂ 2n0

∂ r2

∫ t

0
C(t − t ′)dt ′+S. (9)

The first term on the r.h.s. can be identified as the transport
term

∂
∂ r

Γ =
∂ 2n0

∂ r2

∫ t

0
C(t − t ′)dt ′. (10)

C. Short- and long-time correlations

A different type of correlation function leads to a different
transport phenomenology. In the case of short time correlation
represented by the delta correlation function

C(t − t ′) = Dlδ (t − t ′)

Eq. (9) reduces to

∂
∂ t

n0 = Dl
∂ 2n0

∂ r2 +S (11)

which recovers the diffusion equation.
In the case of long-time correlations with C(t) = C0 being

constant Eq. (9) is

∂
∂ t

n0 =C0
∂ 2n0

∂ r2

∫ t

0
dt ′+S. (12)

Differentiating with respect to t provides a wave equation

∂ 2

∂ t2 n0 =C0
∂ 2n0

∂ r2 (13)

with the coefficient [C0] = m2/s2. We assumed the sources
and sinks being constant in time, otherwise ∂S/∂ t has to be
added. This equation describes super-diffusion. As a hyper-
bolic equation it can describe nonlocal effects.

D. Telegraph equation

The auto-correlation function of the fluctuations in the SOL
can be well fitted by an exponentially decaying function as
shown for example in TCV31, JET32 and COMPASS33. The
exponential correlation function is given by

C(t) =C0 exp(−|t|/τ) (14)

which inserted into (9) yields

∂
∂ t

n0 =
∫ t

0
C0 exp(−|t − t ′|/τ)

∂ 2n0

∂ r2 dt ′+S (15)

Differentiating this equation with respect to t yields

∂ 2

∂ t2 n0 =−1
τ

∫ t

0
C0 exp(−|t − t ′|/τ)

∂ 2n0

∂ r2 dt ′+C0
∂ 2n0

∂ r2 (16)

where it is assumed that the background ∂ 2n0
∂ r2 and the sources

and sinks S are rather constant within the time τ . The second
term on the r.h.s. comes from the upper boundary of the inte-
gral (Leibniz integral rule) C0 exp(−|t − t|/τ) ∂ 2n0

∂ r2
d
dt t. Elimi-

nating the integral in (15) by substituting∫ t

0
C0 exp(−|t − t ′|/τ)

∂ 2n0

∂ r2 dt ′ =−τ
∂ 2

∂ t2 n0 + τC0
∂ 2n0

∂ r2 .

(17)
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yields

∂
∂ t

n0 + τ
∂ 2

∂ t2 n0 = τC0
∂ 2n0

∂ r2 +S (18)

which is the telegraph equation. The telegraph equation has
been used before to study nonlocal heat transport in the core
of fusion plasmas34–36 and zonal flow propagation37. In the
SOL it has been used to study parallel heat transport38. Non-
local models can capture kinetic effects in the parallel elec-
tron heat-flux in fluid models39,40. With respect to heat trans-
port the telegraph equation is also called Cattaneo equation.
If sources and sinks depend on time a term τ ∂S

∂ t have to be
added to Eq. (18). As no significant effects of neutrals on the
blob dynamics is expected41, this term will be neglected in the
following.

Compared to the diffusion equation (11), the term τ ∂ 2

∂ t2 n0
corresponds physically to the response time of the flux to the
gradient as discussed in detail in Ref.34. In the case of dif-
fusion the transport is directly related to the gradient Γ =

−D ∂n0
∂ r , which corresponds to an infinitely rapid response. By

introducing a finite response time Γ =−D ∂n0
∂ r − τ ∂ Γ

∂ t the den-
sity evolution is given by

∂n0

∂ t
=−∂Γ

∂ r
= D

∂ 2n0

∂ r2 + τ
∂
∂ r

∂Γ
∂ t

. (19)

From ∂n0
∂ t =− ∂Γ

∂ r follows ∂
∂ r

∂Γ
∂ t =− ∂ 2n0

∂ t2 which can be substi-
tuted for the last term in Eq. (19) to recover Eq. (18).

The telegraph equation shows different behavior on differ-
ent time scales42. On long time scales (t ≫ τ) the telegraph
equation (18) reduces to the diffusion equation. The effective
diffusion coefficient is Dtele = τC0. The correlation coeffi-
cient is C0 = ũ2

r (see Eq. (8)). On short time scales (t ≪ τ) the
telegraph equation shows wave-like behavior. It can describe
nonlocal transport. The telegraph equation (18) can be also
written as

∂ 2

∂ t2 n0 +
1
τ

∂
∂ t

n0 =C0
∂ 2n0

∂ r2 . (20)

Compared to the wave equation (13) the propagation velocity
is
√

C0 = ũr, which is the typical radial velocity of the fluctu-
ations.

E. Illustration of the dynamics of the telegraph equation

One dimensional simulations of the telegraph equations
have been carried out in simplified geometry with a finite dif-
ference upwind scheme to illustrate its dynamics. The equa-
tion simulated is

∂ 2

∂ t2 n+
1
τ

∂
∂ t

n+
cs

τL∥
n = u2

b
∂ 2

∂x2 n+
1
τ

S. (21)

Von Neumann boundary conditions have been used, where
the boundary conditions have been optimized to reduce the
effects of the boundary on the main domain. The parameters

have been adapted to typical mid-SOL conditions (Te = 15 eV,
L∥ = 20 m, deuterium ions) in the sheath dissipative regime of
blob propagation. An auto-correlation time of τ = 20 µs with
a blob velocity of ub = 250 m/s have been used, correspond-
ing to an analytical gradient fall-off length of λn = 3.1 cm. To
mimic the intermittency of the SOL transport, the source S of
a Gaussian shape in radial direction and in time at the sepa-
ratrix is randomly activated with an exponentially distributed
waiting time distribution. The simulation result is shown in
Fig. 2. This is similar to the stochastic framework developed
in Refs.43,44. In Ref.43 one point in space is described by an
uncorrelated train of pulses. These pulses are ejected in time
following a Poisson process with an exponential distribution
of amplitudes. The model43 captures the non-Gaussian fea-
tures of the probability distribution function well. In Ref.44

the spatial profile in the SOL is related to the dynamics of fila-
ments based on a statistical description of filamentary motion.
We make the same distinction between background and pro-
file as done in Ref.44. The background is the environment the
fluctuations propagate in, which is not the same as the profile.
The profile is given by the time average of the thermodynamic
quantity (in this case the density), consisting of the combined
background and average of the filaments. The pulses ballisti-
cally propagate through the domain. The propagation velocity
is exactly the predefined radial blob velocity (Fig. 3). During
propagation the pulses decay in time due the parallel drainage
of the blobs. Here, there is basically no background, the re-
sulting profile is essentially composed only of the filaments.

FIG. 2. Density evolution (in 1019 m−3) simulated the telegraph
equation. The source is stochasticity activated leading to pulses prop-
agating ballistically through the domain.

The time averaged profile of the simulation is shown in
Fig. 4. Even though the dynamics is nonlocal and ballistic,
therefore not diffusive at all, the resulting gradient fall-off
length of the profile (not the background) agrees very well
with the analytically calculated one λn =

√
DL∥/cs with the

effective diffusion coefficient of D = τu2
b. Therefore it cap-

tures the ratio of the time scales of the perpendicular and par-
allel dynamics quite well.
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FIG. 3. Temporal magnification of pulse propagation as shown in
Fig. 2. The pulse propagation is constant across the radius and thus
can be directly restructured.

FIG. 4. Time averaged profile (shown in blue solid) and gradient
scale length (shown in orange solid) of the simulation results. The
time averaged profile agrees with the analytical solution (shown by
the dashed red line) using an effective diffusion coefficient.

III. EFFECTIVE FILAMENT DIFFUSION COEFFICIENT
FOR THE SOL

A. Order of magnitude estimate

In the telegraph-type transport model, the effective diffu-
sion coefficient on the large time scale results from a corre-
lated random walk. The underlying microscopic mechanism
is based on super-diffusive, ballistically propagating struc-
tures with a typical radial velocity appearing on a short typical
time scale. Such a picture is consistent with the SOL obser-
vation. It also provides a reasonable order of magnitude esti-
mate. Typical radial velocities in the SOL are in the order of
102–103 m/s, typical correlation times in the order of 10 µs.
This corresponds to typical SOL diffusion coefficients in the
order of 0.1–10 m2/s which are also in the typical range used

in transport codes. In general the radial velocity and auto-
correlation time estimated by the auto-correlation of the radial
velocity fluctuations should be used. A decomposition in fil-
aments and turbulence without filaments should not be done.
However, it can be assumed that the filaments will determine
the auto-correlation function. In such a case approximating
the typical radial velocity by the filament velocity ũr ≈ ub and
the typical time scale by τ ≈ δb/ub seem reasonable approx-
imations. This results in an effective diffusion coefficient of
Dtele = ubδb. In the typical sheath connected regime appear-
ing in attached conditions the blob velocity is predicted to de-
crease with the blob size ub ∼ δ−2

b
7, hence Dtele ∼ δ−1

b . As
the temperature does radially not change much in the SOL the
typical blob size δb does not change much either, the typical
effective diffusion coefficient is around Dtele = 1 m2/s for typi-
cal blobs of about δb = 1 cm with a radial velocity of ub = 100
m/s. In the inertial regime ub ∼

√
δb hence Dtele ∼ δ 3/2

b . Here
we observed blobs with sizes up to δb = 8 cm with velocities
up to vb = 800 m/s (not at the same time) and corresponding
effective diffusion coefficients up to Dtele ≈ 50 m2/s. There-
fore, filamentary transport, interpreted as the stationary limit
given by an effective diffusion coefficient of Dtele = u2

bτ , can
account for the factor of 20 observed in density ramp-up ex-
periments.

B. Example for transport code simulations

Next an example of an application is shown. ASDEX
Upgrade conditions are simulated using the code SOLPS-
ITER12. The procedure is similar to the one published in
Ref.45. Two cases are considered, one at low density and
one with the characteristic density shoulder at elevated den-
sity. In SOLPS-ITER the diffusion coefficient D has to be set
manually. This has been done for a first guess. The simula-
tion provides the particle transport ΓSOLPS = D(dn/dr)SOLPS
and the profile (dn/dr)SOLPS, which may differ from the ex-
perimental profile. To match the simulated and experimen-
tal profile an iterative scheme has been applied. For the next
step i+1 the diffusion coefficient at every radial location has
been set to Di+1 =− ΓSOLPS,i

(dn/dr)exp
. The procedure required only a

few steps until it converges to the experimental profile. These
are shown in Fig. 5. Close to the separatrix broadband turbu-
lence is expected in ASDEX Upgrade46,47, the diffusion co-
efficients are around one m2/s. A flattening of the density
profile with enhanced background density is observed in the
region 0.005 < r− rsep < 0.025. The corresponding particle
diffusion coefficients D are around the order of one m2/s in
the case of low density, where D increases from 0.4 m2/s to
above one m2/s across the SOL (Fig. 5a). At elevated densi-
ties the particle diffusion coefficient is much higher, in partic-
ular around the density shoulder it approaches D = 40 m2/s
(Fig. 5b). In the low density case the auto correlation times
τ have been measured between 10 and 50 µs, which would
correspond to blob velocities vb =

√
D/τ between 100 and

200 m/s. In the high density case the auto correlation time
scatters between 50 and 250 µs corresponding to blob veloc-
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ities between 400 and 900 m/s. These values are in reason-
able agreement with the ones reported in literature20. As the
filaments propagate further outwards r − rsep > 0.025 in the
high density case, they reattach to the walls and are again the
sheath connected regime48, which is accompanied by reduced
diffusion coefficients similar to the case at low densities.

FIG. 5. Density profiles (blue solid lines) simulated by means of
SOLPS-ITER of a low (a) and high density (b) case measured in
ASDEX Upgrade. The experimental data points shown by the red
triangles are obtained from the integrated data analysis IDA49. The
simulated diffusion coefficients are shown by the black dashed line.

IV. SUMMARY AND CONCLUSION

Due to plasma filaments or blobs the transport in the scrape-
off layer of tokamaks is not diffusive. It is intermittent, show-
ing a strongly non-Gaussian distribution. It can also not be
parametrized (even locally) by diffusion and convection50.
Turbulent transport is non-local10, which means the trans-
port is not a function of the local quantities at a given posi-
tion but depends on the quantities at a different radial posi-
tion. Transport codes approximating turbulent transport via
effective diffusion or convection intrinsically can not treat

turbulent transport self-consistently. But transport codes in-
clude the complex magnetic geometry, neutral and impurity
physics, radiation from excited states, wall recombination or
even atomic and molecular chemistry. Codes treating the
turbulence self-consistently usually do not treat these effects
very well. Codes like GRILLIX51, TOKAM3X-EIRENE52,
GBS53, GDB54 and XGC155 are currently in development
to close this gap. Another possibility is to extend transport
codes by reduced models of turbulent transport56,57. For the
time being effects of complex magnetic geometry, neutral
and impurity physics are of fundamental importance for di-
vertor physics and can only be studied by transport codes.
The present contribution should guide the treatment of turbu-
lent transport in the current implementation of such transport
codes.

If SOL turbulence must be described by a diffusion coeffi-
cient, what would be the best way to describe it? Here, it is
proposed to use the typical velocity ub and correlation time τ
of the plasma filaments in the scrape-off layer to estimate the
effective diffusion coefficient D = u2

bτ . These quantities are
often directly available from the experiment and be used as
an input in the transport code. This effective diffusion coeffi-
cient is the diffusive limit of ballistic transport modeled by the
telegraph equation, describing a correlated random walk with
exponential correlation function (also a feature of SOL trans-
port). The effective diffusion coefficient is based on the auto-
correlation function and therefore it is an intrinsic statistical
quantity. The transport corresponds to the averaged filamen-
tary transport. It is only valid for time scales much larger than
the auto-correlation time, therefore it can be used for station-
ary solutions of the transport code, but not to study the impact
of individual filaments. Using the typical blob velocity ub and
size δb to define a characteristic time δb/ub and using these to
determine a characteristic blob diffusion coefficient

D = δ 2
b /τ = δ 2

b /(δb/ub) = ubδb = u2
b(δb/ub) = u2

bτ (22)

provides the same result if the auto correlation time is equal to
this characteristic time τ = δb/ub (blob correspondence prin-
ciple).

Most of the important physical effects are now hidden in
these characteristic quantities (ub,τ,δb), which can be de-
duced from theoretical models7,8,58 or directly from experi-
mental measurements59,60. Blob velocity and auto-correlation
time change strongly with the divertor conditions17,20. The
models7,8,58 or measurements59,60 describe the blob dynam-
ics at the outboard midplane, which is expected to have the
strongest contribution to the blob induced perpendicular trans-
port. A higher degree of sophistication is possible. The blob
dynamics strongly depends on the magnetic curvature7,8,58,
which varies with the ballooning (roughly the poloidal) an-
gle. The influence of the varying magnetic geometry with
the ballooning angle on the blob dynamics has been investi-
gated in Ref.61. Simulations of the filament motion in realis-
tic tokamak geometry can be found in Ref.62. The impact of
the X-point on the blob dynamics has been studied in Ref.63.
Therefore, the models can provide the characteristic quanti-
ties (ub,τ,δb) and therefore also the corresponding diffusion
coefficient D = u2

bτ even on the full 2D or 3D grid.
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