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Abstract

Visually guided agents are introduced, that evolve
their sensor orientations and sensorimotor coup-
ling in a simulated evolution. The work builds on
neurobiological results from various aspects of in-
sect navigation and the architecture of the “Vehi-
cles” of Braitenberg (1984). Flies have specialized
visuomotor programs for tasks like compensating
for deviations from the course, tracking, and land-
ing, which involve the analysis of visual motion
information. We use genetic algorithms to evolve
the obstacle avoidance behavior. The sensor ori-
entations and the transmission weights between
sensor input and motor output evolve with the
sensors and motors acting in a closed loop of per-
ception and action. The influence of the crossover
and mutation probabilities on the outcome of the
simulations, specifically the maximum fitness and
the convergence of the population are tested.

1 Introduction

In this work autonomous agents are introduced which
navigate through a virtual world. Genetic algorithms
are applied to evolve their visually guided control mech-
anisms and generate a sensorimotor coupling which en-
ables them to survive in the environment. In particular,
the behavioral module for obstacle avoidance is studied.
For the task a visuomotor program is generated with the
sensors and effectors acting in a closed loop of percep-
tion and action, thus effecting a permanent sensorimotor
interaction.

In information processing the architecture of autonomous
systems is decomposed into a chain of functional mod-
ules such as perception, information processing in a cen-
tral unit and the execution and output of information.
In other approaches the architecture is decomposed into
task-achieving modules, which, in combination, produce
the complex, “emergent” behavior of biological (Tinber-
gen, 1953) and artificial systems (Brooks, 1986; Flynn &
Brooks, 1989). Starting from the assumption that per-

ception and action - sensor input and motor control —

did not develop independently from each other, but are
a coupled system - they have to be investigated in a
closed loop. Braitenberg demonstrated with his “Vehi-
cles” that even with simple architectures, it is possible to
conceive of autonomous agents that can exhibit complex
emergent behavior.

By studying the behavior of insects and the underly-
ing neural mechanisms (for review see Egelhaaf & Borst,
1993), the architecture of biological navigation systems
has been investigated. For our agent, the most impor-
tant biological insight is that insects navigate mostly by
evaluating visual motion information by means of neu-
rons tuned to specific motion patterns (matched filters).
The spatial localization of the receptive fields of these
neurons is optimized with respect to certain behavioral
tasks.

Franceschini and his colleagues demonstrate that the prin-
ciple of motion vision can be used for navigational tasks
in simulated and real agents (Franceschini, Pichon &
Blanes, 1992). Cliff, Husbands and Harvey (1994) show
the efficacy of using genetic algorithms to evolve con-
currently the visual morphology along with the control
networks. Here, we attempt to combine these approaches
by evolving a competence for obstacle avoidance through
simultaneous adaptation of sensor parameters and the
sensorimotor coupling.

In the section 2, results from the research on the visual
system of flies are reviewed and in section 3 the architec-
tures of two types of autonomous agents are described.
In section 4 the genetic algorithms used here are intro-
duced, followed by the results of the simulations.

2 Perception of motion and visuomotor
control in flies

The resolution of the compound eyes of flies 1s much
coarser than that of human eyes and thus the percep-
tion of shape is more difficult. Hence, for visual ori-
entation the detection of motion plays a more promi-
nent role. While the insect is navigating through a sta-
tionary environment the images on the retinae are con-
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Figure 2: The agent has four sensors, the orientations of
which 1s qiven by the angles azimuth ® and inclination ©.
The outputs of these detectors dj, and di are connected
to the motors My, and Mg via the sensorimotor coupling.

between sensors and motors for different types of behav-
10r8.

The input to each sensor is computed by “ray tracing”
(Foley et al., 1987) where the intensities of single points
— at the intersection of the line of sight with the visible
surfaces — are averaged over a given number of sampling
points. The orientations of the optical axes of the two
sensors on one hemisphere of the visual field are evolved
by the genetic algorithm. The other pair of sensors is po-
sitioned bilaterally symmetric on the other hemisphere.
The time constants of the lowpass filters of the corre-
lation motion detector are fixed (rppy = 2.0s, 7 p2 =
5.0s). The matrix
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contains the transmission weights for the sensorimotor
coupling of the outputs d and dp of the two motion—
detectors with the two motors My and Mp. The velocity
of the system is proportional to the force of the two mo-
tors, each motor producing a basic velocity vg which is
modulated by the visual information:
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The velocity V in the heading direction and the anglular
velocity are:
1 . _ UL — VR
V==(vp+vg) and ¢o=—-—7. (3)
2 ¢
where ¢ = 10cm is the distance between the wheels. The
system has two degrees of freedom: rotation around the
vertical axis and translation in the heading direction. In
the simulations the numerical accuracy is set to 107°
simulating a small amount of noise.

3.1 Agent of type I:

Here the angular aperture of each sensor is 10° azimuth
x 10° elevation. We average the intensity of 10 x 10
sampling points to compute the visual input to each sen-
sor. The basic velocity of the two motors is constant at
vg = 10cm/s.

The agent moves through a tunnel which has a sinusoidal
pattern (A = lm) mapped onto the walls, the floor and
the ceiling. The width and height of the tunnel are 6m,
the length is 100m. The elevation of the agent in the tun-
nel is kept constant at 3m. During evolution the system
has to avold two walls in the tunnel and maintain a safe
distance of 15cm while navigating around the obstacles.
The two walls are at z = 15.0m, 0.0m < y < 3.0m and
z = 35.0m, —3.0m < y < 0.0m.

3.2 Agent of type 2:

For the agent of type 2 bilateral symmetry is assuimed
for the orientation of the motion detectors — as for agent
of type 1 — and in addition for the transmission weights
from the detector outputs to the motors. The angular
aperture — being the same for all four sensors - is evolved.
In order to keep the simulation time small, horizontal line
sensors are used. The number of sampling points varies
with the angular aperture of the sensors, the sampling
base 1s kept constant at 1°. In addition the constant
basic velocity vg of the two motors 1s a parameter opti-
mized during evolution.

We run two blocks of simulations: in block 1 a sinusoidal
pattern with the wavelength A = 2m 1s mapped onto the
walls, ceiling and floor. Here the tunnel is 110m long and
closed by a wall at both ends, the width and height is 4m.
Four additional walls are placed at z = 9m, 50m;0.0m <
y < 2.0m and z = 19m,80m;—-2.0m < y < 0.0m. The
agent maintains a constant height of 2m.

In block 2 a random-dot pattern is used and walls are
placed at 2z = 9m,50m;0.0m < y < 2.0m and z =
25m,80m; —2.0m < y < 0.0m. The tunnel is open at
the end. The agents have to maintain a save distance of
10 cm from the walls.

4 Simulated evolution
4.1 The genetic algorithm

In a simulated evolution — using genetic algorithms - the
autonomous agents adapt to the environment by gener-
ating an obstacle avoidance behavior. The orientation
of two sensors and the transmission weights for the sen-
sorimotor coupling are evolved. These parameters are
encoded as a Gray-coded bitstring. Starting with a ran-
dom initial population of bitstrings, each new generation
is obtained by the following procedure:
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Figure 3: Average (left) and mazimal (right) fitness, averaged over 8 trials.

Simulation block 1

441

The fitness function for the agent of type 2 in the simu-
lation of block 1 is:

f = ksTous (8)

with & = 1/2 if the agent bumps into a wall and k = 1
if not. s is the length of the path the agent covers, and
Tmasz the maximum value on the center axis of the tunnel
the agent reached.
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Figure 4: GA 1: Mazimal fitness at generation 100, av-
eraged over 8 trials.

4.4.2  Simulation block 2

Here the fitness function is:

F=kY |Azi|2ma (9)

where |Az;| is the distance on the center axis the agent
covers in 10 steps. |Az;| is computed every 10 steps and
Tmar 18 again the maximum value on the center axis of
the tunnel the agent reached.
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Figure 5: Distribution of the orientations of the sensors
for the best indivnidual of each trial. The sensors form-
ing a detector are connected by a line. The intensity of
the sensors code the frequency of their occurrence, with
darker greyvalues being more frequently.

5 Simulations

5.1 Agent of type 1

In Fig. 3 the fitness Fihax of the best individual and the
average fitness F' of the population for every generation,
both averaged over 8 trials are shown. As a high pro-
portion of the individuals bump into the wall and get
zero fitness, the average fitness is much smaller than the
maximum fitness for all four conditions. The maximal
fitness after 100 generations averaged over 8 trials (sce
Fig. 3) is not significantly different between the different
mutation and crossover probabilities. The average fit-
ness I of the population is highest using only crossover
followed by the C'yy M, condition. The best individuals



Rut Re2

2.0

Rr1 RR2

T
0 25.0 50.0

75.0

2.0 ‘

start

N ~—

s

-2.0 T .

-

=

-

0 25.0 50.0

1 1
75.0 100.0

Figure 7: Path in tunnel 1 (top) and tunnel 2 (bottom). Rpi, Rr2 and Rpy, Rpo tn tunnel 1 indicate the lines of
intersection of the sensor rays with the walls of the tunnel. Noise of £10% s added to the input signals of the visual
sensors and to the motor output. Sinusoidal pattern is mapped onto the walls ceiling and floor (A = 2).

5.2 Agent of type 2
5.2.1 Simulation block 1

The agent of type 2 evolved in the simulation of block 1
(see Fig. 8) with the optical axes of its sensor orientations
at 27.5° and 38.8° azimuth and 118.3° and 129.7° incli-
nation. The evolved angular aperture of the sensors is
with 27.5° much larger than for agent 1. The basic veloc-
ity of the motors is vo = 6.2cm/s. The resulting angluar
velocity is ¢ = —0.43(d + dr)/c deg/s and the velocity
in the heading direction V = vg + 0.16(d — dr) cm/s.
With this architecture the sensors of an agent moving
on the center axis receive visual input mainly from the
floor and from a small part of the side walls. If the agent
approaches an obstacle, response is smaller for the mo-
tion detector nearer to the obstacle. As the preferred
direction of the motion detectors is almost vertical and
the sinusoidal pattern is oriented vertically the walls and
horizontally on the floor, the change of intensity in the
sensors and thus the perceived motion decreases as the
agent approaches an obstacle. The transmission weights
for the contralateral connections are stronger than for
the ipsilateral connections, hence the reduction of the
detector output has a stronger effect on the velocity of
the motor on the contralateral side and the agent turns

away from the obstacle. The agents are tested in two
different tunnels. Tunnel 1 is the original environment
the agent evolved in, tunnel 2 differs in the number and
position of the obstacles. Here we use 8 walls which are
placed according to Fig. 7 (bottom). The test-trials are
run with additional noise on sensor input and motor out-
put. Table 2 describes the different noise conditions.
The agent has to survive 5000 time steps in the tunnel
without bumping into a wall in order to show a success-
ful behavior. With no additional noise the agent travels
both tunnels in 100% of the time successfully. Adding
more and more noise leads to a gradual reduction of per-
formance. For tunnel 1 with +1% noise, up to 70%-68%
of the trials are successful, with £5% 58-53 % and with a
high noise of 10% still 46%-38% do not bump into a wall
during 5000 time steps. For the tunnel 2 the performance
is reduced to 44%-31% for the different conditions. In
Fig. 7 examples of a successful travel through the tun-
nel 1 and tunnel 2 with 10% noise on sensor input and
motor output are shown.

5.2.2  Simulation block 2

Here the agent evolves two sensors with the same in-
clination and overlapping receptive fields (Fig. 10). The
optical axes are at 28° and 17° azimuth and 106° inclina-



highest if only crossover is used. Comparing the average
maximal fitnesses obtained after 100 generations the use
of crossover and/or mutation leads to comparable opti-
mization results.

In future work we will evolve agents navigating in more
complex environments. We plan to increase the num-
ber of movement detectors and use an array of sensors
forming a 360° field of view. The agent will evaluate the
motion detected in this field of view with filters that re-
spond maximal to certain motion patterns —e.g. rotation
around the vertical axis and translation in the direction
of heading. Those filters are derived from the tangential
neurons (see sect. 2) found in the visual system of the
fly’s brain. In addition the agents will receive more de-
grees of freedom making 3D flight manoeuvers possible.
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