

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. © 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 2, pp. A957–A996

A NUMERICAL COMPARISON OF DIFFERENT SOLVERS FOR
LARGE-SCALE, CONTINUOUS-TIME ALGEBRAIC RICCATI

EQUATIONS AND LQR PROBLEMS∗

PETER BENNER† , ZVONIMIR BUJANOVIĆ‡ , PATRICK KÜRSCHNER§ , AND JENS

SAAK†

Abstract. In this paper, we discuss numerical methods for solving large-scale continuous-time
algebraic Riccati equations. These methods have been the focus of intensive research in recent
years, and significant progress has been made in both the theoretical understanding and efficient
implementation of various competing algorithms. There are several goals of this manuscript. The
first is to gather in one place an overview of different approaches for solving large-scale Riccati
equations, and to point to the recent advances in each of them. The second goal is to analyze and
compare the main computational ingredients of these algorithms and to detect their strong points
and their potential bottlenecks. Finally, we want to compare the effective implementations of all
methods on a set of relevant benchmark examples, giving an indication of their relative performance.

Key words. algebraic Riccati equation, Lyapunov equation, alternating direction implicit,
rational Krylov subspaces, Newton’s method

AMS subject classifications. 15A24, 65F45, 65F55, 93B52

DOI. 10.1137/18M1220960

1. Introduction. Let A, M ∈ Rn×n, C ∈ Rp×n, B ∈ Rn×m be given matrices.
Assuming that A,M are sparse, M is nonsingular, and p,m � n, we consider large-
scale, generalized, continuous-time, algebraic Riccati equations (GCAREs)

R(X) = A∗XM +M∗XA−M∗XBB∗XM + C∗C = 0.(1.1)

Our goal is the fast and efficient computation of a low-rank approximation of a solution
matrix X ∈ Rn×n.

For M = In, (1.1) will be referred to as the standard continuous-time, algebraic
Riccati equation (CARE). If B = 0, (1.1) reduces to a generalized, continuous-time,
algebraic Lyapunov equation (GCALE). GCAREs appear in various areas related to
control theory—for instance, linear-quadratic optimal regulator (LQR) problems [74,
82], H2 and H∞ controller design, nonlinear controller design via state-dependent
Riccati equations [38], and balancing-related model reduction [4, 19, 66]. Solving
differential Riccati equations by implicit integration schemes [29, 39, 45, 75] can also
lead to GCAREs.

1.1. Preliminaries, assumptions, motivation, and goals. Because of its
nonlinear nature, (1.1) can have several solutions. We exclusively restrict ourselves to

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section October
31, 2018; accepted for publication (in revised form) February 3, 2020; published electronically April
7, 2020.

https://doi.org/10.1137/18M1220960
†Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics

of Complex Technical Systems, Magdeburg D-39106, Germany (benner@mpi-magdeburg.mpg.de,
saak@mpi-magdeburg.mpg.de).
‡Faculty of Science, Department of Mathematics, University of Zagreb, Zagreb 10000, Croatia

(zbujanov@math.hr).
§Group Science, Engineering and Technology, KU Leuven Kulak, 8500 Kortrijk, Belgium

and Department of Electrical Engineering ESAT/STADIUS, KU Leuven, 3001 Leuven, Belgium
(patrick.kurschner@kuleuven.be).

A957

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/18M1220960
mailto:benner@mpi-magdeburg.mpg.de
mailto:saak@mpi-magdeburg.mpg.de
mailto:zbujanov@math.hr
mailto:patrick.kurschner@kuleuven.be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A958 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

the usual situation where a stabilizing solution is sought; i.e., our goal is to find X =
X∗ ≥ 0 such that the spectrum of the closed loop matrix fulfills Λ(A−BB∗XM,M) ⊂
C−. The stabilizing solution exists and is unique [35, 74] when (A,M,B) is stabilizable
(i.e., rank[A − zM, B] = n for each value of z in the closed right half plane), and
(A,M,C) is detectable ((A∗,M∗, C∗) stabilizable). These conditions are generically
fulfilled and are assumed to hold in the remainder. We also assume that the singular
values of X decay rapidly towards machine precision. This enables us to numerically
deal with large-scale GCAREs (1.1) by computing low-rank approximations X ≈
X lr = ZDZ∗ with Z ∈ Rn×r, D = D∗ ∈ Rr×r, r � n. For GCALEs, the singular
value decay has been investigated, e.g., in [5, 8, 25, 56, 87, 89, 97]. The low-rank
approximability of solutions of GCAREs is less well understood; see, e.g., [16, 71, 88]
for some results. In particular, a rapid singular decay of the solution is often present
when Λ(A,M) ⊂ C− and p,m� n, i.e., C∗C, BB∗ are of low rank, which we assume
as well and which is common in large-scale applications. The computation of low-rank
factors Z, D is the common backbone shared by all the discussed algorithms in this
paper. An efficient execution of these methods will also hinge on our assumption
p,m� n.

The focus of this study is to compare the most prominent algorithms for large-
scale GCAREs. The comparison is carried out with respect to the key stages of
the algorithms which consume the most numerical effort. In particular, since all
the considered methods are of an iterative nature often requiring different numbers of
steps, we will analyze a single iteration step of each method. The main work-intensive
stages of the methods that we are especially concerned with are as follows:

• The numerical solution of the large-scale, real- or complex-valued linear sys-
tems of equations, usually of the form

(A+ αM)V = N, V,N ∈ Cn×s,

with A,M from (1.1). We assume that we are able to solve these by sparse-
direct or iterative solvers at an approximately linear complexity. Here, we
focus on sparse-direct solvers. Employing iterative solvers deserves further
investigations, but this would be well beyond the scope of this paper due to
the large number of possible combinations of iterative schemes and precondi-
tioners that could be used for this purpose. The number of columns s in the
right-hand side is of special interest. We employ the simplifying assumption
that the numerical effort to solve a linear system scales linearly with s.

• The construction of rectangular matrices with orthonormal columns spanning
a basis for certain subspaces is a numerical task arising in methods that
use a Galerkin projection framework. This is typically achieved by a stable
implementation of a Gram–Schmidt, process, e.g., (modified) Gram–Schmidt
with iterative refinement. In the numerical costs for the orthogonalization we
will include only the orthogonalization carried out for a Galerkin projection
regarding (1.1), and not orthogonalization stages arising in other parts of the
algorithms, such as the computation of shifts or the residual norm.

• A Galerkin projection naturally leads to GCAREs (1.1) defined by dense
matrices of smaller dimension `� n. Stable, numerical algorithms for small,
dense GCAREs can be found, e.g., in [15, Chapter 1] and the references
therein. If not stated otherwise, the MATLAB routine care is used, whose
costs are estimated as O(`3).

• The majority of the considered methods relies on certain shift parameters,
which are important for rapid convergence. The problem of generating and

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A959

selecting high quality shift parameters might easily fill a survey article itself
and is, therefore, beyond the scope of this study. We refer to the relevant
literature [17, 24, 48, 49, 72, 101, 103] and provide only basic, necessary
information where appropriate. For each particular GCARE solution method,
we will employ the shift strategy providing the best results. With some
exceptions, these are usually the more recent adaptive generation strategies.

• All the considered algorithms are of an iterative nature and, hence, require
appropriate stopping criteria. For consistency, we terminate all algorithms
when

‖R(X̃)‖2 ≤ τR‖C∗C‖2, 0 < τR � 1,(1.2)

for an approximate solution X̃ ≈ X, and usually choose τR = 10−8. We em-
ploy this residual norm based criterion because approaches based on relative
changes, e.g., of the norm of the generated approximate feedback matrices
K̃ = M∗X̃B, have been proven unreliable [109]. For large-scale matrix equa-
tions, computing or estimating the residual norm is not always an easy task
and can yield significant numerical effort. Recent developments reduce these
costs for several of the considered methods to the level of being insignificant,
though. Details on how this is achieved will be included with the descriptions
of the single algorithms.

Only the first and last points arise in all discussed methods.
The memory consumption of the methods is also considered and compared. Here,

it is important to distinguish between two scenarios:
S1. An approximate solution of (1.1) is sought, in the form of a low-rank ap-

proximate solution ZDZ∗ ≈ X with solution factors Z ∈ Rn×r, D ∈ Rr×r,
and r � n. This situation occurs especially in certain model order reduction
techniques, e.g., LQG, positive-real, and related balanced truncation type
approaches [4, 19, 44, 66, 86]. Note that in some of these model reduction
approaches, the arising GCAREs can have positive definite or indefinite qua-
dratic terms, e.g., [33]. We do not pursue this issue any further here, but
these can be treated with a low-rank version of the iteration proposed in [76].

S2. Only an approximation of the stabilizing feedback matrix K := M∗XB ∈
Rn×m is sought. The optimal control of linear, time-invariant, dynamical
systems using LQR or LQG feedback control approaches (e.g., [59, 94]) is
the prototypical application for this scenario. Since K is a very thin n ×m
matrix, algorithms that are able to operate solely on approximations of K are
considerably more efficient regarding the memory requirements, whenever m
is significantly smaller than r.

Remark 1.1. If one is only interested in the stabilizing feedback K as in scenario
S2, alternative approaches (for M = I) based on the Chandrasekar differential equa-
tions

K̇(t) = −L(t)
∗
(L(t)B), K(0) = 0,(1.3a)

L̇(t) = −L(t)(A−BK(t)
∗
), L(0) = C(1.3b)

can be used [9, 53] by choosing a sufficiently large t = tf and solving the system
of ordinary differential equations numerically backwards in time. The motivation
behind this is that K = limt→−∞K(t) and X = limt→−∞

∫ t
0
L(s)

∗
L(s)ds [37, 67].

Unfortunately, a numerical solution of (1.3) can be difficult, because the solution

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A960 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

trajectories often exhibit a highly oscillatory behavior for small times. An integrator
may thus require a large number of tiny time steps, and it can take a long time for
the above dynamical system to reach a stationary phase [92]. Therefore, we do not
pursue this approach in this study but leave it as an interesting future topic, especially
since it negates the need to work with an ARE at all in scenario S2. Similarly to the
strategy in [9], one could solve (1.3) numerically until a stabilizing K is constructed,
which then serves as an initial guess within an iterative method for the GCARE (1.1).

1.2. Outline. In section 2, the considered methods are briefly described and
categorized into three classes. We refrain from giving detailed derivations and theo-
retical results for each single algorithm, as those can be found in the relevant literature.
How the above computational stages arise in each method is emphasized in that sec-
tion. Recent developments, which are important for the numerical performance, are
also mentioned, including a few modifications so far not discussed in the literature
such as, e.g., accessing the true GCARE residual norm in projection methods, defect
correction strategies for occurring projected CAREs, and handling initial feedback ap-
proximations. The comparison of the computational costs is given in section 3. This
addresses a single iteration step of each considered method respecting the subtasks
mentioned above. The memory requirements and consumption are addressed as well,
especially regarding the scenarios S1 and S2. A series of numerical experiments is
carried out in section 4 comparing the computation time, memory consumption, and
other performance indicators of all methods. Section 5 summarizes our findings.

1.3. Notation. We use the following notation in this paper: C−,C+ are the
open left and right half planes, Re(z), Im(z), z = Re(z) −  Im(z), and |z| are the
real part, the imaginary part, the complex conjugate, and the absolute value of a
complex quantity z, respectively. For matrices, A∗ denotes the transpose for real
matrices and the complex conjugate transpose for complex matrices. If it exists, A−1

is the inverse of A and A−∗ = (A∗)
−1

. In most situations, expressions of the form
x = A−1b are to be understood as solving the linear system of equations Ax = b for
x. The relations A � (�)0 and A ≺ (�)0 stand for the matrix A being positive and
negative (semi)definite. Likewise, A � (�)B refers to A − B � (�)0. Unless stated
otherwise, ‖ · ‖ is the Euclidean vector or subordinate matrix norm, and κ(·) is the
associated condition number. The Frobenius norm is denoted by ‖ · ‖F . For a given
matrix A ∈ Rn×n and a given (block) vector v ∈ Rn×p, the (block) Krylov subspace
generated by A and v is denoted as

Kj(A, v) := range
([
v, Av, A2v, . . . , Aj−1v

])
.

2. Classification and brief introduction of the considered methods. This
section briefly introduces the methods compared in the later sections. We divide the
methods into three classes represented by the subsection herein. The first class consists
of all methods that use a certain subspace, to project (1.1) to a much smaller dense
representation, that can be solved by a direct computation. Then the solution is lifted
to the full coordinates again. Direct iteration methods that successively approximate
the solution, without the need for projection, form the second class. The remaining
class of methods is made up of the variants of Newton’s method.

2.1. Projection methods. Let Q be an r-dimensional subspace of Rn with
r � n and let the columns of Qr ∈ Rn×r form an orthonormal basis for Q. We are
looking for approximate solutions of (1.1) in the space

Zr(Qr) := {Xr = QrYrQ
∗
r : Y ∗r ∈ Rr×r}.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A961

For the standard case M = In, in direct analogy to the case of Lyapunov equations [63,
93], we impose a Galerkin condition (using the Euclidean inner product) onto the
CARE residual:

R(Xr) = A∗QrYrQ
∗
r +QrYrQ

∗
rA−QrYrQ∗rBB∗QrYrQ∗r + C∗C ⊥ Zr(Qr).

This condition implies that Yr is the solution of the r-dimensional CARE

ÃrYr + YrÃ
∗
r + YrB̃rB̃

∗
rYr + C̃∗r C̃r = 0(2.1)

with Ãr := Q∗rA
∗Qr ∈ Rr×r, B̃r := Q∗rB ∈ Rr×m, C̃r := CQr ∈ Rp×r. For M 6= In,

this Galerkin projection is typically implicitly applied to an equivalent CARE defined,
e.g., by AM := AM−1, BM := B, and CM = CM−1 or, if 0 ≺ M = LML

∗
M , to

AM := L−1
M AL−∗M , BM := L−1

M B, and CM = CL−∗M . If the resulting low-rank solution
Xr is not good enough, the subspace Qr is expanded by additional basis vectors.

Methods following this Galerkin projection principle mainly differ in the way the
subspace Q or, more precisely, the sequence Q0 ⊆ Q1 ⊆ · · · ⊆ Qj of subspaces,
is constructed. An intuitive choice would be the block Krylov subspace generated
from A∗M and C∗M [63]; however, because of the often resulting slow convergence,
this approach has been superseded by the application of more general Krylov type
subspaces.

The extended block Krylov subspace [46, 70] is given by

Qj = Kext
j (A∗M , C

∗
M) := Kj(A∗M , C∗M) ∪ Kj(A−1

M , A−1
M C∗M).

In each iteration step, the subspace is expanded by 2p new vectors, leading to dim(Qj) ≤
2jp. The basis matrix Qj for Kext

j can be constructed by the extended block Arnoldi
process which was used in [69, 100] and [61] to compute low-rank solutions of GCALEs
and GCAREs, respectively. Where it does not lead to confusion, we will omit the pre-
fix “block” in the remainder of the text and refer to algorithms using Kext

j as extended
Krylov subspace methods (EKSM).

A further generalization is given by rational Krylov subspaces [90]

Qj = Krat
j (A∗M , C

∗
M ,α)

:= range

([
(AM − α1I)

−∗
C∗M , . . . ,

j∏
i=1

(
(AM − αiI)

−∗
)
C∗M

])

= range

([
(A− α1M)

−∗
M∗C∗M , . . . ,

j∏
i=1

(
(A− αiM)

−∗
M∗
)
C∗M

])
,

where α := {α1, . . . , αj} ⊂ C+∪{∞} are shift parameters whose selection is discussed
later. Following the well-known moment matching interpretation [4], we note that
Kext
j is a special case of Krat

2j with the shifts zero and infinity used in an alternating
fashion. The usage of rational Krylov subspace methods (RKSM) for GCALEs and
GCAREs was investigated in [47, 48, 101, 103]. The basic procedure of both EKSM
and RKSM for (1.1) is summarized in Algorithm 1. Usually, the rational Krylov
subspace is generated so that range(C∗M) ⊆ Qj [47, 48, 103], which can be enforced
by formally setting α1 =∞.

We now give some remarks on the major steps of Algorithm 1. In lines 1, 2, 6,
orth is to be understood as any stable (block) orthogonalization routine, such as
a repeated (block) modified Gram–Schmidt process [55], which we employ in this

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A962 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

Algorithm 1: Extended and Rational Krylov Subspace Method for
GCAREs.

Input : Matrices A, M, B, C defining (1.1) and stopping tolerance
0 < τR � 1.

Output: Qj ∈ Cn×k, Yj = Y ∗j ∈ Ck×k such that QjYjQ
∗
j ≈ X with k � n

and Q∗jQj = Ik, stabilizing feedback matrix Kj ∈ Cn×m.

1 q0 = CM := M−∗C∗, Q0 = orth(CM).

2 EKSM: q
(1)
0 = q0, solve A∗q

(2)
0 = M∗q

(1)
0 for q

(2)
0 , Q0 = orth([Q0, q

(2)
0]).

3 for j = 1, 2, . . . , jmax do
4 RKSM: Select shift αj ∈ C+.
5 Generate new basis vectors:

5a RKSM: Solve (A− αjM)
∗
qj = M∗qj−1 for qj .

5b EKSM: Solve M∗q
(1)
j = A∗q

(1)
j−1, A∗q

(2)
j = M∗q

(2)
j−1 for q

(1)
j , q

(2)
j ; set

qj = [q
(1)
j , q

(2)
j].

6 Orthogonally extend basis matrix Qj−1: Qj = orth([Qj−1, qj]).

7 Ãj = Q∗jM
−∗A∗Qj , B̃j = Q∗jB, C̃j = CMQj .

8 Solve projected CARE ÃjYj + YjÃ
∗
j − YjB̃jB̃∗j Yj + C̃∗j C̃j = 0 for Yj .

9 if ‖R(QjYjQ
∗
j)‖ < τR‖C∗C‖ then Kj = M∗QjYjB̃j , stop.

study. An efficient construction of the projected matrices Ãj , C̃j can be found in the
respective literature on EKSM [100] and RKSM [34, 48, 57, 103]. The small CARE
in line 8 can be solved by direct methods involving dense numerical linear algebra;
see, e.g., [13, 15, 35], whose numerical complexity is cubic in the subspace dimension.

For RKSM, the choice of shift parameters in line 4 is crucial to achieve a fast
convergence. An overview of different selection strategies can be found, e.g., in [57].
The adaptive selection strategy proposed in [48] and later improved in [101] turned
out to be successful in the majority of cases. There, after iteration step j of RKSM,
the next shift αj+1 is obtained by minimizing a rational function over the convex

hull of the eigenvalues of either Ãj [48], the projected closed loop matrix Ãj − B̃jK̃∗j
with K̃j := YjB̃j [81, 101], or of the matrix pair (Q∗jAQj , Q

∗
jMQj) [51]. Here, we

restrict to the variant using Ãj − B̃jK̃∗j . It can happen that some of the generated
shifts occur in complex conjugate pairs. In order to reduce the number of complex
arithmetic operations, the basis matrix Qj , and therefore also most other quantities,
can be kept real by applying the real RKSM proposed in [91]. Essentially, the real
RKSM consists of augmenting Qj−1 by [Re(qj), Im(qj)] when αj ∈ C \ R, which is
equivalent to processing both shifts αj and αj at once. With this observation, the
only remaining complex operation that occurs in the algorithm is solving the complex,
sparse linear system in line 5a.

To monitor the progress and to stop the iteration, the Euclidean or Frobenius
norm of the residual Rj := R(QjYjQ

∗
j) can also be computed efficiently without

explicitly forming this large, dense, n×n matrix [48, 61, 100, 101, 103]. Following [48],
the CARE residual in RKSM has the form (for M = I)

Rj = Fj + F ∗j , Fj := GjS
∗
j ∈ Cn×n,

Gj := qj+1αj − (I −QjQ∗j)A∗qj+1, Sj := Q∗jYjH
−∗
j Ejhj+1,j , Ej = ej ⊗ Ip,

where Hj = [hi,k] ∈ Cjp×jp is block upper Hessenberg, and hi,k ∈ Cp×p, i = 1, . . . , j+

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A963

1, k = 1, . . . , j, are the orthogonalization coefficients obtained in the Gram–Schmidt
process. Since Q∗jqj+1 = 0, it also holds that S∗jGj = 0 and, hence, we have the idem-

potence F 2
j = 0. An easy calculation shows that ‖Rj‖ = ‖Fj‖ = ‖Ψhj+1,jE

∗
jH
−1
j Yj‖,

where Ψ is the triangular factor of a thin QR factorization of Gj . The structure of
Gj and Sj is slightly different in the real RKSM [91] and in EKSM [61, 100], but the
overall approach remains unchanged. Note that for GCAREs (M 6= I) the projection
method is implicitly applied to an equivalent CARE defined by matrices AM , BM ,
and CM , such that one would obtain the norm of an associated transformed residual,
e.g., RMj := M−∗RjM−1. In practice, ‖Rj‖ and ‖RMj ‖ can differ significantly. For
our comparative study of different algorithms, we prefer to monitor the residual of
the original GCARE. This can be easily achieved by exploiting

Rj = M∗RMj M = M∗(FMj + (FMj)
∗
)M = NM

j

[
0p Ip
Ip 0p

]
(NM

j)
∗
, FMj := GMj S

∗
j ,

Nj := M∗
[
GMj , Sj

]
∈ Cn×2p, GMj := qj+1αj − (I −QjQ∗j)A∗Mqj+1,

from which it follows that ‖Rj‖ = ‖ΨM

[
0p Ip
Ip 0p

]
Ψ∗M‖, where ΨM is the triangular

factor of a thin QR decomposition of Nj . In addition to the QR decomposition,
2p (4p for complex shifts in real RKSM) matrix-vector multiplications with M∗ (or
factors thereof) are therefore required to compute ‖Rj‖.

2.1.1. Variants. To slow down the growth of the column dimension of Qj in
block RKSM for Lyapunov equations, a modification has been presented in [49].
There, tangential rational Krylov subspaces

Qj = Kt-rat
j (A∗M , C

∗
M ,α)

:= range
([

(A− α1M)
−∗
M∗C∗Md1, . . . , (A− αjM)

−∗
M∗C∗Mdj

])
, αi 6= αj ,

are used to generate the projection subspace, leading to the tangential RKSM (TRKSM).
It is straightforward to apply this approach to GCAREs. The tangential directions
dj ∈ Cp×pj , pj ≤ p, are computed adaptively at every iteration step in conjunction

with the shifts. Clearly, dim(Kt-rat
j) =

∑j
i=1 pi ≤ jp, leading to a reduced effort

for the orthogonalization and small-scale solution of the projected matrix equation.
However, as pointed out in [49], the decreased growth of dim(Qj) can be accompanied
with a slower convergence of the algorithm. Compared to the standard block RKSM,
this may result in a larger number of linear systems with different coefficient matrices
that need to be solved. Some of the upcoming numerical experiments confirm this.

In [64, 65], global standard and extended Krylov subspace methods for matrix
equations are considered. These methods are based on a global orthogonalization
process, where the constructed basis matrix Qj = [q1, . . . , qj] has blocks qi ∈ Cn×p
satisfying 〈qi, qk〉 = tr(q∗kqi) = δi,k, ‖qi‖F = 1. See also [54] for more details on

these global processes. When applied for GCALEs, the projected quantities Ãj , C̃j
obtained in this way have special structures which can be exploited to gain savings
when solving the projected small-scale problem [65, 104]. In global Krylov methods
for GCAREs, however, such savings are not possible because B̃j does not reveal any
special structure one could exploit. Moreover, global methods often converge slower
than their block counterparts, meaning that they require a higher number of iteration
steps, which results in a larger subspace dimension. In the GCARE case this leads
to noticeably higher numerical costs for the solution of the projected equation. A
detailed assessment and comparison of the costs of both block and global extended

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A964 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

Krylov subspace methods for GCALEs is given in [104], where further information on
actual implementations can be found as well. For the purpose of comparison in this
paper, the global EKSM (GEKSM) [64] is used in some of our numerical experiments.
Global rational Krylov subspace approaches are considered in [36] in the context of
model order reduction.

2.2. Nonprojective iterations. The second class of methods consists of itera-
tive processes working directly on the Riccati equation, and circumventing the use of a
Galerkin projection framework or Newton scheme as the methods in the previous and
next section, respectively. The low-rank solution is built from direct relations that do
not require the solution of a projected CARE. In particular, two representatives of
this class are considered, both of which implicitly work with the Hamiltonian matrix

H =

[
A −BB∗

−C∗C −A∗
]
∈ R2n×2n

associated to (1.1) (here we restrict ourselves to the case M = I for simplicity, but
the case M 6= I can be developed in a straightforward manner by considering the
associated Hamiltonian/skew-Hamiltonian matrix pencil). It is well known that the
solution of (1.1) is given by X = QP−1, where [P ∗, Q∗]

∗ ∈ R2n×n spans an H-
invariant subspace with respect to the stable eigenvalues ofH. Not only is this relation
the basis for many direct methods for CAREs [40, 77], but also several works [2, 16,
17, 81, 83] investigate its application in a large-scale setting.

2.2.1. The incremental low-rank subspace iteration. In [81], the Cayley
iteration [

Pj
Qj

]
= (H+ αjI2n)

−1
(H− αjI2n)

[
In
Xj−1

]
, Xcay

j = QjP
−1
j ,(2.2)

with shift parameters αj ∈ C+, is proposed for the Hamiltonian matrixH to iteratively
compute the desired H-invariant subspace. For feasibility in the large-scale case, one
can observe that if the initial approximation Xcay

1 � 0 has rank p, then Xcay
j has

rank jp, and it is possible to rewrite the above iteration into a low-rank version [81],
incrementally generating a low-rank approximation X ≈ Xcay

j = ZjY
−1
j Z∗j with Zj ∈

Cn×jp, 0 ≺ Yj = Y ∗j ∈ Cjp×jp. This method is referred to as the Incremental Low-
Rank Subspace Iteration (ILRSI) and is illustrated in Algorithm 2.

Interestingly, the same iteration has been derived independently in [83], with a
completely different approach, by analyzing an optimal control problem associated
to (1.1). Only the setup of the middle factor Yj is done slightly differently in [83].
If B = 0, ILRSI reduces to the low-rank alternating direction implicit (LR-ADI)
iteration [27, 79, 89] for GCALEs. The shift parameters αj are, once again, crucial for
the speed of the convergence and may be selected in advance or, preferably, adaptively
by strategies borrowed from the GCALE case, e.g., [24, 108]. Approaches that take
the GCARE structure into account more will be discussed later. The relation to
the LR-ADI iteration can be exploited to deal with pairs of complex conjugate shifts
since [23, Theorem 1] works for Algorithm 2 as well: For αj ∈ C+, αj+1 = αj , it

holds that Vj+1 = Vj − βj Im(Vj) with βj := 2
Re(αj)
Im(αj) and Zj+1 = [Zj−1,Re(Vj) −

βj Im(Vj),
√

(β2 + 1) Im(Vj)]. Hence, for each complex pair, a double iteration step
can be performed by solving only one complex linear system.

The most costly numerical work in ILRSI appears to be the solution of the shifted
linear systems with p right-hand sides in line 2. However, the estimation of the residual

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A965

Algorithm 2: Incremental Low-Rank Subspace Iteration (ILRSI).

Input : Matrices A, M, B, C defining (1.1)
Output: Zj ∈ Cn×jp, Yj ∈ Cjp×jp s.t. ZjY

−1
j Z∗j ≈ X.

1 Determine shifts {α1, . . . , αjmax} ⊂ C+.
2 Solve (αjM

∗ −A∗)V1 = C∗ for V1.
3 Update solution factors Y1 = 2 Re(α1)(I + V ∗1 BB

∗V1), Z1 = V1.
4 for j = 2, 3, . . . , jmax do

5 Solve (αjM
∗ −A∗)Ṽ = M∗Vj−1 for Ṽ , Vj = Vj−1 − (αj + αj−1)Ṽ .

6 Update low-rank solution factor Zj = [Zj−1 Vj].

7 Lj =
[

Ijp−1

1

] [1 ··· 1
. . .

...
1

]
α1+αj

2 Re(αj)
α1−αj

2 Re(αj)
α2+αj

2 Re(αj)

. . .
. . .

αj−1−αj

2 Re(αj)
αj+αj

2 Re(αj)

⊗ Ip.
8 Nj = L−1

j + diag(I, 0), VB = L−∗j V ∗j B.

9 Update middle low-rank factor

Yj = N−∗j

([
Yj−1

2 Re(αj)

]
+ 1

2 Re(αj)VBV
∗
B

)
N−1
j .

10 if ‖R(ZjY
−1
j Z∗j)‖ < τR‖C∗C‖ then stop.

11 j = j + 1

norm ‖R(ZjY
−1
j Z∗j)‖ in line 10 is potentially expensive as well. The reason is that,

unlike the LR-ADI iteration for GCALEs [23] or the other discussed methods for
GCAREs, there is no factorization of the GCARE residual with fixed rank known
for ILRSI, e.g., of the form R(ZjY

−1
j Z∗j) = WDW ∗ with fixed sized W, D and

coldim(W)� n. Of course, one can always use R(ZjY
−1
j Z∗j) = Ŵ D̂Ŵ ∗ with residual

factors

Ŵ := [A∗Zj ,M
∗Zj , C

∗] ∈ Cn×(2j+1)p,

D̂ := diag

([
0 Y −1

j

Y −1
j Y −1

j Z∗
jBB

∗ZjY
−1
j

]
, Ip

)
∈ C(2j+1)p×(2j+1)p,

whose (column) dimensions obviously increase as the iteration proceeds. Comput-
ing the residual norm via a factorization like that (see, e.g., [27]) would be quickly
getting extraordinarily expensive both memorywise and computationwise. Currently,
one of the most reasonable things one can do is to exploit that the spectral norm of
a symmetric matrix coincides with its largest eigenvalue and apply a Lanczos process
implicitly to R(ZjY

−1
j Z∗j). Because of the way the middle low-rank factor Yj is

constructed, computing an approximate feedback matrix Kj requires the complete
already computed low-rank solution. Therefore, like the projection methods of the
previous section, ILRSI does not gain an advantage with respect to memory consump-
tion in the scenario S2.

2.2.2. The RADI iteration. Assume that the equation (1.1) has an approx-
imate solution X1 = Ξ1 � 0 with a positive semidefinite residual R(X1) = R1R

∗
1.

Then the exact solution X can be written as X = X1 + X̃1, where X̃1 is a unique
stabilizing solution [17, Theorem 1] of the residual Riccati equation

(2.3) A∗1X̃1 + X̃1A1 + C∗1C1 − X̃1BB
∗X̃1 = 0,

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A966 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

with A1 = A − BK∗1 , C1 = R∗1, K1 = X1B (once more we suppose M = I for ease
of presentation). This is again a Riccati equation, so one can repeat the procedure
and find an approximate solution Ξ2 � 0 for (2.3) such that its residual with respect
to this equation is positive semidefinite, and accumulate the approximation X2 =
X1 + Ξ2, etc. This way, we obtain an increasing sequence of approximations 0 �
X1 � X2 � · · · � X to the solution of the original equation, all of which will have
positive semidefinite residuals.

It remains to explain how to construct an approximate solution with a positive
semidefinite residual in the jth step of the above sequence. One possibility is to
carry out one step of the Cayley iteration (2.2) for the residual equation with the
Hamiltonian matrix

Hj =

[
Aj −BB∗
−C∗jCj −A∗j

]
=

[
A−BK∗j −BB∗
−RjR∗j −(A−BK∗j)

∗

]
;

here Kj = XjB. Setting the initial approximation in (2.2) to zero, after some cal-
culation we obtain that the first step approximation Ξj+1 in the Cayley–Hamilton
iteration is given by

Ξj+1 = −2 Re(αj)Vj+1Ỹ
−1
j+1V

∗
j+1,

Vj+1 = (A−BK∗j + αjI)
−∗
Rj ,

Ỹj+1 = I + (V ∗j+1B)(V ∗j+1B)
∗
,

and that the residual factor and the feedback matrix can be updated as

Rj+1 = Rj − 2 Re(αj)Vj+1Ỹ
−1
j+1,

Kj+1 = Kj − 2 Re(αj)(Vj+1Ỹ
−1
j+1)(V ∗j+1B).

This describes one step of the RADI procedure. The whole method for generalized
CAREs is displayed in Algorithm 3. Note that, unlike the projection methods, each
RADI iteration takes the same amount of time and does not get progressively slower
as the algorithm proceeds: the matrices Vj , Kj , Rj remain of the same size throughout
the iteration.

The shift parameters αj are again important for a rapid convergence. We mention
and later on employ an approach proposed in [16, 17]: Let M = I, U` ∈ Rn×`p,
U∗` U` = I`, `p� jp with range(U`) ⊂ range(Zj) and let

Hproj
j =

[
U∗

` AjU` −(U∗
` B)(U∗

` B)∗

−(U∗
` R

∗
j)(U∗

` R
∗
j)∗ −U∗

` A
∗
jU`

]
∈ R2`×2`

be the Hamiltonian matrix associated to the residual CARE projected onto range(U`).

If θi, qi =

[
q
(1)
i

q
(2)
i

]
, with q(1,2) ∈ C`, are the eigenpairs of Hproj

j , then the next shift

αj+1 is selected as the eigenvalue θi with the largest value of ‖q(2)
i ‖. The motivation

behind this strategy, along with further details, can be found in [16, 17]. In the gen-
eral case M 6= I, the eigenpairs of the corresponding (projected) Hamiltonian/skew-
Hamiltonian pencil have to be considered. The number of block columns ` taken into
account is typically chosen very small; e.g., one takes the last 2p columns of Zj . This
shift selection strategy appears to be efficient and, judging by the numerical experi-
ments in [17], often superior to other approaches. Pairs of complex conjugated shifts

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A967

Algorithm 3: The RADI Iteration for GCAREs.

Input : Matrices A, M, B, C defining (1.1), initial feedback K0

Output: Zj ∈ Cn×jp, Yj = Y ∗j ∈ Cjp×jp s.t. ZjY
−1
j Z∗j ≈ X, stabilizing

feedback matrix Kj ∈ Cn×m.
1 R0 = C∗, Y0 = [] = [], j = 1.
2 for j = 1, 2, . . . , jmax do

3 Determine shift αj ∈ C−, γj :=
√
−2 Re(αj).

4 Solve (A−BK∗j−1 + αjM)
∗
Vj = Rj−1 for Vj ∈ Cn×p.

5 VB = V ∗j B, V+ = γ2
jM
∗Vj , Ỹj = I + VBV

∗
B .

6 If required, update low-rank solution factors Zj = [Zj−1 γjVj],

Yj =
[
Yj−1

Ỹj

]
.

7 Update Riccati residual factor Rj = Rj−1 + (V+Ỹj
−1

) ∈ Cn×p.
8 Update feedback matrix Kj = Kj−1 + (V+Ỹj

−1
)VB ∈ Cn×m.

9 if ‖R∗jRj‖ < τR‖C∗C‖ then stop.

can be dealt with appropriately [17] so that only an absolutely necessary number of
complex arithmetic operations remains and, e.g., the Zj , Yj ,Kj will be real matrices.

In contrast to ILRSI, because of the block-diagonal structure of the constructed
middle low-rank factor Yj , it is possible to accumulate only the feedback approxima-
tion Kj in the RADI iteration without ever forming the low-rank factors Zj , Yj . This
makes the method a good memory-efficient candidate for scenario S2.

2.2.3. Equivalences and relations to other methods. As shown in [17,
Theorem 2], if executed with the same set of shift parameters, ILRSI and the RADI
iteration both produce the same output and are, in fact, equivalent. Hence, both
methods are simply different implementations of the same approximation sequence.
Moreover, if B = 0, both methods reduce to the LR-ADI iteration for Lyapunov
equations. Because of this close relation, we will also execute ILRSI with the residual
Hamiltonian shifts described above. ILRSI and the RADI iteration are in the same
sense also equivalent to the quadratic ADI iteration [111]. We will not incorporate
the quadratic ADI iteration into this study since it has been shown to be inferior in
terms of numerical efficiency to the considered methods; see, e.g., [16, 17].

Although no Galerkin projection is used within ILRSI, RADI, it can still be
shown that the computed low-rank solution factors Zj span a rational Krylov sub-
space. In fact, since in ILRSI the construction of the columns in Zj is very close
to the LR-ADI iteration for Lyapunov equations, it can be shown that range(Zj) =

range
(

[(A− α1M)
−∗
C∗, . . . , [

∏j
i=2(A− αiM)−1](A− α1M)−1C∗]

)
; see, e.g., [78, 79,

110]. Further connections of ILRSI to the rational Krylov framework are discussed
in [83]. By the above equivalence, those connections hold for RADI as well.

2.3. Low-rank Newton methods. Motivated by the nonlinear nature ofR(X),
Newton schemes are applied to solve (1.1). With a given initial guess X0, step k of a
Newton iteration for (1.1) is, following, e.g., [6, 74], given by

R′|Xk−1
(Nk) = −R(Xk−1), Xk = Xk−1 +Nk.(2.4)

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A968 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

Here, R′|X denotes the Fréchet derivative of R at X and is given by

R′|X : N 7→ (A−BB∗XM)
∗
NM +M∗N(A−BB∗XM).

Hence, the update Nk is the solution of a generalized, algebraic, continuous-time
Lyapunov equation (GCALE). Kleinman [68] showed that it is possible to reformulate
the Newton step to directly compute Xk instead of working with the correction Nk.
In that case, the iteration and the corresponding GCALE to be solved are

A∗kXkM +M∗XkAk = −FkF ∗k , Fk := [C∗,Kk−1], Ak := A−BK∗k−1(2.5a)

with Kk−1 := M∗Xk−1B.(2.5b)

Under the assumed properties of this paper and provided X0 is a stabilizing ini-
tial guess, the sequence {Xk}k≥1 converges quadratically towards X, the exact so-
lution of (1.1). Moreover, it converges monotonically decreasing with respect to
the Löwner ordering, i.e., X1 � X2 � · · · � X, and for all k > 0 it holds that
Λ(A − BB∗XkM,M) ⊂ C−. Because of the size restriction on B, C we set in the
introduction, the right-hand side Fk in (2.5a) is (at most) of rank p+m� n. We can,
therefore, utilize low-rank algorithms for large-scale GCALEs [32, 102] that compute
low-rank solution factors of the solution Xk in (2.5a), e.g., Xk ≈ ZkZ

∗
k . Since these

algorithms are typically of an iterative nature, we end up with an inner-outer itera-
tion, consisting of the inner particular GCALE solver iteration, and the outer Newton
iteration. To distinguish these two stages, subscripts k and bracketed superscripts (j)

will refer to data associated to the outer (k) and inner ((j)) iterations. In many
papers [20, 27, 30, 31, 32, 52], the low-rank alternating direction implicit (LR-ADI)
iteration [22, 79, 89] is employed for the purpose of solving the GCALE (2.5a). For
a fixed k ≥ 1, the LR-ADI iteration in the most recent formulation [22, 72] proceeds
for j ≥ 1 in the following form:

V
(j)
k = (Ak + α

(j)
k M)

−∗
W

(j−1)
k , W

(j)
k = W

(j−1)
k − 2 Re(α

(j)
k)M∗V

(j)
k ,

Z
(j)
k =

[
Z

(j−1)
k ,

√
−2 Re(α

(j)
k)V

(j)
k

]
,

(2.6)

where W
(0)
k := Fk, Z

(0)
k = [], and α

(j)
k ∈ C− are shift parameters. Using (2.6) as the

inner Lyapunov solver within the Newton–Kleinman iteration (2.5) leads to the low-
rank Newton–Kleinman ADI (NK-ADI) method, which is illustrated in Algorithm 4.

The shift parameters α
(j)
k in line 5 are, similarly to those in RKSM, ILRSI, and

RADI, crucial for a fast reduction of the error. Here, we employ, without going
into detail, the automatic shift generation strategy proposed in [24]: first, several
shifts are selected from the spectrum of the matrix pair (U∗` AkU`, U

∗
`MU`), where

U` ∈ Rn×`p, U∗` U` = I`, ` < j, with range(U`) ⊂ range
(
Z

(j)
k

)
. Once these shifts

are depleted, the procedure is repeated. This shift selection strategy usually leads to
the best performance of the LR-ADI iteration, both in terms of execution time and
the required number of iteration steps. Pairs of complex shifts can be handled as in
the LR-ADI [22, 23]. It can be shown [20, 32, 72] that, inherited from the LR-ADI
iteration [22], the GCARE residual at inner step j and outer step k is given by

R(j)
k := R(Z

(j)
k (Z

(j)
k)
∗
) = [W

(j)
k , ∆K

(j)
k] diag(Ip+m,−Im) [W

(j)
k , ∆K

(j)
k]
∗
,

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A969

Algorithm 4: Low-rank Newton–Kleinman ADI for GCAREs (NK-ADI).

Input : Matrices A, M, B, C defining (1.1), initial feedback K0, and
stopping tolerances 0 < τADI, τR � 1.

Output: Zk ∈ Cn×(m+p)j such that ZkZ
∗
k ≈ X, stabilizing feedback matrix

Kk ∈ Cn×m.
1 for k = 1, . . . , kmax do

2 W
(0)
k = [C∗,Kk−1], Z

(0)
k = [], K

(0)
k = 0, j = 0.

3 while ‖W (j)
k ‖2 > τADI‖W (0)

k ‖2 do
4 j = j + 1

5 Determine next shift α
(j)
k .

6 Solve (Ak + α
(j)
k M)

∗
V

(j)
k = W

(j−1)
k for V

(j)
k .

7 γ
(j)
k =

√
−2 Re(α

(j)
k), V+ := (γ

(j)
k)

2
M∗V

(j)
k .

8 Update factor of Lyapunov residual W
(j)
k = W

(j−1)
k + V+.

9 Update low-rank solution factor Z
(j)
k = [Z

(j−1)
k , γ

(j)
k V

(j)
k] if required.

10 Implicit update of feedback matrix K
(j)
k = K

(j−1)
k + V+(V

(j)
k)

∗
B.

11 Kk = K
(j)
k , Zk = Z

(j)
k .

12 if ‖R(ZkZ
∗
k)‖ < τR‖C∗C‖ then stop.

where ∆K
(j)
k := K

(j)
k −Kk−1 ∈ Cn×m and W

(j)
k ∈ Cn×(p+m) is the explicit low-rank

factor of the current GCALE residual. Hence, computing the GCARE residual norm
requires only the computation of the spectral norm of a thin n× (p+ 2m) matrix.

Algorithm 4 reveals another advantage of using the LR-ADI iteration to solve
the GCALE (2.5a). Similar to the RADI algorithm, it is not necessary to store the

low-rank factor Z
(j)
k (line 9) if only the feedback matrix K is of interest, since K

(j)
k

can be updated incrementally (cf. line 10, [27]). Thus, the NK-ADI method is also
very memory efficient in scenario S2. Note that, in order to execute the proposed
shift strategy, a small number of additional columns needs to be stored to carry out
the projection of (Ak, M).

Naturally, one could also use a projection method like EKSM or RKSM [48, 100]
for solving the Lyapunov equation (2.5a), which leads to other interesting results [103],
e.g., regarding the Riccati residual. However, doing so would sacrifice the advantage
in scenario S2 since, just as with the projection methods in section 2.1, the matrices

Z
(j)
k would need to be stored.

Regardless of the low-rank method employed to solve (2.5a), the low-rank Newton
method in the presented form often shows a comparatively slow convergence towards
an approximate stabilizing solution. One intuitive explanation is that the method
updates the feedback gain approximations only after an outer iteration is completed.
In practice, one of the following improvements is therefore usually mandatory to make
the low-rank Newton method competitive.

2.3.1. Galerkin acceleration of the outer iteration. Similar to RADI, ILRSI,

it holds that range
(
Z

(j)
k

)
= Krat

j (Ak,M, [C∗,Kk−1],αk) (see [78, 79, 110]), so in or-

der to improve the convergence of the Newton iteration, [31, 94] suggest perform-
ing a Galerkin projection onto range(Zk) in each outer iteration step, just after

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A970 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

the GCALE (2.5a) has been solved. Assume the columns of Qk ∈ Cn×j(p+m) with
Q∗kQk = I constitute an orthonormal basis for range(Zk). The projection is performed
similarly to the methods in section 2.1: a small-scale, at most j(p + m)-dimensional
GCARE

Ã∗kYkM̃k + M̃∗kYkÃ
∗
k − M̃∗kYkB̃kB̃∗kYkM̃k + C̃∗kC̃k = 0

with Ãk := Q∗kAQk, B̃k = Q∗kB, C̃k = CQk, M̃k := Q∗kMQk is solved for its stabiliz-

ing solution Yk. The restriction Ãk can be constructed without matrix vector multi-
plications involving A. The precise formula depend on the choice of the low-rank Lya-
punov solver, e.g., the LR-ADI iteration [72] or projection methods [48, 103]. The ap-
proximate solution of (1.1) associated to the Galerkin acceleration is Xpr

k = QkYkQ
∗
k.

The next Newton–Kleinman iteration step then continues with the updated feedback
matrix Kpr

k+1 := M∗Xpr
k B = M∗QkYkB̃k. The GCARE residual R(Xpr) after this

projection does not have the low-rank structure from above, and, thus, ‖R(Xpr
k)‖ has

to be computed differently, e.g., via applying a Lanczos process to R(Xpr
k) similar to

ILRSI. Moreover, in order to perform this Galerkin projection, the whole low-rank
solution factor Zk has to be stored, so this variant of the NK-ADI method loses
its ability to operate solely on feedback approximations and the advantage for sce-
nario S2. However, numerical experiments [26, 31, 72, 94] show that this projection
tremendously accelerates the outer Newton–Kleinman iteration. Often, it decreases
the number of required Newton steps down to one or two. We will abbreviate this
approach by NK-ADI+GP.

Remark 2.1. In [31, 94] it is also suggested to accelerate the inner low-rank ADI
iteration of Algorithm 4 by a Galerkin projection framework. In view of the improve-
ments in the LR-ADI formulation, we strongly refrain from this idea. On the one
hand, using a Galerkin projection within the LR-ADI iteration destroys important
structural properties of the method, e.g., the associated GCALE residual no longer

has low-rank factorization, and it is then not clear what should be used as W
(j)
k

in (2.6). On the other hand, one could have used a projection method as an inner
iteration from the start as discussed in [103].

2.3.2. Inexact GCALE solves and line-search. Newton methods are, under
some mild conditions, still able to converge to the desired solution if the Newton step
is carried out inexactly; see, e.g., [43, 50]. For the Newton–Kleinman iteration (2.5)
for GCAREs, this means that the GCALE (2.5a) is only solved inexactly; for example,
the LR-ADI iteration might be terminated once it satisfies ‖A∗kXkM + M∗XkAk +
FkF

∗
k ‖ ≤ τADI for an appropriately chosen τADI > 0; e.g., τADI = η‖Rk−1‖, η ∈ (0, 1).

These inexact solves, obviously, have the potential to drastically reduce the number of
required LR-ADI steps. At the same time, convergence towards a stabilizing solution
of the GCARE (1.1) has to be maintained, which makes the analysis difficult [20, 52,
62, 109]. In [20, 109], a novel theoretical and numerical framework for the inexact
Newton–Kleinman iteration for (1.1) is proposed which additionally incorporates a
line search strategy [18]. At Newton step k, let Kk be a feedback approximation

linked to the approximate or exact solution X
(j)
k = ZkZ

∗
k of the GCALE (2.5a).

Then the next Newton step is carried out with an improved feedback approximation
K̂k = (1−β)Kk−1 +βKk for an appropriately chosen β ∈ (0, 1]. The numerical effort
to carry out this line search strategy is negligible, and we refer the reader to [20, 109]
for details about its practical implementation, including possible choices of η, β.
Compared to the plain NK-ADI iteration (Algorithm 4), the number of both inner

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A971

and outer iteration steps, and consequently the number of arising linear systems, can
be drastically reduced by this approach. The inexact NK-ADI method equipped with
this line-search strategy (abbreviated by iNK-ADI+LS) is still able to work only on
the feedback approximations Kk, preserving the advantage of NK-ADI in scenario S2.

2.4. Related and further methods. Apart from the methods described so
far, a number of other methods for solving large-scale GCAREs can also be found in
the literature.

The structured doubling algorithm (SDA) [35, 41] is a recent method based on
efficient computation of deflating subspaces by doubling. The original formulation
of the method is suited for small-scale dense CAREs, for which it performs very
well. The SDA has also been adapted to the large-scale setting [41, 80]. However,
our experience with a number of numerical experiments indicates that the large-scale
algorithm is not yet competitive with the methods described in this paper. Just as an
illustration, we included the results obtained by the large-scale SDA in Example 4.4
of section 4. We have therefore chosen to omit this method in the detailed analysis.

Another class of methods is those that compute eigenvectors of the Hamiltonian
matrix H associated with the stable eigenvalues [2, 16]. As mentioned in section 2.2,
the exact solution of the CARE is X = QP−1, where [P ∗, Q∗]

∗ ∈ R2n×n spans the
H-invariant stable subspace. Computing the entire stable subspace of a large matrix
is not feasible, so these methods target a small number ` � n of eigenvectors and
use only these to approximate X by means of carefully designed formulas [2]. The
main issue of this approach is that it is quite difficult to determine which eigenvec-
tors should be targeted [16]. This difficulty renders the eigenvector-based methods
noncompetitive as well. On the other hand, these methods have motivated the de-
velopment of both ILRSI and RADI. The original derivation of RADI [17] uses the
formula from [2] to find an approximate solution Ξ1 to (2.3); the goal of ILRSI is
computation of the stable subspace of H as well, although it is achieved by different
means. For p = 1, ILRSI/RADI can be considered a generalization of the methods
from [2, 16], since they are equivalent to these methods when eigenvalues of H are
used as shifts [17].

2.5. Unstable GCAREs. In the literature regarding large-scale GCAREs, of-
ten only the stable case is used to test the numerical methods. We briefly discuss the
situation where the GCARE (1.1) is defined by an unstable matrix pencil A − λM .
Recall that the overall system (A,M,B) has to be stabilizable. One way of handling
this situation is to provide a stabilizing initial guess X0 = X∗0 ∈ Rn×n, meaning that
the pair (AK0 := A − BB∗X∗0M,M) is stable. Also, depending on how serious the
instability of A− λM is, some of the investigated methods might be able to converge
without an initial guess; see [101] for results regarding projection methods. Of course,
providing an initial guess can also help to speed up the whole method, independent
of the stability of the pencil A− λM ; see [103] for some numerical tests on this.

Using an additive decomposition X = X+ + X0 of the sought-after stabilizing
solution of (1.1), it is well known [15, 84] that the increment X+ = X∗+ ∈ Rn×n is the
stabilizing solution of the stable GCARE

A∗K0
X+M +M∗X+AK0

−M∗X+BB
∗X+M +R(X0) = 0.(2.7)

The stabilized GCARE (2.7) can now be dealt with by using any of the Riccati
methods described so far, providing AK0

, M , B, and R(X0) as the new input. In the
case of RKSM, EKSM, and ILRSI, the altered structure of the input matrices leads

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A972 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

to an increase in the algorithm complexities, especially regarding the linear systems
solves. In contrast to that, the RADI iteration and the low-rank Newton methods
can be employed to the original GCARE (1.1) right away if the initial feedback K0 is
given to them as well.

Strategies for computing an initial feedback K0 with stabilizing property can be
found, e.g., in [3, 9, 11, 20, 35, 59, 74, 92, 99, 109]. In the remainder, we only use the
approach from [3, 11], which we briefly describe next.

For M = I, let A∗Qu = QuRu be a partial real Schur decomposition of A∗

such that Λ(Ru) = Λ(A) ∩ C+, i.e., the columns of Qu form an orthonormal basis
of the associated unstable invariant subspace. An initial guess is then defined with
X0 := QuSuQ

∗
u and K0 := X0B, where Su solves the algebraic Bernoulli equation

RuSu + SuR
∗
u − Su(Q∗uB)(B∗Qu)Su = 0. Assuming that the number of unstable

eigenvalues is small (u � n), this Bernoulli equation can be solved by standard,
dense methods [12]. As an alternative, one can, under some mild conditions [3], use
X0 := QuT

−1
u Q∗u, K0 = QuT

−1
u Q∗uB with Tu being the solution of the small Lyapunov

equation −RuTu − TuR∗u + (Q∗uB)(B∗Qu) = 0. This equation is potentially easier to
solve than the Bernoulli equation. As an important side effect, the initial Riccati
residual in (2.7) satisfies R(X0) = C∗C with both of these choices. It is noteworthy
that with this selection of an initial guess, it is in scenario S2 sufficient to provide
just the feedback matrix K0 := M∗X0B ∈ Rn×m instead of X0.

Remark 2.2. Originally, the left and right eigenvectors of A corresponding to
Λ(A) ∩ C+ were used in the computation of X0 [3, 59]; this still leads to the same
initial guess as above. We prefer the usage of invariant subspaces since computing a
partial Schur decomposition of a large matrix A is often easier than computing left
and right eigenvectors.

Nevertheless, computing the entire unstable invariant subspace and, especially,
ensuring that no unstable eigenvalues are missed can in practice be a very demanding
task. Large-scale eigenvalue methods for this purpose can be found, e.g., in [7] and
the references therein.

In the numerical experiments, whenever unstable CAREs are considered, we as-
sume for the sake of simplicity that the required initial feedback is provided and do
not consider the numerical effort and difficulties of its computation. The latter, how-
ever, is nevertheless a crucial subject to be addressed in future research, where, e.g.,
strategies from general Newton and homotopy methods for an initial guess selection
might be adopted [1].

3. Comparison of the main computational stages. In this section, we an-
alyze the major computational subtasks that arise in the discussed algorithms: solv-
ing large linear systems of equations with multiple right-hand sides, computing shift
parameters, building orthogonal bases, and solving projected CAREs, as well as com-
puting, or estimating, the CARE residual norm.

3.1. Solving linear systems. The most prominent feature of all considered
algorithms is the solution of a large linear system of equations with possibly multiple
right-hand sides. We here restricted ourselves to sparse direct solution strategies
because, on the one hand, this worked sufficiently well in our experiments. On the
other hand, due to the sheer number of different iterative solvers and preconditioning
strategies, a thorough discussion of preconditioned iterative solves would clutter the
presentation and is, therefore, beyond the scope of this study. Also, the occurrence of
multiple right-hand sides further increases the number of available iterative solution

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A973

approaches. Moreover, the effect of errors arising in the solution of linear systems on
the methods for large matrix equations needs to be considered in the case of iterative
linear solvers. Some research on this topic for large Lyapunov equations can be found
in [73, 97, 105].

An overview of the structure of the arising systems in stable and unstable situa-
tions, as well as the number of columns in the right-hand sides, is given in Table 1. In
several GCARE methods, we notice the occurrence of systems defined by the sum of a
sparse matrix A+αjM and a low-rank term BK∗j of rank at most m. If sparse-direct
solvers are to be applied, such systems can be dealt with by the Sherman–Morrison–
Woodbury (SMW) formula [55] via

yj = (A−BK∗j + αjM)
−∗
bj = wj + gj(Im −B∗gj)−1

B∗wj ,

where [wj , gj] solves (A+ αjM)
∗
[wj , gj] = [bj ,Kj].

Hence, solving a sparse-plus-low-rank system with s right-hand sides is expressed as
solving a sparse system with A+ αjM and s+m right-hand sides.

Among the algorithms, EKSM has the advantage that the coefficients of the
arising linear systems do not change during the iteration. Hence, a single precomputed
sparse LU factorization can be reused throughout the whole iteration by means of
often significantly cheaper sparse triangular solves. This fact can also be exploited in
the presence of an initial feedback K0, by using the SMW formula once again:

yj = (A−BK∗0)
−∗
bj = wj + g0(Im −B∗g0)

−1
B∗wj ,

where wj , g0 solve A∗wj = bj , A
∗g0 = K0 and also g0 ∈ Rn×m has to be computed

only once. Thus, in the unstable situation, except for this extra linear system for g0,
no major additional work is required in EKSM in contrast to the other methods.

For generalized Riccati equations, Table 1 considers only the case when the equiv-
alent CARE defined by M−∗A∗, M−∗C∗ is used implicitly in the projection methods,
as explained in section 2.1. This means that an extra initial linear solve with M∗

is needed in RKSM to compute M−∗C∗, whereas EKSM requires such an additional
solve with M∗ in every iteration step. Using sparse Cholesky factors of M = M∗ � 0
would replace a solve with M∗ by two sparse triangular solves. Regarding the num-
ber of right-hand sides in the occurring linear system, Table 1 reveals that low-rank
Newton–Kleinman (NK) iterations have the largest number (p + m) among all algo-
rithms. If the SMW formula is used, linear systems with the matrix A + αjM and
p+ 2m right-hand sides have to be solved in each iteration step, in contrast to p+m
or only p in the other methods. Consequently, among all considered methods, solving
linear systems is most expensive in low-rank NK methods. If no initial feedback is
given or required, RKSM and ILRSI have an advantage over RADI since they do not
need the SMW formula to solve systems with the matrix A+ αjM and p right-hand
sides.

3.2. Shifts. With the exception of EKSM, all considered methods require shift
parameters to achieve a rapid convergence. Initially, these parameters were computed
in advance, prior to any iteration of the Riccati solver. In recent years, dynamic shift
generation strategies [17, 24, 48, 49, 72, 101] have attracted increasing attention. In
these strategies, the shift needed in a particular iteration step is computed by using
all the data that is available to the method in that step. This typically allows the
methods to achieve convergence in a smaller number of iterations and with less user
interaction, but may increase the computational complexity of each step.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A974 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

Table 1
Form of the occurring linear system in each iteration step. Subscripts j indicate quantities

varying during the iterations. We also provide the number of columns in the right-hand side of the
original linear systems and the SMW version.

Coefficients of arising linear system(s) Columns s of RHS
Method stable (no initial K0) with initial K0 original SMW

(G)EKSM M∗, A∗ M∗, (A−BK∗0)∗ p p
RKSM

(A+ αjM)∗ (A−BK∗0 + αjM)∗
p p+m

TRKSM pj ≤ p pj +m
ILRSI p p+m
RADI

(A−BK∗j + αjM)∗ p p+m
NK-ADI p+m p+ 2m

Table 2
Matrices of the arising eigenvalue problems for the dynamic shift generation.

Method Matrices Size

RKSM Ãj jp

TRKSM Ãj

j∑
i=1

pi

ILRSI, RADI Hproj
j , Mj := diag(U∗MU,U∗M∗U) 2`p

NK-ADI U∗AkU,U
∗MU `(p+m)

A substantial amount of work in all the adaptive shift generation strategies consid-
ered here is involved in the solution of an eigenvalue problem, whenever new shifts are
needed. These eigenvalue problems differ in their size and structure depending on the
GCARE method and the particular selection strategy. In Table 2 we summarize the
defining matrices of the eigenvalue problems, together with their sizes in the strategies
used in this study. As before, j indicates the current iteration number. Although the
automatic shift generation of RKSM involves the largest eigenvalue problem, the costs
are often still negligible since jp� n. The dimension of the eigenvalue problem of the
approaches in ILRSI, RADI, and NK-ADI depends on a prespecified small number `,
for which typical values in the literature are in the range 1 ≤ ` ≤ 6. In the projection
methods (T)RKSM the involved matrices Ãj are already constructed as a part of the
main iteration loop, while the other methods additionally need to construct them, as
well as the orthogonal bases U for certain subspaces just for the purpose of generating
the shifts. Note that the approach used in NK-ADI will return more than one shift
parameter, so it does not have to be executed in every iteration step.

3.3. Building orthonormal bases of the projection spaces. The projec-
tion based methods (G)EKSM and (T)RKSM and the Galerkin accelerated NK-ADI
iteration require the construction of orthonormal bases of the used subspaces. Let
Qj−1 = [q1, . . . , qj−1] denote the orthonormal subspace basis after step j− 1 in either
of these methods, and let q+ denote a block of vectors that need to be added to the
subspace in step j. In (G)EKSM, q+ and each of the qi have 2p columns, while in
RKSM they have p columns. In TRKSM, the column dimension of the block qi is pi,
where pi ≤ p is the number of tangential directions that were used in iteration i. We
employ the modified blockwise Gram–Schmidt process to expand the basis with q+:

γ = q∗i q+, hj = hj + γ, q+ = q+ − qiγ, i = 1, . . . , j − 1,

and this is done twice (initially, 0 := hj ∈ Rdj−1×d+). The new orthonormal basis
block qj is then obtained by a thin QR-factorization q+ = qjh+, where h+ ∈ Rd+×d+

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A975

contains the orthogonalization coefficients. Note that GEKSM uses a different inner
product in the orthogonalization process. If complex shifts and directions occur in
(T)RKSM, Qj−1 is first orthogonally expanded by the real and then by the imaginary
parts of the associated complex solution vectors of the linear system. TRKSM in the
form proposed in [49] requires the construction of a second orthonormal basis for shift
generation and residual norm estimation. In the M-M.E.S.S. implementation [95] of
NK-ADI+GP, the Galerkin projection is performed only after a Newton step, and the
basis for the projection is orthonormalized using the MATLAB routine orth.

3.4. Small-scale CARE solution. The projection based methods (G)EKSM,
(T)RKSM, and NK-ADI+GP have to solve small, dense Riccati equations in some
stages of the algorithms. Assuming M = I for simplicity, and denoting by Ãj , B̃j , C̃j
the projected matrices A, B, C, respectively, the existence of a stabilizing solution of
this small CARE is ensured if (Ãj , B̃j) and (Ã∗j , C̃

∗
j) are stabilizable and detectable,

respectively. In [101, Proposition 3.3], a general condition on A and B is given which
ensures stabilizability of (Ãj , B̃j) in the case M = I. Unfortunately, in practice it
is difficult to check whether this condition holds; in the majority of our experiments
the projected CARE could be solved for a stabilizing solution. We observed, however,
the occurrence of nearly imaginary eigenvalues of the associated Hamiltonian matrix[

Ãj −B̃jB̃
∗
j

−C̃∗
j C̃j −Ã∗

j

]
, and these can cause numerical difficulties and accuracy losses in the

methods employed for solving the small-scale CAREs (2.1). In such a situation it is
reasonable to improve the quality of Yj by defect correction strategies; see, e.g., [84].
In our experiments we therefore check the quality of Yj using the norm of Rj :=

Ã∗jYj + YjÃj − YjB̃jB̃∗j Yj + C̃∗j C̃j and, if necessary, try to improve Yj by running at

most two steps of a Newton scheme for the CARE defined by Ãj , B̃jB̃
∗
j , Rj .

The cost of solving a dense matrix equation is cubic in the dimension. Since the
sizes of the small CAREs arising in each iteration of EKSM and RKSM are equal to
the dimension of the projection subspace, the small-scale CARE solution can become
expensive in the later iterations. A basic strategy to reduce these costs is to avoid
solving the projected matrix equation in each iteration step, and do it only every jGal

steps, where usually we take jGal = 5. In the Galerkin accelerated NK-ADI iteration,
a small-scale GCARE has to be solved only at the end of each outer iteration step.

3.5. Computing or estimating the GCARE residual norm. In Table 3 we
summarize the major steps carried out in each method for computing or estimating
the GCARE residual norm ‖R(X̃)‖. For brevity we only list the parts that involve n-
dimensional vectors (matrix vector products with the sparse coefficients A,A∗,M,M∗,
inner products of n-vectors, thin QR factorizations, and norms of n×x block vectors)
as those are the most computationally intensive steps in the residual norm calculation.
Since the residual norm computation is often tightly intertwined with other parts of
the methods (shift generation, solving projected CAREs), the overview only provides
computational steps that are exclusively used for that distinct purpose.

The first observation is that in (G)EKSM, RKSM, RADI, and iNK-ADI+LS, the
computational effort remains constant during the iteration and is dominated by other
operations. That is the reason why the measured computation time for this task is
usually negligible. Following the approach in [49, Proposition 6.1], the residual norm
computation in TRKSM requires the construction of an additional array of size n× s,
s = p+

∑jit
j=1 pj , leading also to increasing costs. In ILRSI and NK-ADI+GP, where

‖R(X̃)‖ is estimated via a Lanczos process applied to R, the effort naturally increases

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A976 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

Table 3
Major computational steps involving n-vectors required for GCARE residual norm estimation

in all methods.

Method Computations

(G)E- & RKSM 2p matrix-vector products with M (or factors thereof) and thin QR of n× 2p
matrix

TRKSM pj matrix-vector products with M (or factors thereof), additional orthogonal-

ization scheme to expand thin QR of size n×
∑j−1

i=1 pi−1 + p by pj vectors

ILRSI per Lanczos step on R: matrix-vector products with A,A∗,M,M∗, (2jit +
1)p+m inner products

RADI norm of n× p matrix

NK-ADI+GP per Lanczos step on R: matrix-vector products with A,A∗,M,M∗,
(2jitinner + 1)(p+m) inner products

iNK-ADI+LS norm of n× (p+ 2m) matrix

with the iteration because the number of columns in the low-rank factors increases.
Note that in NK-ADI+GP, ‖R(X̃)‖ only needs to be estimated after each Newton
step.

3.6. Memory consumption. Next, we are interested in the memory consump-
tion of the compared methods for both scenarios S1 and S2. For this purpose, we
consider the maximum number of n-dimensional vectors stored at any given time
during a single run of the algorithm. The memory consumption of other quantities,
e.g., the projected matrices, is neglected. We also neglect the memory required for
solving the linear systems, since this occurs in all methods and is likely to lead to
similar amounts.

We only give some basic estimates on the required number of n-dimensional vec-
tors. These numbers might vary slightly depending on the actual implementation of
the algorithms. Assume M 6= I and that only real shifts are used, and let jit de-
note the total number of iterations required to satisfy the termination criteria in a
particular method.

Starting with the projection methods (T)RKSM and (G)EKSM, we recall that
they do not gain an advantage in scenario S2. The largest number of n-dimensional
vectors in both scenarios is used for storing the jitp basis vectors contained in the
matrix Qjit . For RKSM, there are also p auxiliary vectors arising when solving the
linear systems, and the block matrix Gjit containing p vectors, which occurs during
the residual computation as described in section 2.1. Generating the approximate
feedback Kjit requires an additional m vectors. A similar count can be done for block
and global EKSM; we only have to replace jit with 2jit since each step of these methods
expands the basis twice. For TRKSM, storing the basis requires s = p +

∑jit
j=1 pj

vectors, where pj denotes the number of direction vectors in the jth iteration. In
TRKSM [49, Proposition 6.1], the computation of the shifts, the tangential directions,
and the residual norm require additional s vectors.

The number of n-dimensional vectors in ILRSI can be easily read off from Al-
gorithm 2 and equals (jit + 1)p, along with additional m vectors for the feedback
approximation. For the RADI iteration (Algorithm 3) a closer look at the scenarios
S1 and S2 is appropriate. Starting with S2, we require a total of 2p + 2m vectors:
there are m vectors needed for solving the linear systems via the SMW formula, 2p
vectors for storing Rjit and V+, and finally m vectors for storing Kj . In scenario
S1, the low-rank factor Zjit naturally adds jitp vectors. Since we use the residual

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A977

Table 4
Number of required n-dimensional vectors for all algorithms in scenarios S1 and S2; jit

xyz

indicates the executed number of steps of method xyz.

Method S1 S2

(G)EKSM 2(j
(G)EKSM
it + 1)p 2(j

(G)EKSM
it + 1)p+m

RKSM (jRKSM
it + 2)p (jRKSM

it + 2)p+m

TRKSM 2s + p 2s + p+m

ILRSI (jILRSI
it + 1 + 3`)p (jILRSI

it + 1 + 3`)p+m

RADI (jRADI
it + 2 + 3`)p+ 2m (2 + 3`)p+ 2m

NK-ADI+GP (jNK+GP
it + 2 + 3`)(p+m) + 2m (jNK+GP

it + 2 + 3`)(p+m) + 2m

iNK-ADI+LS (jiNK+LS
it + 3 + 3`)(p+m) + 2m (3`+ 3)(p+m) + 2m

Hamiltonian shifts in ILRSI/RADI, an additional 3`p basis vectors are required for
storing U`, A

∗U`, M
∗U`.

Finally, consider the low-rank NK-ADI iteration. Let jit now denote the largest
number of inner (ADI) iteration steps reached in any of the outer NK iterations.
In both scenarios, the Galerkin projected variant (NK-ADI+GP) requires jit(p+m)
vectors to store the basis, 2p+m vectors to use the SMW formula, 2(p+m) vectors
to store Rjit and V+, and m vectors to store Kjit . In scenario S1, the inexact version
with line-search (iNK-ADI+LS) needs an additional p+ 2m vectors to carry out the
line-search technique. On the other hand, in scenario S2, iNK-ADI+LS does not
require all jit(p + m) vectors to store the low-rank factor Zjit , but only 2`(p + m)
vectors in order to generate the projection based shifts.

These basic estimates for the number of n-dimensional vectors are summarized
in Table 4, where superscripts are added to jit to indicate the particular method in
question and to highlight that all the methods might need different numbers of steps.

The memory consumption in scenario S1 is for all methods dominated by the
number of required iteration steps jit times the number p. RKSM appears to be
efficient in this situation as it only requires a small number of auxiliary n-vectors
compared to the other methods. Regarding scenario S2, we see that RADI and iNK-
ADI+LS have an advantage, since their storage requirements are independent of the
number of taken iteration steps jit. The number ` is a free parameter that affects the
shift generation, and it is typically is chosen very small, e.g., 1 ≤ ` ≤ 6.

4. Numerical experiments. For all methods described in this paper, in the
following comparison we use MATLAB implementations.1 These incorporate the
latest advances of each method, in particular, dynamic shift generation techniques.

State-of-the-art implementations of the low-rank NK iterations can be found in
the M-M.E.S.S. package [95], which is a collection of currently mostly low-rank ADI
based algorithms for large, sparse GCALEs, GCAREs, differential Lyapunov and Ric-
cati equations, as well as routines for related balancing based model order reduction
approaches. Our implementations of the projection based methods of section 2.1 were
originally inspired by the source codes available2 from Valeria Simoncini’s homepage.
The major differences in our MATLAB codes include a defect correction strategy (cf.
section 3.4) for the compressed CAREs and the calculation of the true residual norm
for GCAREs as discussed in section 2.1. The linear solves with A in (G)EKSM are

1The codes and example data for the experiments in this section are available (see [96]).
2http://www.dm.unibo.it/∼simoncin/software.html

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.dm.unibo.it/~simoncin/software.html

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A978 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

carried out using sparse LU factors of A, when A 6= A∗, and using sparse Cholesky
factors of −A when A = A∗ ≺ 0. As described before, these factorizations are com-
puted only once and reused thereafter. In all methods except (G)EKSM, the arising
shifted linear sparse systems were solved by the MATLAB backslash “\” operator and
by using the SWM formula when needed. If not stated otherwise, the small, dense
GCAREs in (G)EKSM and (T)RKSM are solved at every jGal = 5 iteration steps.
The subspace for the shift generation in RADI, IRLSI, as well as NK-ADI is taken
from the previous ` = 2 iteration steps, i.e., U` ∈ Rn×2p.

The methods were compared on a number of standard examples available from
benchmark collections and the literature on large-scale Riccati equations. Our test
environment consists of MATLAB 8.0.0.783 (R2012b) running on an Intel Xeon CPU
X5650 (2.67GHz) with 48GB RAM. All methods were stopped when

ρ := ‖R(X̃)‖2/‖C∗C‖2 ≤ τR with τR = 10−8,

where X̃ is the approximate solution produced by the algorithm. Let Lk indicate
the continuous-time Lyapunov operator (2.5a) at iteration k of the NK-ADI method.
Then the stopping criterion for the inner Lyapunov ADI iteration is ‖Lk(X̃)‖ <
τL‖W (0)‖2 with τL = τR/10 in the Galerkin accelerated version. In the inexact
version it is chosen adaptively via τLk

= ηρ2
k−1, where 0 < η < 1 and ρk−1 is the

GCARE residual norm from the previous Newton step; see [20, 109] for details.

4.1. First test series. For a selection of the examples, Table 5 summarizes the
results obtained with the methods introduced in section 2. Next to some basic setup
information for the particular example, the table gives the column dimension of the
built-up low-rank factor after termination, the numerical rank of the approximate
GCARE solution using the machine precision as tolerance, the final scaled GCARE
residual ρj , the computation times in seconds for subtasks such as solving linear
systems (tLS), small-scale GCAREs (tcare), computing shift parameters (tshift), the
total computation time (ttotal), the times trest of all remaining minor computations
(e.g., estimating the residual norm and further minor auxiliary routines), and the
largest number of stored n-vectors regarding scenarios S1 (memZ) and S2 (memK).
The orthogonalization costs for building the orthonormal bases in the projection based
methods is included in small-scale solutions times tcare. If an algorithm failed for a
particular example, a brief comment about the reason is provided. In the following,
whenever some defining matrices of a test example are generated randomly, this is
to be understood as matrices with normally distributed entries for which the random
number generator of MATLAB was at the start of each experiment initialized by
randn(’state’, 0).

We proceed by giving details on the examples and discussing the obtained results
for each example.

Example 4.1 (Chip). The Chip model [85] represents a finite element discretiza-
tion of a cooling process of a microchip. This benchmark example from the model
order reduction wiki (MorWiki)3 [106] (also part of the Oberwolfach benchmark col-
lection) provides A 6= A∗, M � 0 diagonal with n = 20 082 and m = 1, p = 5.

For this first example, all methods generate approximate GCARE solutions of
more or less the same rank. EKSM and its global version, GEKSM, achieve the
smallest total computation times ttotal. The reason is clearly that both methods
only require a single factorization of A which for this example could be computed

3Available at http://modelreduction.org/index.php/Convection

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://modelreduction.org/index.php/Convection

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A979

Table 5
Testing results. The columns show dimension of the constructed subspace; rank of final low-

rank solution; final relative residual norm ρ; time (in seconds) spent solving linear systems tLS,
small-scale CAREs tcare, and computing shifts tshift; total computation time ttotal; time trest for
remaining minor subtasks; and peak memory consumption in terms of the number of stored n vectors
for scenarios S1 (memZ) and S2 (memK).

Ex. Method Dim. Rank Final res. tLS tcare tshift trest ttotal memZ memK

Chip,
n = 20 082,
m = 1,
p = 5

EKSM 250 89 1.9e-10 6.2 2.6 – 0.3 9.1 260 261
RKSM 130 91 1.6e-10 34.6 1.4 2.2 0.5 38.7 140 141
TRKSM 114 90 5.5e-10 37.8 2.0 0.9 0.3 41.0 238 239
GEKSM 350 96 7.4e-09 8.0 4.2 – 0.1 12.3 360 361
ILRSI 180 92 7.2e-10 48.4 – 1.7 3.1 53.3 185 186
RADI 185 91 2.4e-09 51.5 – 0.7 0.2 52.5 227 42
NK-ADI+GP 180 92 2.0e-11 45.0 0.6 0.2 1.6 47.4 192 192
iNK-ADI+LS 180 90 1.7e-09 153.5 – 0.4 1.1 155.0 201 33

Filter3D,
n = 106 437,
m = 1,
p = 5

EKSM 1 300 218 2.7e-09 422.4 447.4 – 23.4 893.2 1 310 1 311
RKSM,GEKSM no convergence in maximum iterations
TRKSM 216 210 5.1e-10 138.6 79.6 5.7 5.4 229.3 442 443
ILRSI 220 210 6.8e-09 107.9 – 17.1 33.3 158.3 255 256
RADI 215 207 6.0e-09 97.8 – 6.2 2.2 106.2 257 42
NK-ADI+GP failure at solving projected CARE
iNK-ADI+LS 348 241 1.7e-09 667.7 – 10.8 27.7 706.2 381 51

Rail,
n = 317 377,
m = 7,
p = 6

EKSM 840 222 3.3e-09 199.3 368.6 – 24.3 592.2 852 859
RKSM 210 201 3.0e-10 118.3 83.9 11.8 18.3 232.3 222 229
TRKSM 186 186 7.6e-10 113.7 102.9 3.2 13.1 232.9 384 391
GEKSM 1800 224 1.6e-09 383.0 2406.1 – 3.7 2792.8 1812 1817
ILRSI 204 183 5.7e-09 88.6 – 60.7 30.9 180.2 260 267
RADI 204 183 5.8e-09 101.1 – 27.5 9.5 138.1 264 62
NK-ADI+GP 324 229 6.2e-14 137.3 42.0 7.4 13.6 200.4 350 350
iNK-ADI+LS 624 219 2.4e-09 197.0 – 8.3 52.3 257.6 684 86

Toeplitz,
n = 100 000,
m = 5,
p = 20

EKSM 600 378 1.9e-10 3.5 28.0 – 0.8 32.3 640 650
RKSM 320 320 8.0e-11 1.3 13.4 0.8 4.8 20.3 365 365
TRKSM 260 260 6.3e-09 1.0 12.4 2.5 3.7 19.6 305 305
GEKSM 600 378 1.9e-10 3.3 20.9 – 0.5 24.6 640 650
ILRSI 340 340 4.1e-09 0.8 – 12.7 15.8 29.3 400 405
RADI 280 280 4.6e-09 1.0 – 2.9 1.0 4.9 450 170
NK-ADI+GP 300 300 2.0e-10 0.6 8.0 0.6 1.8 11.0 350 350
iNK-ADI+LS 350 297 4.7e-09 2.8 – 1.4 6.8 11.0 440 215

Lung,
n = 109 460,
m = 10,
p = 10

EKSM 100 100 6.6e-09 1.1 1.6 – 0.3 3.0 110 120
RKSM 120 120 8.4e-10 8.1 3.9 3.0 2.3 17.3 140 150
TRKSM failure at solving projected CARE
GEKSM 100 93 8.1e-09 1.1 1.4 – 0.1 2.6 110 120
ILRSI 250 211 9.2e-09 18.2 – 1.4 50.5 70.1 260 270
RADI 80 80 9.7e-09 7.8 – 1.4 0.4 9.6 180 100
NK-ADI+GP failure at solving projected CARE
iNK-ADI+LS 440 220 9.7e-09 163.6 – 4.7 14.9 183.2 1 370 190

Stokes,
n = 67 199,
m = p = 5

EKSM 250 104 6.8e-09 8.9 18.2 – 3.1 30.2 260 265
RKSM 125 125 7.2e-09 15.4 10.5 2.0 4.0 31.9 135 140
ILRSI 175 106 8.6e-10 19.9 – 2.7 68.4 91.0 180 185
RADI 110 103 1.5e-09 20.3 – 0.9 0.9 22.1 160 50
NK-ADI+GP 140 107 4.1e-09 16.1 0.3 0.4 5.8 22.6 160 160
iNK-ADI+LS 320 100 2.1e-09 69.2 – 2.0 4.2 75.4 365 65

very cheaply and, hence, EKSM and GEKSM also spend a comparatively very small
amount of time (tLS) in solving linear systems. However, the generated subspace di-
mensions are significantly larger compared to all other methods, with GEKSM even
further surpassing EKSM. Consequently, a substantial amount (about 50%) of the
total computation time is spent on solving the reduced CARE (tcare) and the memory

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A980 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

consumptions is higher than for the other methods. This will be a typical observation
also in almost all further experiments. Furthermore, there is also a large difference
between the subspace dimension and the actual rank of the solution, indicating that
the extended Krylov subspace approaches may lead to unnecessarily large projection
subspaces for the purpose of solving GCAREs, resulting in a waste of computational
effort in several cases, as will be evident in later examples. Using a rational Krylov
subspace appears to be a better option, as RKSM and its tangential version, TRKSM,
require much smaller subspaces, which are actually close to the rank of the solutions.
Thus, smaller storage requirements and small-scale solution times tcare can be ex-
pected. However, for the Chip example this is compensated for by larger times tLS

since the varying linear systems prevent a prefactorization of the system matrix. The
setup of the subspaces in TRKSM leads to a further reduction of the subspace dimen-
sion compared to the standard block version in RKSM.

Both ILRSI and RADI perform similarly, though slightly worse than (T)RKSM,
since they need more iterations. This leads to higher subspace dimensions and linear
system and total computation times. Since m = 1, the more complicated linear
systems in RADI do not cause a significant difference in tLS compared to ILRSI.
RADI achieves the smallest memory requirement among all methods in scenario S2,
which is in line with the discussion in section 3.6.

For the Chip example, the performance of NK-ADI+GP is overall similar to RADI
and ILRSI. The Galerkin acceleration led to a termination after the first Newton
step. A very poor performance is exhibited by the iNK-ADI+LS iteration, which
requires many more linear systems solves and, as a consequence, much higher times
tLS, ttotal compared to the other algorithms. It can only compete regarding the
memory consumption in scenario S2.

It is also important to emphasize that the shift generation times tshift are always a
very small fraction of the total times ttotal in all methods relying on shift parameters.

Example 4.2 (Filter3D). Another MorWiki [106] example represents a finite el-
ement model of a tunable optical filter4 [28, Chapter 15] with A ≺ 0, M � 0,
n = 106 437, and m = 1, p = 5.

Here, EKSM requires far more iterations and therefore a much larger subspace
than the other methods. This results in a large amount of time spent in solving
the projected CAREs, so that any savings from the easier linear systems solves in
EKSM are counterbalanced. RKSM and GEKSM are not able to satisfy the ter-
mination criterion in a maximum allowed number of 200 iterations. In view of the
subspace dimension, TRKSM, ILRSI, and RADI perform similarly. Because TRKSM
has to solve more linear systems with a different coefficient matrix in each step, and
a projected CARE every jGal steps (see section 3.6), its overall computation time
is significantly larger than for ILRSI and RADI. The smallest memory consumption
in scenario S2 is again obtained by the RADI iteration. The higher shift genera-
tion times tshift in ILRSI compared to RADI are mainly caused by the employed
residual Hamiltonian approach requiring to project the residual matrix R(Xk) onto a
low-dimensional subspace. Here, in contrast to RADI, there is no effective low-rank
structure of R(Xk) known for ILRSI. Even though U∗`R(Xk)U` can be computed
without explicitly forming R(Xk) and by exploiting its symmetry, this construction
is, nevertheless, noticeably more expensive than in RADI.

The projected CARE after the first Newton step of the NK-ADI+GP iteration

4Available at http://modelreduction.org/index.php/Tunable Optical Filter

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://modelreduction.org/index.php/Tunable_Optical_Filter

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A981

could not be solved by the employed care routine, and the method broke down. The
iNK-ADI+LS iteration was able to solve this problem but, as in the Chip example,
required larger times tLS, ttotal caused by the much larger number of encountered
linear systems compared to the other algorithms. The dimension of the generated
subspace is also higher.

Example 4.3 (Rail). The steel profile cooling models5 are also part of the Mor-
Wiki. They represent spatial finite element discretizations of a two-dimensional heat
transfer problem arising in the cooling of steel rail profiles [28, Chapter 19]. Different
grid sizes and discretization levels result in five versions of the example, each having
different dimension: n = 1 357, 5 177, 20 209, 79 841, 317 377.6 In all versions, A ≺ 0,
M � 0, and the provided matrices B, C have parameters m = 7 and p = 6. Table 5
shows the results for the largest version only, while the other versions are examined
later.

EKSM, GEKSM, and the iNK-ADI+LS iteration generate substantially larger
subspaces than all other algorithms. For EKSM and GEKSM this leads to a very
large effort for solving the projected Riccati equation such that, again, any savings
gained by the simpler linear systems are completely lost. Apparently, the global
method performs far worse than the block method: GEKSM has the largest subspace
dimensions and the largest times tLS, tcare, ttotal. These results emphasize again that
the extended Krylov subspaces are often not an adequate choice for solving large
GCAREs and that, moreover, no computational advantages should be expected by
the global over the block approach. Because the iNK-ADI+LS iteration does not
rely on solving projected GCAREs, its overall computation times are significantly
smaller compared to (G)EKSM, but clearly larger than for (T)RKSM, ILRSI, and
RADI. The latter four algorithms appear to be the winners for this example, having
much smaller subspace dimensions that are, especially for (T)RKSM, very close to the
actual solution rank. ILRSI and RADI need the smallest computation times, overall,
since no projected GCARE has to be solved. The NK-ADI+GP iteration is able to
compete for this example, with total computation times in between those of (T)RKSM
and ILRSI, RADI, but with a significantly smaller final residual norm. This is due to
the fact that NK-ADI+GP generates a roughly 1.5 times larger subspace compared
to (T)RKSM and ILRSI, RADI, such that the Galerkin projection results in a much
smaller residual norm than actually desired.

Example 4.4 (Toeplitz). This is an artificial example defined by the Toeplitz
matrix

A =


2.8 1 1 1 0 ...

−1 2.8 1 1 1 0
. . .

0 −1 2.8 1 1 1
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
0 −1 2.8

 , M = In,

and random B, C with ‖B‖ = 1. We set n = 100 000, m = 5, and p = 20. The
idea for this setting comes from [81, Example 7.3], [102, Example 5.5], where slightly
different entries and m = p = 1 are used. We use this example because the arising
linear systems are extremely cheap to solve even for large n, which helps to emphasize
the required work in other stages of the algorithms.

5Available at http://modelreduction.org/index.php/Steel Profile
6The largest version was obtained by a FEniCS based reimplementation (available at http://

gitlab.mpi-magdeburg.mpg.de/models/fenicsrail/) of the discretization.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://modelreduction.org/index.php/Steel_Profile
http://gitlab.mpi-magdeburg.mpg.de/models/fenicsrail/
http://gitlab.mpi-magdeburg.mpg.de/models/fenicsrail/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A982 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

The data given in Table 5 confirm this because the timings tLS represent only
a small fraction of ttotal for all methods. The timings tcare, and in some cases even
the shift generation times tshift, are higher than tLS. In fact, more than 50–75%
of time is spent in solving the small-scale CAREs. The methods (G)EKSM again
build up larger subspaces than the other methods. All of the other approaches end
up with significantly smaller subspace dimensions, which are all close to the actual
solution rank. The approximate solution of the smallest rank is obtained by TRKSM,
which, having to solve projected CAREs, in the end does not achieve the smallest
computation times ttotal. Because the RADI and iNK-ADI+LS methods do not have
to solve such projected CAREs, they achieve the smallest total times ttotal with a
substantial margin. On par with iNK-ADI+LS regarding ttotal is the NK-ADI+GP
method, which only requires one small CARE solve after the first Newton step. The
cost for this is, however, a substantial portion of the overall cost, as reflected by
tcare. Although ILRSI does not work with projected CAREs either, it ends up with
the highest total time ttotal for two reasons: first, the shift generation is more costly
(see observations made for Filter3D), and second, the costs for the residual norm
estimation via a Lanczos process in this example are comparatively more expensive
(around 50% of the total computation time). Note that without the scaling ‖B‖ = 1,
ILRSI converges much more slowly because it encounters problems in generating good
shift parameters.

For this example, we also tried SDA [80], but it was not able to compute a
low-rank approximate solution of the desired accuracy. We terminated SDA after 5
iteration steps which already took 247.8 seconds and led to a relative CARE residual
norm ‖R(X̃)‖2/‖C∗C‖2 ≈ 0.998. Interestingly, the built-in residual norm estimation
of SDA delivered a value 2.53 · 10−13 and incorrectly indicated convergence of the
method. The produced low-rank solution factors after these 5 iteration steps had
reached the maximal allowed column dimension 600.

Example 4.5 (Lung). The example lung2 from the SuiteSparse Matrix Collec-
tion [42] (formerly the University of Florida Sparse Matrix Collection) models tem-
perature and water vapor transport in the human lung. It provides matrices with
leading dimension n = 109 460, where A is nonsymmetric, M = I, and B, C are
generated as random matrices with m = p = 10.

For this example, (G)EKSM wins regarding the total computation times ttotal

since, in contrast to the prior examples, they do not produce larger subspace dimension
than the other methods. The extended Krylov method appears to be a viable choice
for this example, and the cheaper linear solves, similar to the Chip example, pay off
here. RKSM has a larger time tLS, because it, again, has to put more effort into
solving the varying linear systems. TRKSM and NK-ADI+GP break down because
the employed routine care for solving the projected CARE fails at some point. RADI
achieves the smallest subspace dimension, but needs more total time ttotal, due to the
varying linear systems. For this example, ILRSI encounters problems in the dynamic
shift generation and requires many more iterations compared to RADI. We expect
these issues to be the result of complex data in the basis used for projecting the
residual Hamiltonian matrix. Similar to prior observations, iNK-ADI+LS takes by
far the last place regarding several measures, e.g., subspace dimension, tLS, and ttotal.

Example 4.6 (Stokes). A spatial discretization of a two-dimensional Stokes equa-
tion from [98] is included as test case of M-M.E.S.S. consisting of matrices

A =
[
A1 G
G∗ 0

]
, M :=

[
M1 0
0 0

]
∈ Rn×n, B =

[
B1
0

]
∈ Rn×m, C = [C1 0] ∈ Rp×n,

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A983

with n = n1 + n2, n1 > n2, A1,M1 ∈ Rn1×n1 sparse, G ∈ Rn1×n2 , B1 ∈ Rn1×m,
C1 ∈ Rp×n1 . This results in a descriptor system of index 2, such that using a Riccati
based feedback stabilization requires some additional steps. For the sake of brevity,
we only give the absolutely necessary information regarding the handling of those
structured descriptor systems, especially with respect to the numerical steps in the
GCARE algorithms. With rank(G) = n2 we can associate the projector

Π := In1 −G(G∗M1G)−1G∗M1

to the differential algebraic system. The purpose of Π is to ensure that algebraic
constraints of the descriptor system are satisfied, i.e., that the calculations happen in
the correct hidden manifold. Following [10, 11, 21, 60, 109], the GCARE to be solved
is defined by the large, dense matrices A = Θ∗1A1Θ1, M = Θ∗1M1Θ1, B = Θ∗1B1,
Ç = C1Θ1, where Θ1,Θ2 ∈ Rn1×(n1−n2) are factors of Π: Π = Θ1Θ∗2 ∈ Rn1×n1 .

It has been shown in [11, 21, 109] that the main numerical subtasks in GCARE
methods based on the low-rank NK-ADI framework can be implemented without the
explicit projection Π or its factors Θ1,Θ2, such that working with the original ma-
trices A,M,B is sufficient and numerically desirable since A,M are sparse. Only the
transformed right-hand side factor CΠ := (ΠC∗1)∗ is required to start the iteration.
It is straightforward to carry these ideas over to the direct iterations (section 2.2)
and the projection methods (section 2.1). An application of the projection Π re-
quires solving a symmetric indefinite linear system in saddle point form defined by
M̂ :=

[
M1 F
F∗ 0

]
. In the projection based methods, it is possible that the algorithms

drift off the hidden manifold [104], especially after the orthogonalization scheme for
expanding the orthonormal basis. Hence, it is wise to apply Π also to the outcome of
the orthogonalization routine (repeated modified Gram–Schmidt in this exposition).
Moreover, estimating the GCARE residual norm via a Lanczos process, as it is done in
ILRSI, NK-ADI+GP, also requires applications of Π in each Lanczos step [109, Chap-
ter 4.3]. Consequently, the occurrence of Π-application adds an additional source of
numerical cost to each method not present in the examples before. How much extra
effort this introduces depends on how often Π needs to be applied: once in RADI,
iNK+ADI+LS, 1 + jit times in EKSM, (T)RKSM, jLan times after each Galerkin
projection in NK-ADI+GP, and 1 + jitjLan times in ILRSI, where jLan indicates the
number of executed Lanczos steps for estimating the GCARE residual norm. The
computation of the residual Hamiltonian shifts in ILRSI also relies explicitly on R,
s.t. further Π-applications are needed (cf. discussion in Example 4.2).

Here, we use a discretization with 150 grid points in each spatial dimension re-
sulting in n = 67 199, n1 = 44 700, n2 = 22 201, m = p = 5. These sizes still allow us
to employ sparse-direct techniques to handle the linear systems defined by M̂ as well
as all further occurring linear systems in the GCARE methods. In particular, we use
a sparse LDL∗ factorization of M̂ which is computed once before the iterations.

The results are given at the bottom of Table 5. The winner for this example in
terms of computation time, subspace dimension, and memory requirements is RADI,
closely followed by the projection methods EKSM, RKSM, and NK-ADI+GP, al-
though EKSM again produced larger subspaces. Similarly to before, iNK+ADI+LS
required many more LR-ADI steps leading to larger times tLS, ttotal and larger sub-
space dimensions. The last place takes ILRSI because of the significantly more ex-
pensive residual norm estimations leading to large trest timings. This is similar to the
lung example, but here, the Lanczos process additionally requires Π-applications.

This concludes this first series of examples. We point out that the amount of

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A984 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK
A28 P. BENNER, Z. BUJANOVIĆ P. KÜRSCHNER, AND J. SAAK

103 104 105

500

1 000

1 500

n

c
o
ld

im
(Z

)

EKSM RKSM TRKSM GEKSM

ILRSI RADI NK-ADI+GP iNK-ADI+LS

103 104 105

150

200

n

ra
n
k
(X̃

)

103 104 105

101

102

103

n

ti
m

e

Fig. 4.1. Scaling with respect to the problem dimension of Rail examples: plotted are the
generated subspace dimension (left), the ranks of the approximate solutions (middle), and the total
computation time (right) versus the leading dimension n.

work for adaptively generating shifts is, with minor exceptions, only a small fraction
of the overall computational effort due to the advances in this topic [17, 24, 48, 49,
72, 100] in the recent years. If cleverly implemented, precomputed shifts could also be
generated efficiently, but in our experience, the performance of the low-rank GCARE
(and GCALE) methods typically lags behind compared to dynamic shift selection.

Although not the topic of this study, we expect a similar conclusion regarding
the related methods for large, sparse Lyapunov and Sylvester equations. We did
not put timings for the residual norm computation in Table 4.1 because these were
only a tiny fraction of the overall computation time, mostly because of low-rank or
otherwise exploitable structures of the GCARE residual matrix which made this task
significantly better manageable than with earlier approaches. The clear exception
is here ILRSI which still relies on a Lanczos process for this task and, hence, could
benefit from low-rank expressions with fixed-sized factors of the GCARE residual.
This would further improve the performance of the employed residual Hamiltonian
shift generation in ILRSI.

4.2. Scaling of the performance with respect to the problem dimen-
sions. Now we examine the behavior of the algorithms when the leading dimension n
is increased. For this, we use all five versions, described above, for the Rail example,
which correspond to different coarseness of finite element meshes.

The subspace dimensions, the solution ranks, and total computation times are
plotted against the different values of n in Figure 4.1. For this particular example,
the increasing dimensions do seem to only lead to moderately larger ranks of the ap-
proximate GCARE solutions required to satisfy the stopping criterion, see middle plot
of Figure 4.1. Hence, if the algorithms manage to produce a subspace of dimension
not far from the solution rank, the numerical effort should essentially only increase
with n because the linear systems are increasingly expensive to solve. In the left plot
of Figure 4.1 we see that indeed, the majority of methods ends up with subspace
dimensions that remain approximately unchanged for increasing n. The striking ex-
ceptions are (G)EKSM whose subspace dimensions are again much larger than those
of the other methods and do also clearly increase with n. Similar to prior observation,
GEKSM performs worse than EKSM. For the largest example, GEKSM requires a
subspace dimension more than three times as large as for the other methods. The NK-
ADI methods produce somewhat larger, and slightly increasing subspace dimensions

Fig. 1. Scaling with respect to the problem dimension of Rail examples: Plotted are the generated
subspace dimension (left), the ranks of the approximate solutions (middle), and the total computation
time (right) versus the leading dimension n.

work for adaptively generating shifts is, with minor exceptions, only a small fraction
of the overall computational effort due to the advances in this area [17, 24, 48, 49,
72, 101] in recent years. If cleverly implemented, precomputed shifts could also be
generated efficiently, but in our experience, the performance of the low-rank GCARE
(and GCALE) methods typically lags behind compared to dynamic shift selection.

Although not the topic of this study, we expect a similar conclusion regarding
the related methods for large, sparse Lyapunov and Sylvester equations. We did
not put timings for the residual norm computation in Table 5 because these were
only a tiny fraction of the overall computation time, mostly because of low-rank or
otherwise exploitable structures of the GCARE residual matrix which made this task
significantly more manageable than with earlier approaches. The clear exception is
here ILRSI, which still relies on a Lanczos process for this task and, hence, could
benefit from low-rank expressions with fixed-sized factors of the GCARE residual.
This would further improve the performance of the employed residual Hamiltonian
shift generation in ILRSI.

4.2. Scaling of the performance with respect to the problem dimen-
sions. Now we examine the behavior of the algorithms when the leading dimension n
is increased. For this, we use all five versions, described above, for the Rail example,
which correspond to different coarseness of finite element meshes.

The subspace dimensions, the solution ranks, and total computation times are
plotted against the different values of n in Figure 1. For this particular example, the
increasing dimensions do seem to only lead to moderately larger ranks of the approxi-
mate GCARE solutions required to satisfy the stopping criterion; see the middle plot
of Figure 1. Hence, if the algorithms manage to produce a subspace of dimension
not far from the solution rank, the numerical effort should essentially only increase
with n because the linear systems are increasingly expensive to solve. In the left
plot of Figure 1 we see that, indeed, most methods end up with subspace dimen-
sions that remain approximately unchanged for increasing n. The striking exceptions
are (G)EKSM, whose subspace dimensions are again much larger than those of the
other methods and also clearly increase with n. Similar to prior observation, GEKSM
performs worse than EKSM. For the largest example, GEKSM requires a subspace
dimension more than three times as large as for the other methods. The NK-ADI

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A985

methods produce somewhat larger and slightly increasing subspace dimensions com-
pared to (T)RKSM, ILRSI, and RADI.

The total computation times illustrated in the right plot of Figure 1 indicate that,
as expected, increasing system dimensions n lead to increasing computation times
because of the larger linear systems. The trend in which ttotal increases is similar
for (T)RKSM, ILRSI, RADI, NK-ADI+GP, especially for dimensions n > 104. The
timings for (G)EKSM and the iNK-ADI+LS iteration are somewhat larger than for
the other algorithms. For the iNK-ADI+LS iteration, the difference in ttotal compared
to the other methods except GEKSM appears to decrease for increasing n.

The purpose of the next examples is to study how the change in the dimensions
m and p affects the performance of the algorithms. We keep the matrices A and M
fixed but alter the number of columns in B and the number of rows in C. For most
methods, this will result in a different number of columns in the right-hand side when
solving linear systems; see Table 1. Furthermore, for the projection based methods,
the size of p also dictates the growth of the subspace dimension and, thus, significantly
influences the cost for solving the Galerkin systems. Another way of manipulating
the influence of linear systems during the algorithm runs is to provide an initial guess
X0, e.g., when solving an unstable Riccati equation. Changing m changes in this case
the number of right-hand sides in the linear system if the SMW formula is employed
(cf. Table 1); we study this effect as well.

Example 4.7 (CUBE-FD). Consider a centered finite difference discretization of
the differential equation

∂tf(ξ, t) = ∆f(ξ, t)− 10ξ1∂ξ1f(ξ, t)− 1 000ξ2∂ξ2f(ξ, t)− 10∂ξ3f(ξ, t) + b(ξ)u(t),

on a unit cube with ξ = (ξ1, ξ2, ξ3). Using Dirichlet boundary conditions and n0 = 32
nodes in each spatial direction yields a nonsymmetric matrix A of order n = n3

0 and
M = In. The matrices B ∈ Rn×m, C ∈ Rp×n are generated randomly. For n0 = 22,
C = B∗, and m = 10, this is exactly [100, Example 5.2].

We will also use the last example to evaluate the influence of a nonzero initial
feedback K0. However, for several unstable variations of this example (e.g., using
shifted matrices A+ ψI, ψ > |max Re(λ(A))|), we encountered severe problems with
the initial feedback generation explained in section 2.5. Either the required eigenvec-
tors or Schur vectors could not be computed in a stable manner, or the small matrix
equations (Bernoulli or Lyapunov) could not be solved satisfactorily. To avoid these
problems, we modify Example 4.7 as follows.

Example 4.8 (CUBE-FD-unstable). Consider Au = diag(A,A+), B∗u = [B∗, B∗+],
where A, B are as in Example 4.7, A+ ∈ Ru×u is an artificially generated matrix with
eigenvalues in C+, and B+ ∈ Ru×m, C ∈ Rp×u+n are given and randomly generated.
We used u = 5 in our experiments. The required antistable invariant subspace for
the above Au is trivially spanned by Qu = [0, Iu]

∗ ∈ R(n+u)×u and it holds that
Q∗uBu = B+, so we set K0 = [0, B∗+]

∗
. To generate the antistable part A+, we enforce

the solution of the Bernoulli equation A+Su + SuA
∗
+ − Su(Q∗uB)(B∗Qu)Su = 0 to

be Su = Iu. Therefore, A+ + A∗+ = B+B
∗
+, and we simply take A+ = 1

2B+B
∗
+. We

again point out that this construction of an unstable system is done entirely for the
purposes of demonstrating the effects of an initial feedback K0. From a practical point
of view, the way Au, Bu, Cu are built makes this setting viable for partial stabilization
approaches [14, 58, 107]. Moreover, as we mentioned earlier, projection based methods
might, under certain conditions [101, Proposition 3.3], not need an initial guess to
converge.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A986 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

Table 6
Testing results for CUBE-FD and CUBE-FD-unstable with n = 32 768, τR = 10−8, and dif-

ferent values of m, p.

Setup Method Dim. Rank Final res. tLS tcare tshift trest ttotal memZ memK

m
=

1
0
,
p

=
1
0

EKSM 1 200 568 6.9e-09 27.7 142.7 – 1.9 172.4 1 220 1 230
RKSM 460 460 7.4e-09 114.3 17.3 6.3 2.6 140.4 480 490
TRKSM 470 470 5.4e-09 114.4 18.4 26.7 1.9 161.5 960 970
GEKSM 1 300 558 5.7e-09 29.8 157.8 – 0.3 187.9 1 320 1 330
ILRSI 520 490 9.6e-09 142.5 – 18.6 19.5 180.6 570 580
RADI 520 471 8.9e-09 186.8 – 5.8 1.1 193.6 620 100
NK-
ADI+GP

550 550 1.5e-10 134.7 9.3 0.7 1.1 145.8 590 590

iNK-
ADI+LS

1 120 546 9.4e-09 477.6 – 3.3 3.3 484.9 1 210 190

m
=

1
0
,
p

=
2
0

EKSM 2 400 1 099 4.4e-09 56.8 944.3 – 4.1 1 005.3 2 440 2 450
RKSM 1 120 1 100 3.2e-10 200.4 114.7 24.9 6.7 346.6 1 160 1 170
TRKSM 1 060 1 060 4.6e-10 185.0 92.7 131.4 5.3 414.5 2 160 2 170
GEKSM 2 800 1 096 3.0e-09 67.8 1 553.4 – 0.6 1 621.8 2 840 2 850
ILRSI 1 040 978 6.0e-09 199.4 – 52.2 39.8 291.3 1 140 1 150
RADI 1 040 942 7.0e-09 246.6 – 18.7 2.3 267.7 1 220 180
NK-
ADI+GP

1 140 1 120 4.0e-11 204.9 50.5 2.0 2.3 259.6 1 200 1 200

iNK-
ADI+LS

1 740 1 081 6.6e-09 616.6 – 6.6 6.6 629.4 1 860 270

m
=

2
0
,
p

=
1
0

EKSM 1 200 568 8.2e-09 25.6 148.0 – 1.9 175.5 1 220 1 240
RKSM 460 460 7.7e-09 126.9 18.6 6.7 2.6 154.8 480 500
TRKSM 480 480 6.0e-09 129.5 21.5 29.3 2.0 182.3 980 1 000
GEKSM 1 400 569 2.8e-09 29.1 210.6 – 0.2 239.9 1 420 1 240
ILRSI 530 509 7.3e-09 173.6 – 20.5 22.4 216.5 580 600
RADI 540 499 2.1e-09 269.4 – 8.2 1.5 279.1 660 120
NK-
ADI+GP

570 570 6.2e-11 156.2 10.1 0.7 1.2 168.2 630 630

iNK-
ADI+LS

1 680 534 9.7e-09 692.1 – 5.8 16.0 703.9 1 830 300

m
=

2
0
,
p

=
1
0

u
n

st
a
b

le

EKSM 1 200 571 8.0e-09 29.4 139.2 – 0.4 169.0 1 220 1 240
RKSM 570 545 2.5e-09 168.5 28.1 11.0 3.3 210.9 590 610
TRKSM 464 464 5.5e-09 136.7 21.9 50.6 2.1 211.3 948 968
ILRSI 600 504 5.5e-09 187.7 – 4.9 108.8 301.4 670 680
RADI 600 490 5.5e-09 280.5 – 4.9 1.8 287.2 720 120
NK-
ADI+GP

800 572 9.2e-11 267.3 37.5 1.9 4.8 311.5 860 860

iNK-
ADI+LS

2 190 585 9.0e-09 1 467.1 – 11.8 15.5 1 494.4 2 550 300

Table 6 and Figure 2 show the results. We first comment on the top row in
Figure 2; the number m of columns of B is fixed to 10, while the number p of rows
in C increases. The generated subspace dimensions as well as the obtained solution
ranks increase almost linearly with increasing p for all methods. This is expected, as
each step in each method (except TRKSM) expands this subspace by a multiple of p
vectors. The slope in the top left graph of Figure 2 is the largest for (G)EKSM, since
these two methods add 2p vectors in each step, while the rest add only p vectors.
The iNK-ADI+LS method appears to build subspaces larger than the rest, with the
exception of (G)EKSM. The linear increase in tLS for all methods is obvious, and
for the methods not based on projection, the total time of computation increases
linearly as well. However, in the projection methods, the costs of solving larger
projected GCAREs are getting increasingly expensive as p gets larger, resulting in
weaker performance. This is, again, most obvious for (G)EKSM.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A987
A NUMERICAL COMPARISON OF ARE SOLVERS A31

10 20 30 40
0

2 000

4 000

6 000

p

c
o
ld

im
(Z

)

EKSM RKSM TRKSM GEKSM

ILRSI RADI NK-ADI+GP iNK-ADI+LS

10 20 30 40
0

1 000

2 000

p

ra
n
k
(X̃

)

10 20 30 40

101

102

103

104

p

ti
m

e

10 20 30 40
0

1 000

2 000

3 000

4 000

m

c
o
ld

im
(Z

)

10 20 30 40
400

450

500

550

600

m

ra
n
k
(X̃

)

10 20 30 40
102

102.5

103

m
ti

m
e

10 20 30 40
0

500

1 000

1 500

m

c
o
ld

im
(Z

)

10 20 30 40

450

500

550

600

m

ra
n
k
(X̃

)

10 20 30 40
100

200

300

400

500

m

ti
m

e

Fig. 4.2. CUBE-FD(-unstable): Results with respect to different values of m and p: generated
subspace dimension (left), the ranks of the approximate solutions (middle), and the total computation
time (right) vs p or m. Top row of plots refers to m = 10, p = 1, 10, 20, 30, 40, the middle row refer
to p = 10, m = 1, 10, 20, 30, 40, and in the bottom row the results for the unstable case CUBE-FD-
unstable with p = 10 and varying m = 5, 10, 20, 30, 40 are plotted.

different values of m, especially for RKSM, iNK-ADI+LS. The effect on the total
time is also different: the methods that use the SMW formula for the solution of
linear systems (RADI, iNK-ADI+LS) see a linear increase in total time, which is a
consequence of the increase in tLS. The NK-ADI+GP is for this setting not affected
by larger B, because in all cases the Galerkin acceleration led to satisfaction of the
stopping criterion after the first Newton step. In consequence, each encountered linear
system had only p right hand sides and the SMW formula was not necessary. The
timings for ILRSI increase slightly since, for similar reasons as outlined above, the
shift generation became more expensive with increasing m.

Finally, we analyze the case of unstable Riccati equations for which we fix p = 10
and vary m = 5, 10, 20, . . . , 40. The bottom row in Figure 4.2 shows the results.
For this setting, GEKSM does not produce reasonable results (stagnation at large
residual norms or problems while solving the projected CARE) and is hence omitted.
ILRSI encounters problems in the shift generation routine, and thus we use it with the
shifts generated by RADI. The related timings tshift of ILRSI are copied from those
of RADI. Despite the nonzero initial feedback, larger values of m do not appear to

Fig. 2. CUBE-FD(-unstable): Results with respect to different values of m and p: Generated
subspace dimension (left), the ranks of the approximate solutions (middle), and the total computation
time (right) versus p or m. The top row of plots refers to m = 10, p = 1, 10, 20, 30, 40, the middle
row refers to p = 10, m = 1, 10, 20, 30, 40, and in the bottom row are the results for the unstable
case CUBE-FD-unstable with p = 10, and varying m = 5, 10, 20, 30, 40 are plotted.

Next, we study the middle row of Figure 2: now p = 10, while m increases.
Apparently, this increase has no effect on the generated subspace dimension at all,
which is clear from the way the subspaces are expanded and, thus, indicates that
the iteration numbers also remain approximately constant. The exception is iNK-
ADI+LS, where after the first Newton step, p + m vectors are added in each inner
iteration. However, the obtained solution ranks appear to be more sensitive regarding
different values of m, especially for RKSM, iNK-ADI+LS. The effect on the total
time is also different: the methods that use the SMW formula for the solution of
linear systems (RADI, iNK-ADI+LS) see a linear increase in total time, which is a
consequence of the increase in tLS. The NK-ADI+GP is for this setting not affected
by larger B, because in all cases the Galerkin acceleration led to satisfaction of the
stopping criterion after the first Newton step. Consequently, each encountered linear
system had only p right-hand sides, and the SMW formula was not necessary. The
timings for ILRSI increase slightly since, for reasons similar to those outlined above,
the shift generation became more expensive with increasing m.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A988 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

Finally, we analyze the case of unstable Riccati equations for which we fix p = 10
and vary m = 5, 10, 20, . . . , 40. The bottom row in Figure 2 shows the results. For
this setting, GEKSM does not produce reasonable results (stagnation at large residual
norms or problems while solving the projected CARE) and is hence omitted. ILRSI
encounters problems in the shift generation routine, and thus we use it with the shifts
generated by RADI. The related timings tshift of ILRSI are copied from those of RADI.
Despite the nonzero initial feedback, larger values of m do not appear to severely
affect the final subspace dimensions for all methods. The strong exception is the
iNK-ADI+LS iteration, which again performs comparatively badly for this example,
similar to the cases described above. Only for this method, the subspace dimensions
are much larger than for the other methods, surpassing even EKSM, and increasing m
clearly seems to lead to larger dimensions as well. We cut off the associated bottom
left plot in Figure 2 at 1 500 because otherwise the very large values of iNK-ADI+LS
distort the whole plot. Some variations in the solution ranks can also be seen for
varying m, similar to the previous experiment with stable matrix pair (A,M). The
total computation times ttotal increase at various rates for different methods as m
increases, which is due to the increase in the time tLS needed for solving linear systems,
since all of the methods use the SMW formula now. As explained in section 3.1,
EKSM has an advantage here, and its computation times only increase marginally.
RADI and NK-ADI+GP exhibit the strongest increase of ttotal. The same holds for
iNK-ADI+LS whose curve is omitted in the bottom right plot in Figure 2.

For m = 20, the results are listed in the bottom section of Table 6. We see that
EKSM is the fastest, followed by (T)RKSM; these two methods achieve the smallest
subspace dimensions. It is also evident that iNK-ADI+LS cannot keep up with any
of the other algorithms. Note that the residual norm estimation via Lanczos in ILRSI
takes up a significant portion of the overall time here.

In respect to the memory consumptions for scenario S2, RADI clearly requires
the smallest number of n-vectors to be stored. The NK-ADI+GP achieves, similarly
to the rail example before, smaller final residual norms, which is again a result of the
larger generated subspace dimensions.

4.3. Comparison of theoretically equivalent methods. As a final experi-
ment, we test to what extent the predicted equivalence [17, Theorem 2] of ILRSI [81,
83] and RADI [17] holds in practice. At first, both methods are executed with the
same set of predetermined shift parameters. We mimic this by running RADI with the
adaptive residual-Hamiltonian shift strategy and then use the generated shifts within
ILRSI. In the second experiment, we let ILRSI compute its own shifts using the resid-
ual Hamiltonian approach, too. The Rail example with n = 79 841 and the CUBE-FD
example with n = 10 648, m = p = 10 are used for this study. Figure 3 shows the
scaled residual norms ρj := ‖Rj‖/‖CC∗‖ for RADI and ILRSI with precomputed and
adaptive shifts, as well as the norm differences ∆ρj := |‖RRADI

j ‖− ‖RILRSI
j ‖|/‖CC∗‖

against the iteration number j.
In both cases, we indeed observe that RADI and ILRSI produce visually nearly

indistinguishable residual curves when using exactly the same shifts. When ILRSI
generates its own shifts for the CUBE-FD example, the discrepancies ∆ρj are larger
but still small. The reason is that for this example, some of the generated shifts
come in complex conjugated pairs, but in its current implementation, ILRSI cannot
handle those complex shifts similarly well as the RADI method. At some point, the
low-rank solution factors generated by ILRSI will be complex, which will lead to small
differences in the computed shifts since parts of the low-rank factor are used to project

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A989
A NUMERICAL COMPARISON OF ARE SOLVERS A33

20 40
10−18

10−9

100

j

ρ
j
,

∆
ρ
j

ρRADI
j ρILRSI

j ρILRSI
j adaptive ∆ρj ∆ρj adaptive

10 20 30
10−18

10−9

100

j

Fig. 4.3. Comparison of RADI and ILRSI with and without adaptive shifts for the CUBE-FD
(left) and rail (right) examples: scaled residual norms ρj and discrepancies ∆ρj against iteration
number j.

0 10 20 30 40 50 60

EKSM

RKSM

TRKSM

GEKSM

ILRSI

RADI

NK-ADI+GP

iNK-ADI+LS

Chip Filter3D Rail Toeplitz Lung

Stokes CUBE-10-10 CUBE-10-20 CUBE-20-10 CUBE-20-10-unst

Fig. 4.4. A summary of the performance of all methods over all examples. For each example,
a method gains a penalty equal to its running time divided by running time of the fastest method for
that example. If the quotient is larger than 10, or the method failed in that example, the penalty is
set to 10. The smaller the total penalty, the faster the method.

tended and rational Krylov subspace methods (EKSM and RKSM), direct iterations
not bound to a projection framework (ILRSI and RADI), and Newton-Kleinman meth-
ods. Some modifications of the considered methods were also taken into account. We
discussed the methods with respect to the computational complexity of solving the
matrix equation, and the amount of memory required. The theoretical analysis was
confirmed by a number of numerical experiments.

We detected the most important subtasks that influence the computational work:
solving linear systems with multiple right hand sides, solving small, dense GCAREs,
and generating shift parameters. The only subtask present in each iteration of every
method is the solution of linear systems, where the number of columns in the right
hand sides varies from one method to the other. This leads to different behavior

Fig. 3. Comparison of RADI and ILRSI with and without adaptive shifts for the CUBE-FD
(left) and rail (right) examples: Scaled residual norms ρj and discrepancies ∆ρj against iteration
number j.

A NUMERICAL COMPARISON OF ARE SOLVERS A33

20 40
10−18

10−9

100

j

ρ
j
,

∆
ρ
j

ρRADI
j ρILRSI

j ρILRSI
j adaptive ∆ρj ∆ρj adaptive

10 20 30
10−18

10−9

100

j

Fig. 4.3. Comparison of RADI and ILRSI with and without adaptive shifts for the CUBE-FD
(left) and rail (right) examples: scaled residual norms ρj and discrepancies ∆ρj against iteration
number j.

0 10 20 30 40 50 60

EKSM

RKSM

TRKSM

GEKSM

ILRSI

RADI

NK-ADI+GP

iNK-ADI+LS

Chip Filter3D Rail Toeplitz Lung

Stokes CUBE-10-10 CUBE-10-20 CUBE-20-10 CUBE-20-10-unst

Fig. 4.4. A summary of the performance of all methods over all examples. For each example,
a method gains a penalty equal to its running time divided by running time of the fastest method for
that example. If the quotient is larger than 10, or the method failed in that example, the penalty is
set to 10. The smaller the total penalty, the faster the method.

tended and rational Krylov subspace methods (EKSM and RKSM), direct iterations
not bound to a projection framework (ILRSI and RADI), and Newton-Kleinman meth-
ods. Some modifications of the considered methods were also taken into account. We
discussed the methods with respect to the computational complexity of solving the
matrix equation, and the amount of memory required. The theoretical analysis was
confirmed by a number of numerical experiments.

We detected the most important subtasks that influence the computational work:
solving linear systems with multiple right hand sides, solving small, dense GCAREs,
and generating shift parameters. The only subtask present in each iteration of every
method is the solution of linear systems, where the number of columns in the right
hand sides varies from one method to the other. This leads to different behavior

Fig. 4. A summary of the performance of all methods over all examples. For each example, a
method gains a penalty equal to its running time divided by the running time of the fastest method
for that example. If the quotient is larger than 10, or the method failed in that example, the penalty
is set to 10. The smaller the total penalty, the faster the method.

the Hamiltonian matrices. Similar observations can be made for the Rail example,
but the norm differences ∆ρj in case of adaptive shifts are much smaller compared to
the CUBE-FD example as the majority of generated shifts for this example is real. In
all cases, the differences with respect to the computed approximate Riccati solutions
‖XRADI

j −XILRSI
j ‖ show the same behavior as the residual norm differences.

5. Conclusions. In this paper, we studied three classes of low-rank algorithms
for finding approximate solutions of large-scale GCAREs: the projection based ex-
tended and rational Krylov subspace methods (EKSM and RKSM), direct iterations
not bound to a projection framework (ILRSI and RADI), and Newton–Kleinman
methods. Some modifications of the considered methods were also taken into ac-

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A990 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

count. We discussed the methods with respect to the computational complexity of
solving the matrix equation, and the amount of memory required. The theoretical
analysis was confirmed by a number of numerical experiments.

We detected the most important subtasks that influence the computational work:
solving linear systems with multiple right-hand sides, solving small, dense GCAREs,
and generating shift parameters. The only subtask present in each iteration of ev-
ery method is the solution of linear systems, where the number of columns in the
right-hand sides varies from one method to the other. This leads to different be-
havior regarding the ranks of the constant and quadratic term defining the GCARE.
In all methods which do not rely on solving small, dense GCAREs (ILRSI, RADI,
iNK-ADI+LS), these linear solves constitute the largest portion of the overall com-
putational work. For the projection based methods ((G)EKSM, (T)RKSM, NK-
ADI+GP), the solution of the dense matrix equations could, depending on p, m, and
the required number of iteration steps, be a second substantial portion of the work
load. The generation of shift parameters and the estimation of the GCARE residual
norms are, due to several recent advances, often only minor fractions of the total
computational cost.

Projecting to rational Krylov subspaces often fared better than projecting to
extended Krylov subspaces, typically keeping the built-up subspace dimension close
to the actual rank of the computed low-rank solution. The extended Krylov subspace
methods tend to generate subspaces of dimensions considerably larger than the rank
of the approximate solution, and this results in a significant increase of the effort to
solve the projected dense GCAREs. The direct iterative methods, ILRSI and RADI,
are theoretically equivalent, which can also be observed in numerical tests where only
smaller deviations occur due to round off. In the present form, ILRSI still lacks some
efficiency improvements found in the other methods, like reducing the occurrence of
complex arithmetic operations and a cheap GCARE residual norm estimation. Hence,
ILRSI could sometimes not keep up with RADI or some of the other approaches in
our experiments. If these issues can be solved in future research efforts, ILRSI can
potentially become a very competitive approach. The low-rank Newton–Kleinman
iterations showed a mixed performance. While the Galerkin projection version could
compete most of the time (provided the reduced GCARE could be solved), the inexact
version with line search could not keep up in most cases. The reasons were mostly
the more expensive linear systems, due to a higher number of right-hand sides, and
the substantially larger number of iteration steps required.

Another considered performance indicator was the memory consumption, where
it is important to distinguish between two scenarios. The first scenario occurs when an
approximate low-rank solution X̃ ∈ Rn×n of the GCAREs is sought. Therefore, the
smaller the constructed subspace or low-rank solution factor the better. In this con-
text, the (T)RKSM provided especially good results, followed by RADI and ILRSI.
At the expense of somewhat larger generated subspace dimensions, NK-ADI+GP
achieved sometimes several orders of magnitude smaller residual norms. In the sec-
ond scenario, only a stabilizing feedback matrix K̃ = M∗X̃B ∈ Rn×m is required,
naturally asking for less data to be computed. Obviously, projection based methods
do not gain an advantage here, since they still have to build the basis for the entire
subspace. The same is true for ILRSI. Only RADI and iNK-ADI+LS were able to
solely operate on approximate feedback matrices without ever forming the low-rank
solution factors, making them more memory efficient in this situation.

Averaging over all carried out tests, (T)RKSM and RADI yielded smaller sub-
space dimensions (low-rank solution factors) as well as smaller total computation

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A991

times (see Figure 4) compared to the other approaches. The ultimate choice between
(T)RKSM and RADI should then take into account whether the full low-rank solution
or only a stabilizing feedback is sought.

We also experimented with unstable GCAREs, which might ask for an initial
stabilizing guess. The generation of such an initial guess proved to be demanding in
several tests because the conventional approach used for that purpose often failed.
This issue requires further research effort.

In this study we restricted ourselves to sparse direct solution techniques for the
arising linear systems of equations. In general, preconditioned iterative solvers could
also be applied. This points towards the interesting research topic of investigating
the effects of the errors made by solving the linear systems only inexactly, and to
establish rules on the minimal accuracy of the linear solves required to obtain a low-
rank GCARE solution of a certain quality.

Similar further comparative studies could address low-rank methods for continuous-
time Lyapunov equations, and also discrete-time Lyapunov and Riccati equations, as
well as nonsymmetric variants. A comparison of different low-rank approaches for
differential matrix equations is ongoing work. Especially in the latter, but also in
other applications, the inhomogeneities of the arising GCAREs can be indefinite,
which requires some smaller changes in the implementations of the algorithms; see,
e.g., [71, 75]. A more demanding alteration is when the quadratic term in the GCARE
is positive semidefinite (i.e., M∗XBB∗XM occurs with a positive sign in (1.1)). This
arises, e.g., in certain model order reduction approaches, for which some numerical
methods are proposed in [33].

Acknowledgments. We thank Valeria Simoncini, Tatjana Stykel, Arash Mas-
soudi, Peter Chang-Yi Weng, and Heiko Weichelt for helpful discussions and for shar-
ing their implementations of (T)RKSM, GEKSM, ILRSI, SDA, and iNK-ADI+LS.
The latter especially were a great asset for developing the implementations used in
this study. Additional thanks go to Tony Stillfjord for his careful revision of our final
draft. This work was primarily generated while Patrick Kürschner was affiliated with
the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg,
Germany.

REFERENCES

[1] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, Classics
Appl. Math. 45, SIAM, Philadelphia, 2003, https://doi.org/10.1137/1.9780898719154.

[2] L. Amodei and J.-M. Buchot, An invariant subspace method for large-scale algebraic Ric-
cati equation, Appl. Numer. Math., 60 (2010), pp. 1067–1082, https://doi.org/10.1016/j.
apnum.2009.09.006.

[3] L. Amodei and J.-M. Buchot, A stabilization algorithm of the Navier—Stokes equations
based on algebraic Bernoulli equation, Numer. Linear Alg. Appl., 19 (2012), pp. 700–727,
https://doi.org/10.1002/nla.799.

[4] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6,
SIAM, Philadelphia, 2005, https://doi.org/10.1137/1.9780898718713.

[5] A. C. Antoulas, D. C. Sorensen, and Y. Zhou, On the decay rate of Hankel singular
values and related issues, Systems Control Lett., 46 (2002), pp. 323–342, https://doi.org/
10.1016/S0167-6911(02)00147-0.

[6] W. F. Arnold, III, and A. J. Laub, Generalized Eigenproblem Algorithms and Software for
Algebraic Riccati Equations, Proc. IEEE, 72 (1984), pp. 1746–1754.

[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ. Tools
11, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719581.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9780898719154
https://doi.org/10.1016/j.apnum.2009.09.006
https://doi.org/10.1016/j.apnum.2009.09.006
https://doi.org/10.1002/nla.799
https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1016/S0167-6911(02)00147-0
https://doi.org/10.1016/S0167-6911(02)00147-0
https://doi.org/10.1137/1.9780898719581

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A992 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

[8] J. Baker, M. Embree, and J. Sabino, Fast singular value decay for Lyapunov solutions
with nonnormal coefficients, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 656–668, https:
//doi.org/10.1137/140993867.

[9] H. T. Banks and K. Ito, A numerical algorithm for optimal feedback gains in high dimen-
sional linear quadratic regulator problems, SIAM J. Control Optim., 29 (1991), pp. 499–
515, https://doi.org/10.1137/0329029.

[10] E. Bänsch and P. Benner, Stabilization of incompressible flow problems by Riccati-based
feedback, in Constrained Optimization and Optimal Control for Partial Differential Equa-
tions, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ul-
brich, and S. Ulbrich, eds., Internat. Ser. Numer. Math. 160, Birkhäuser, Basel, 2012,
pp. 5–20, https://doi.org/10.1007/978-3-0348-0133-1.

[11] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt, Riccati-based boundary feedback
stabilization of incompressible Navier–Stokes flows, SIAM J. Sci. Comput., 37 (2015),
pp. A832–A858, https://doi.org/10.1137/140980016.

[12] S. Barrachina, P. Benner, and E. S. Quintana-Ort́ı, Efficient algorithms for generalized
algebraic Bernoulli equations based on the matrix sign function, Numer. Algorithms, 46
(2007), pp. 351–368, https://doi.org/10.1007/s11075-007-9143-x.

[13] P. Benner, Computational methods for linear-quadratic optimization, in Proceedings of the
Workshop “Numerical Methods in Optimization” (Cortona, 1997). Rend. Circ. Mat. Pa-
lermo (2) Suppl. 58, Circ. Math. Palermo, Palermo, Italy, 1999, pp. 21–56.

[14] P. Benner, Partial Stabilization of Descriptor Systems using Spectral Projectors, in Nu-
merical Linear Algebra in Signals, Systems and Control, P. Van Dooren, S. P. Bhat-
tacharyya, R. H. Chan, V. Olshevsky, and A. Routray, eds., Lect. Notes Electr.
Eng. 80, Springer, Dordrecht, The Netherlands, 2011, pp. 55–76, https://doi.org/10.1007/
978-94-007-0602-6 3.

[15] P. Benner, M. Bollhöfer, D. Kressner, C. Mehl, and T. Stykel, Numerical Algebra,
Matrix Theory, Differential-Algebraic Equations and Control Theory, Springer, Cham,
2015, https://doi.org/10.1007/978-3-319-15260-8 1.

[16] P. Benner and Z. Bujanović, On the solution of large-scale algebraic Riccati equations by
using low-dimensional invariant subspaces, Linear Algebra Appl., 488 (2016), pp. 430–
459, https://doi.org/10.1016/j.laa.2015.09.027.

[17] P. Benner, Z. Bujanović, P. Kürschner, and J. Saak, RADI: A low-rank ADI-type algo-
rithm for large scale algebraic Riccati equations, Numer. Math., 138 (2018), pp. 301–330,
https://doi.org/10.1007/s00211-017-0907-5.

[18] P. Benner and R. Byers, An exact line search method for solving generalized continuous-
time algebraic Riccati equations, IEEE Trans. Automat. Control, 43 (1998), pp. 101–107,
https://doi.org/10.1109/9.654908.

[19] P. Benner and J. Heiland, LQG-balanced truncation low-order controller for stabilization
of laminar flows, in Active Flow and Combustion Control 2014, R. King, ed., Notes
Numer. Fluid Mech. Multidiscip. Des. 127, Springer, Cham, 2015, pp. 365–379, https:
//doi.org/10.1007/978-3-319-11967-0 22.

[20] P. Benner, M. Heinkenschloss, J. Saak, and H. K. Weichelt, An inexact low-rank
Newton-ADI method for large-scale algebraic Riccati equations, Appl. Numer. Math.,
108 (2016), pp. 125–142, https://doi.org/10.1016/j.apnum.2016.05.006.

[21] P. Benner, M. Heinkenschloss, J. Saak, and H. K. Weichelt, Efficient solution of large-
scale algebraic Riccati equations associated with index-2 DAEs via the inexact low-rank
Newton-ADI method, Appl. Numer. Math., 152 (2020), pp. 358–354, https://doi.org/10.
1016/j.apnum.2019.11.016

[22] P. Benner, P. Kürschner, and J. Saak, A reformulated low-rank ADI iteration with explicit
residual factors, Proc. Appl. Math. Mech., 13 (2013), pp. 585–586, https://doi.org/10.
1002/pamm.201210308.

[23] P. Benner, P. Kürschner, and J. Saak, Efficient handling of complex shift parameters in
the low-rank Cholesky factor ADI method, Numer. Algorithms, 62 (2013), pp. 225–251,
https://doi.org/10.1007/s11075-012-9569-7.

[24] P. Benner, P. Kürschner, and J. Saak, Self-generating and efficient shift parameters in
ADI methods for large Lyapunov and Sylvester equations, Electrn. Trans. Numer. Anal.,
43 (2014), pp. 142–162.

[25] P. Benner, P. Kürschner, and J. Saak, Frequency-limited balanced truncation with low-
rank approximations, SIAM J. Sci. Comput., 38 (2016), pp. A471–A499, https://doi.org/
10.1137/15M1030911.D

ow
nl

oa
de

d
04

/2
0/

20
 to

 1
93

.1
75

.5
3.

21
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/140993867
https://doi.org/10.1137/140993867
https://doi.org/10.1137/0329029
https://doi.org/10.1007/978-3-0348-0133-1
https://doi.org/10.1137/140980016
https://doi.org/10.1007/s11075-007-9143-x
https://doi.org/10.1007/978-94-007-0602-6_3
https://doi.org/10.1007/978-94-007-0602-6_3
https://doi.org/10.1007/978-3-319-15260-8_1
https://doi.org/10.1016/j.laa.2015.09.027
https://doi.org/10.1007/s00211-017-0907-5
https://doi.org/10.1109/9.654908
https://doi.org/10.1007/978-3-319-11967-0_22
https://doi.org/10.1007/978-3-319-11967-0_22
https://doi.org/10.1016/j.apnum.2016.05.006
https://doi.org/10.1016/j.apnum.2019.11.016
https://doi.org/10.1016/j.apnum.2019.11.016
https://doi.org/10.1002/pamm.201210308
https://doi.org/10.1002/pamm.201210308
https://doi.org/10.1007/s11075-012-9569-7
https://doi.org/10.1137/15M1030911
https://doi.org/10.1137/15M1030911

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A993

[26] P. Benner, P. Kürschner, and J. Saak, Low-rank Newton-ADI methods for large non-
symmetric algebraic Riccati equations, J. Frankl. Inst., 353 (2016), pp. 1147–1167,
https://doi.org/10.1016/j.jfranklin.2015.04.016.

[27] P. Benner, J.-R. Li, and T. Penzl, Numerical solution of large Lyapunov equations, Riccati
equations, and linear-quadratic control problems, Numer. Linear Algebra Appl., 15 (2008),
pp. 755–777, https://doi.org/10.1002/nla.622.

[28] P. Benner, V. Mehrmann, and D. C. Sorensen, Dimension Reduction of Large-Scale Sys-
tems, Lect. Notes Comput. Sci. Eng. 45, Springer-Verlag, Berlin, Heidelberg, Germany,
2005.

[29] P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR-problem and
the associated differential Riccati equations, J. Numer. Math., 26 (2018), pp. 1–20, https:
//doi.org/10.1515/jnma-2016-1039.

[30] P. Benner and J. Saak, Efficient solution of large scale Lyapunov and Riccati equations
arising in model order reduction problems, Proc. Appl. Math. Mech., 8 (2008), pp. 10085–
10088, https://doi.org/10.1002/pamm.200810085.

[31] P. Benner and J. Saak, A Galerkin-Newton-ADI Method for Solving Large-Scale Algebraic
Riccati Equations, preprint SPP1253-090, SPP1253, 2010, http://www.am.uni-erlangen.
de/home/spp1253/wiki/index.php/Preprints.

[32] P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic
matrix Riccati and Lyapunov equations: A state of the art survey, GAMM Mitt., 36
(2013), pp. 32–52, https://doi.org/10.1002/gamm.201310003.

[33] P. Benner and T. Stykel, Numerical solution of projected algebraic Riccati equations, SIAM
J. Numer. Anal, 52 (2014), pp. 581–600, https://doi.org/10.1137/130923993.

[34] M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with an application
to rational approximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894–916, https:
//doi.org/10.1137/140998081.

[35] D. A. Bini, B. Iannazzo, and B. Meini, Numerical Solution of Algebraic Riccati Equa-
tions, Fundamentals of Algorithms 9, SIAM, Philadelphia, 2011, https://doi.org/10.1137/
1.9781611972092.

[36] T. Bonin, H. Faßbender, A. Soppa, and M. Zaeh, A fully adaptive rational global Arnoldi
method for the model-order reduction of second-order MIMO systems with proportional
damping, Math. Comput. Simulat., 122 (2015), pp. 1–19, https://doi.org/10.1016/j.
matcom.2015.08.017.

[37] J. L. Casti, Dynamical Systems and Their Applications: Linear Theory, Mathematics in
Science and Engineering, Academic Press, New York, 1977.

[38] T. Çimen, State-dependent Riccati equation (SDRE) control: A survey, IFAC Proc. Vol., 41
(2008), pp. 3761—3775, https://doi.org/10.3182/20080706-5-KR-1001.00635.

[39] C. Choi and A. J. Laub, Efficient matrix-valued algorithms for solving stiff Riccati dif-
ferential equations, IEEE Trans. Automat. Control, 35 (1990), pp. 770–776, https:
//doi.org/10.1109/9.57015.

[40] D. Chu, X. Liu, and V. Mehrmann, A numerical method for computing the Hamil-
tonian Schur form, Numer. Math., 105 (2006), pp. 375–412, https://doi.org/10.1007/
s00211-006-0043-0.

[41] E. K. W. Chu, H. Y. Fan, and W. W. Lin, A structure-preserving doubling algorithm for
continuous-time algebraic Riccati equations, Linear Algebra Appl., 396 (2005), pp. 55–80,
https://doi.org/10.1016/j.laa.2004.10.010.

[42] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans.
Math. Softw., 38 (2011), 1, https://doi.org/10.1145/2049662.2049663.

[43] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408, https://doi.org/10.1137/0719025.

[44] U. B. Desai and D. Pal, A transformation approach to stochastic model reduction, IEEE
Trans. Automat. Control, 29 (1984), pp. 1097–1100, https://doi.org/10.1109/TAC.1984.
1103438.

[45] L. Dieci, Numerical integration of the differential Riccati equation and some related issues,
SIAM J. Numer. Anal., 29 (1992), pp. 781–815, https://doi.org/10.1137/0729049.

[46] V. Druskin and L. A. Knizhnerman, Extended Krylov subspaces: Approximation of the
matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755–
771, https://doi.org/10.1137/S0895479895292400.

[47] V. Druskin, L. A. Knizhnerman, and V. Simoncini, Analysis of the rational Krylov subspace
and ADI methods for solving the Lyapunov equation, SIAM J. Numer. Anal., 49 (2011),
pp. 1875–1898, https://doi.org/10.1137/100813257.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1016/j.jfranklin.2015.04.016
https://doi.org/10.1002/nla.622
https://doi.org/10.1515/jnma-2016-1039
https://doi.org/10.1515/jnma-2016-1039
https://doi.org/10.1002/pamm.200810085
http://www.am.uni-erlangen.de/home/spp1253/wiki/index.php/Preprints
http://www.am.uni-erlangen.de/home/spp1253/wiki/index.php/Preprints
https://doi.org/10.1002/gamm.201310003
https://doi.org/10.1137/130923993
https://doi.org/10.1137/140998081
https://doi.org/10.1137/140998081
https://doi.org/10.1137/1.9781611972092
https://doi.org/10.1137/1.9781611972092
https://doi.org/10.1016/j.matcom.2015.08.017
https://doi.org/10.1016/j.matcom.2015.08.017
https://doi.org/10.3182/20080706-5-KR-1001.00635
https://doi.org/10.1109/9.57015
https://doi.org/10.1109/9.57015
https://doi.org/10.1007/s00211-006-0043-0
https://doi.org/10.1007/s00211-006-0043-0
https://doi.org/10.1016/j.laa.2004.10.010
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/0719025
https://doi.org/10.1109/TAC.1984.1103438
https://doi.org/10.1109/TAC.1984.1103438
https://doi.org/10.1137/0729049
https://doi.org/10.1137/S0895479895292400
https://doi.org/10.1137/100813257

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A994 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

[48] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical
systems, Systems Cont. Lett., 60 (2011), pp. 546–560, https://doi.org/10.1016/j.sysconle.
2011.04.013.

[49] V. Druskin, V. Simoncini, and M. Zaslavsky, Adaptive tangential interpolation in rational
Krylov subspaces for MIMO dynamical systems, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 476–498, https://doi.org/10.1137/120898784.

[50] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), pp. 16–32, https://doi.org/10.1137/0917003.

[51] H. C. Elman and M. W. Rostami, Efficient iterative algorithms for linear stability analysis
of incompressible flows, IMA J. Numer. Anal., 36 (2016), pp. 296–316, https://doi.org/
10.1093/imanum.

[52] F. Feitzinger, T. Hylla, and E. W. Sachs, Inexact Kleinman–Newton method for Riccati
equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 272–288, https://doi.org/10.1137/
070700978.

[53] F. D. Freitas and A. S. Costa, Computationally efficient optimal control methods applied
to power systems, in Proceedings of the 20th International Conference on Power Industry
Computer Applications, IEEE, Washington, DC, 1997, pp. 287–294, https://doi.org/10.
1109/PICA.1997.599416.

[54] A. Frommer, K. Lund, and D. B. Szyld, Block Krylov subspace methods for computing func-
tions of matrices applied to multiple vectors, Electron. Trans. Numer. Anal., 47 (2017),
pp. 100–126.

[55] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed, Johns Hopkins University
Press, Baltimore, MD, 2013.

[56] L. Grasedyck, Existence of a low rank or H-matrix approximant to the solution of a Sylvester
equation, Numer. Linear Algebra Appl., 11 (2004), pp. 371–389, https://doi.org/10.1002/
nla.366.

[57] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and
optimal pole selection, GAMM-Mitt., 36 (2013), pp. 8–31, https://doi.org/10.1002/gamm.
201310002.

[58] C. He and V. Mehrmann, Stabilization of large linear systems, in Preprints of the European
IEEE Workshop CMP’94 9Prague, 1994), L. Kulhavá, M. Kárný, and K. Warwick, eds.,
IEEE, Washington, DC, 1994, pp. 91–100.

[59] S. Hein, MPC-LQG-Based Optimal Control of Parabolic PDEs, Ph.D. thesis, TU Chemnitz,
Chemnitz, Germany, 2009, http://archiv.tu-chemnitz.de/pub/2010/0013.

[60] M. Heinkenschloss, D. C. Sorensen, and K. Sun, Balanced truncation model reduction
for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci.
Comput., 30 (2008), pp. 1038–1063, https://doi.org/10.1137/070681910.

[61] M. Heyouni and K. Jbilou, An extended block Arnoldi algorithm for large-scale solu-
tions of the continuous-time algebraic Riccati equation, Electron. Trans. Numer. Anal.,
33 (2009), pp. 53–62, http://etna.mcs.kent.edu/volumes/2001-2010/vol33/abstract.php?
vol=33&pages=53-62.

[62] T. Hylla, Extension of Inexact Kleinman-Newton Methods to a General Monotonicity
Preserving Convergence Theory, Dissertation, Universität Trier, Trier, Germany, 2011,
http://ubt.opus.hbz-nrw.de/volltexte/2011/643.

[63] I. M. Jaimoukha and E. M. Kasenally, Krylov subspace methods for solving large Lya-
punov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227–251, https://doi.org/10.
1137/0731012.

[64] K. Jbilou, An Arnoldi based algorithm for large algebraic Riccati equations, Appl. Math.
Lett., 19 (2006), pp. 437–444, https://doi.org/10.1016/j.aml.2005.07.001.

[65] K. Jbilou, A. Messaoudi, and H. Sadok, Global FOM and GMRES algorithms for ma-
trix equations, Appl. Numer. Math., 31 (1999), pp. 49–63, https://doi.org/10.1016/
S0168-9274(98)00094-4.

[66] E. A. Jonckheere and L. M. Silverman, A new set of invariants for linear systems—
application to reduced order compensator design, IEEE Trans. Automat. Control, 28
(1983), pp. 953–964, https://doi.org/10.1109/TAC.1983.1103159.

[67] T. Kailath, Some Chandrasekhar-type algorithms for quadratic regulators, in Proceedings of
the 1972 IEEE Conference on Decision and Control and 11th Symposium on Adaptive
Processes, IEEE, Washington, DC, 1972, pp. 219–223, https://doi.org/10.1109/CDC.
1972.268990.

[68] D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans.
Automat. Control, 13 (1968), pp. 114–115, https://doi.org/10.1109/TAC.1968.1098829.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1016/j.sysconle.2011.04.013
https://doi.org/10.1016/j.sysconle.2011.04.013
https://doi.org/10.1137/120898784
https://doi.org/10.1137/0917003
https://doi.org/10.1093/imanum
https://doi.org/10.1093/imanum
https://doi.org/10.1137/070700978
https://doi.org/10.1137/070700978
https://doi.org/10.1109/PICA.1997.599416
https://doi.org/10.1109/PICA.1997.599416
https://doi.org/10.1002/nla.366
https://doi.org/10.1002/nla.366
https://doi.org/10.1002/gamm.201310002
https://doi.org/10.1002/gamm.201310002
http://archiv.tu-chemnitz.de/pub/2010/0013
https://doi.org/10.1137/070681910
http://etna.mcs.kent.edu/volumes/2001-2010/vol33/abstract.php?vol=33&pages=53-62
http://etna.mcs.kent.edu/volumes/2001-2010/vol33/abstract.php?vol=33&pages=53-62
http://ubt.opus.hbz-nrw.de/volltexte/2011/643
https://doi.org/10.1137/0731012
https://doi.org/10.1137/0731012
https://doi.org/10.1016/j.aml.2005.07.001
https://doi.org/10.1016/S0168-9274(98)00094-4
https://doi.org/10.1016/S0168-9274(98)00094-4
https://doi.org/10.1109/TAC.1983.1103159
https://doi.org/10.1109/CDC.1972.268990
https://doi.org/10.1109/CDC.1972.268990
https://doi.org/10.1109/TAC.1968.1098829

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A NUMERICAL COMPARISON OF ARE SOLVERS A995

[69] L. Knizhnerman and V. Simoncini, Convergence analysis of the extended Krylov subspace
method for the Lyapunov equation, Numer. Math., 118 (2011), pp. 567–586, https://doi.
org/10.1007/s00211-011-0366-3.

[70] L. A. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace
method for matrix function evaluations, Numer. Linear Algebra Appl., 17 (2010), pp. 615–
638, https://doi.org/10.1002/nla.652.

[71] D. Kressner, P. Kürschner, and S. Massei, Low-rank updates and divide-and-conquer
methods for quadratic matrix equations, Numer. Alg., (2019), pp. 1–25, https://doi.org/
10.1007/s11075-019-00776-w.

[72] P. Kürschner, Efficient Low-Rank Solution of Large-Scale Matrix Equations, Ph.D. the-
sis, Otto von Guericke Universität, Magdeburg, Germany, 2016, http://hdl.handle.net/
11858/00-001M-0000-0029-CE18-2.

[73] P. Kürschner and M. Freitag, Inexact Methods for the Low Rank Solution to Large Scale
Lyapunov Equations, preprint, https://arxiv.org/abs/1809.06903, 2018.

[74] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science Publications,
The Clarendon Press, Oxford University Press, New York, 1995.

[75] N. Lang, H. Mena, and J. Saak, On the benefits of the LDLT factorization for large-
scale differential matrix equation solvers, Linear Algebra Appl., 480 (2015), pp. 44–71,
https://doi.org/10.1016/j.laa.2015.04.006.

[76] A. Lanzon, Y. Feng, and B. D. O. Anderson, An iterative algorithm to solve Algebraic
Riccati Equations with an indefinite quadratic term, in 2007 European Control Conference
(ECC), 2007, pp. 3033–3039.

[77] A. J. Laub, A Schur Method for Solving Algebraic Riccati Equations, IEEE Trans. Automat.
Control, 24 (1979), pp. 913–921, https://doi.org/10.1109/TAC.1979.1102178.

[78] J.-R. Li, Model reduction of large linear systems via low rank system Gramians, Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA, 2000.

[79] J.-R. Li and J. White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal.
Appl., 24 (2002), pp. 260–280, https://doi.org/10.1137/S0895479801384937.

[80] T. Li, E. K. Chu, W. W. Lin, and P. C. Y. Weng, Solving large-scale continuous-time
algebraic Riccati equations by doubling, J. Comput. Appl. Math., 237 (2013), pp. 373–
383, https://doi.org/10.1016/j.cam.2012.06.006.

[81] Y. Lin and V. Simoncini, A new subspace iteration method for the algebraic Riccati equation,
Numer. Linear Algebra Appl., 22 (2015), pp. 26–47, https://doi.org/10.1002/nla.1936.

[82] A. Locatelli, Optimal Control: An Introduction, Birkhäuser, Basel, 2001.
[83] A. Massoudi, M. R. Opmeer, and T. Reis, Analysis of an iteration method for the algebraic

Riccati equation, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 624–648, https://doi.org/
10.1137/140985792.

[84] V. Mehrmann and E. Tan, Defect Correction Methods for the Solution of Algebraic Riccati
Equations, IEEE Trans. Automat. Control, 33 (1988), pp. 695–698, https://doi.org/10.
1109/9.1282.

[85] C. Moosmann, E. B. Rudnyi, A. Greiner, and J. G. Korvink, Model order reduction for
linear convective thermal flow, in THERMINIC 2004, Sophia Antipolis, France, 2004,
pp. 317–321.

[86] P. C. Opdenacker and E. A. Jonckheere, A contraction mapping preserving balanced
reduction scheme and its infinity norm error bounds, IEEE Trans. Circuits Syst., 35
(1988), pp. 184–189, https://doi.org/10.1109/31.1720.

[87] M. R. Opmeer, Decay of Hankel singular values of analytic control systems, Systems Control
Lett., 59 (2010), pp. 635–638, https://doi.org/10.1016/j.sysconle.2010.07.009.

[88] M. R. Opmeer, Decay of singular values of the Gramians of infinite-dimensional systems,
in 2015 European Control Conference (ECC), 2015, pp. 1183–1188, https://doi.org/10.
1109/ECC.2015.7330700.

[89] T. Penzl, A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci.
Comput., 21 (2000), pp. 1401–1418, https://doi.org/10.1137/S1064827598347666.

[90] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra
Appl., 58 (1984), pp. 391–405, https://doi.org/10.1016/0024-3795(84)90221-0.

[91] A. Ruhe, The Rational Krylov algorithm for nonsymmetric Eigenvalue problems. III: Com-
plex shifts for real matrices, BIT, 34 (1994), pp. 165–176, https://doi.org/10.1007/
BF01935024.

[92] D. L. Russell, Mathematics of Finite-Dimensional Control Systems, Lect. Notes Pure Appl.
Math. 43, Marcel Dekker, New York, 1979.D

ow
nl

oa
de

d
04

/2
0/

20
 to

 1
93

.1
75

.5
3.

21
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1007/s00211-011-0366-3
https://doi.org/10.1007/s00211-011-0366-3
https://doi.org/10.1002/nla.652
https://doi.org/10.1007/s11075-019-00776-w
https://doi.org/10.1007/s11075-019-00776-w
http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2
http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2
https://arxiv.org/abs/1809.06903
https://doi.org/10.1016/j.laa.2015.04.006
https://doi.org/10.1109/TAC.1979.1102178
https://doi.org/10.1137/S0895479801384937
https://doi.org/10.1016/j.cam.2012.06.006
https://doi.org/10.1002/nla.1936
https://doi.org/10.1137/140985792
https://doi.org/10.1137/140985792
https://doi.org/10.1109/9.1282
https://doi.org/10.1109/9.1282
https://doi.org/10.1109/31.1720
https://doi.org/10.1016/j.sysconle.2010.07.009
https://doi.org/10.1109/ECC.2015.7330700
https://doi.org/10.1109/ECC.2015.7330700
https://doi.org/10.1137/S1064827598347666
https://doi.org/10.1016/0024-3795(84)90221-0
https://doi.org/10.1007/BF01935024
https://doi.org/10.1007/BF01935024

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A996 P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK

[93] Y. Saad, Numerical solution of large Lyapunov equation, in Signal Processing, Scattering,
Operator Theory and Numerical Methods, M. A. Kaashoek, J. H. van Schuppen, and
A. C. M. Ran, eds., Progr. Systems Control Theory 5, Birkhäuser, Basel, 1990, pp. 503–
511.

[94] J. Saak, Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE
Control and Model Order Reduction, Ph.D. thesis, TU Chemnitz, Chemnitz, Germany,
2009, http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642.

[95] J. Saak, M. Köhler, and P. Benner, M-M.E.S.S.-1.0.1—The Matrix Equations Sparse
Solvers Library, 2016, https://doi.org/10.5281/zenodo.50575; see also https://www.
mpi-magdeburg.mpg.de/projects/mess.

[96] J. Saak, P. Kürscher, Z. Bujanović, and P. Benner, Collected MATLAB solvers for
large-scale AREs, v. 1.0, Zenodo, https://doi.org/10.5281/zenodo.3662519.

[97] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified Smith
Method, Ph.D. thesis, Rice University, Houston, TX, 2007, http://www.caam.rice.edu/
tech reports/2006/TR06-08.pdf.

[98] M. Schmidt, Systematic Discretization of Input/Output Maps and Other Contributions to the
Control of Distributed Parameter Systems, Ph.D. thesis, Technische Universität Berlin,
Berlin, Germany, 2007.

[99] V. Sima, Algorithms for Linear-Quadratic Optimization, Pure Appl. Math. 200, Marcel
Dekker, New York, 1996.

[100] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations,
SIAM J. Sci. Comput., 29 (2007), pp. 1268–1288, https://doi.org/10.1137/06066120X.

[101] V. Simoncini, Analysis of the rational Krylov subspace projection method for large-scale
algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1655–1674,
https://doi.org/10.1137/16M1059382.

[102] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016),
pp. 377–441, https://doi.org/10.1137/130912839.

[103] V. Simoncini, D. Szyld, and M. Monsalve, On two numerical methods for the solution
of large-scale algebraic Riccati equations, IMA J. Numer. Anal., 34 (2014), pp. 904–920,
https://doi.org/10.1093/imanum.

[104] T. Stykel and V. Simoncini, Krylov subspace methods for projected Lyapunov equations,
Appl. Numer. Math., 62 (2012), pp. 35–50, https://doi.org/10.1016/j.apnum.2011.09.007.

[105] K. Sun, Model Order Reduction and Domain Decomposition for Large-Scale Dynamical Sys-
tems, Ph.D. thesis, Rice University, Houston, TX, 2008, http://search.proquest.com/
docview/304507831.

[106] The MORwiki Community, MORwiki: Model Order Reduction Wiki, http://modelreduction.
org.

[107] A. Varga, On stabilization methods of descriptor systems, Systems Control Lett., 24 (1995),
pp. 133–138, https://doi.org/10.1016/0167-6911(94)00017-P.

[108] E. L. Wachspress, The ADI Model Problem, Springer, New York, 2013, https://doi.org/10.
1007/978-1-4614-5122-8.

[109] H. Weichelt, Numerical Aspects of Flow Stabilization by Riccati Feedback, Ph.D. thesis, Otto
von Guericke Universität, Magdeburg, Germany, 2016, http://nbn-resolving.de/urn:nbn:
de:gbv:ma9:1-8693.

[110] T. Wolf, H2 Pseudo-Optimal Model Order Reduction, Ph.D. thesis, Technische Universität
München, München, Germany, 2015, https://d-nb.info/1064075568/34.

[111] N. Wong and V. Balakrishnan, Fast positive-real balanced truncation via quadratic alter-
nating direction implicit iteration, IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 26 (2007), pp. 1725–1731, https://doi.org/10.1109/TCAD.2007.895617.

D
ow

nl
oa

de
d

04
/2

0/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642
https://doi.org/10.5281/zenodo.50575
https://www.mpi-magdeburg.mpg.de/projects/mess
https://www.mpi-magdeburg.mpg.de/projects/mess
https://doi.org/10.5281/zenodo.3662519
http://www.caam.rice.edu/tech_reports/2006/TR06-08.pdf
http://www.caam.rice.edu/tech_reports/2006/TR06-08.pdf
https://doi.org/10.1137/06066120X
https://doi.org/10.1137/16M1059382
https://doi.org/10.1137/130912839
https://doi.org/10.1093/imanum
https://doi.org/10.1016/j.apnum.2011.09.007
http://search.proquest.com/docview/304507831
http://search.proquest.com/docview/304507831
http://modelreduction.org
http://modelreduction.org
https://doi.org/10.1016/0167-6911(94)00017-P
https://doi.org/10.1007/978-1-4614-5122-8
https://doi.org/10.1007/978-1-4614-5122-8
http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-8693
http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-8693
https://d-nb.info/1064075568/34
https://doi.org/10.1109/TCAD.2007.895617

	Introduction
	Preliminaries, assumptions, motivation, and goals
	Outline
	Notation

	Classification and brief introduction of the considered methods
	Projection methods
	Variants

	Nonprojective iterations
	The incremental low-rank subspace iteration
	The RADI iteration
	Equivalences and relations to other methods

	Low-rank Newton methods
	Galerkin acceleration of the outer iteration
	Inexact GCALE solves and line-search

	Related and further methods
	Unstable GCAREs

	Comparison of the main computational stages
	Solving linear systems
	Shifts
	Building orthonormal bases of the projection spaces
	Small-scale CARE solution
	Computing or estimating the GCARE residual norm
	Memory consumption

	Numerical experiments
	First test series
	Scaling of the performance with respect to the problem dimensions
	Comparison of theoretically equivalent methods

	Conclusions
	References

