English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Vibrational dynamics of the type-I clathrates A8Sn442 (A = Cs, Rb, K) from lattice-dynamics calculations, inelastic neutron scattering, and specific heat measurements

MPS-Authors
/persons/resource/persons126559

Candolfi,  C.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126563

Carrillo-Cabrera,  W.
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126626

Grin,  Yu.
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126861

Steglich,  F.
Frank Steglich, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126529

Baitinger,  M.
Michael Baitinger, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Candolfi, C., Koza, M., Aydemir, U., Carrillo-Cabrera, W., Grin, Y., Steglich, F., et al. (2020). Vibrational dynamics of the type-I clathrates A8Sn442 (A = Cs, Rb, K) from lattice-dynamics calculations, inelastic neutron scattering, and specific heat measurements. Journal of Applied Physics, 127: 145104, pp. 1-15. doi:10.1063/1.5117217.


Cite as: https://hdl.handle.net/21.11116/0000-0006-4E6E-9
Abstract
We report on a joint theoretical and experimental study of the vibrational dynamics of the type-I clathrates A8Sn44□2 (A = K, Rb, Cs, and □ stands for a vacancy) by high-resolution inelastic neutron scattering experiments combined with low-temperature specific heat measurements (2-300 K). Ab initio lattice dynamics calculations were performed on hypothetical vacancy-free A8Sn46 clathrates in order to determine the phonon dispersions and vibrational density of states Z (ω). The temperature dependence of the generalized vibrational density of states (GVDOS) was traced from 420 K down to 50 K, paying particular attention to the low-energy region of the GVDOS spectra. In the Cs and Rb compounds, the inelastic signal at low energies is dominated by several peaks mainly associated with the dynamics of the alkali metal atoms A in the polyhedral cages of the clathrate structure. In contrast, the low-energy spectrum of the K compound features a more pronounced contribution of the weighed modes of the framework Sn atoms. Upon cooling, the A-weighted modes soften regardless of the nature of the alkali element. The shift observed is similar for the three compounds and of small amplitude, suggestive of a dominant quasi-harmonic behavior above 50 K. The distinct dynamics of the K atoms in comparison to Cs and Rb is further demonstrated by the analyses of the low-temperature specific heat data, indicating that the low-energy Sn-weighted modes cannot be described by a Debye model with Einstein-like contributions. © 2020 Author(s).