English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Systematic search for stellar pulsators in the eclipsing binaries observed by Kepler

MPS-Authors
/persons/resource/persons238939

Gaulme,  Patrick
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gaulme, P., & Guzik, J. A. (2019). Systematic search for stellar pulsators in the eclipsing binaries observed by Kepler. Astronomy and Astrophysics, 630: A106. doi:10.1051/0004-6361/201935821.


Cite as: https://hdl.handle.net/21.11116/0000-0006-5421-6
Abstract
Eclipsing binaries (EBs) are unique targets for measuring precise stellar properties and can be used to constrain stellar evolution models. In particular, it is possible to measure masses and radii of both components of a double-lined spectroscopic EB at the percent level. Since the advent of high-precision photometric space missions (MOST, CoRoT, Kepler, BRITE, TESS), the use of stellar pulsation properties to infer stellar interiors and dynamics constitutes a revolution for studies of low-mass stars. The Kepler mission has led to the discovery of thousands of classical pulsators such as δ Scuti and solar-like oscillators (main sequence and evolved), but also almost 3000 EBs with orbital periods shorter than 1100 days. We report the first systematic search for stellar pulsators in the entire Kepler EB catalog. The focus is mainly aimed at discovering δ Scuti, γ Doradus, red giant, and tidally excited pulsators. We developed a data inspection tool (DIT) that automatically produces a series of plots from the Kepler light curves that allows us to visually identify whether stellar oscillations are present in a given time series. We applied the DIT to the whole Kepler EB database and identified 303 systems whose light curves display oscillations, including 163 new discoveries. A total of 149 stars are flagged as δ Scuti (100 from this paper), 115 as γ Doradus (69 new), 85 as red giants (27 new), and 59 as tidally excited oscillators (29 new). There is some overlap among these groups, as some display several types of oscillations. Despite the likelihood that many of these systems are false positives, for example, when an EB light curve is blended with a pulsator, this catalog gathers a vast sample of systems that are valuable for a better understanding of stellar evolution.