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Abstract
A non-perturbative analysis for the study non-axisymmetric (3D) effects on the linear ion-

temperature-gradient (ITG) driven mode is introduced. Perturbations and equilibria are considered

to be global on the flux surface, and yet radially local. The analysis is valid for systems arbitrarily

far from axisymmetry. It is found that finite Larmor radius (FLR) effects can suppress the global

(on the surface) instability, in analogy with the local analysis, but shift its poloidal location from

the position of the greatest local instability. Fourier spectra of the instability whose width grows

for increasingly non-axisymmetric systems are predicted. Results are in qualitative agreement with

numerical global (on the surface) gyrokinetic simulations.
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I. INTRODUCTION

The ion-temperature-gradient (ITG) driven instability [1, 2], is one of the major respon-

sible drivers of turbulent losses in modern fusion devices. In stellarators, Xanthopoulos et

al. have shown the inherent stabilizing effect of 3D geometry on ITG driven turbulence

[3]. This stabilization, for small ρ∗ ∝ ρi/a, where ρi is the ion Larmor radius and a is

a macroscopic scale, is partly due to an averaging effect of fluctuations over the full flux

surface. For small but finite ρ∗, turbulence reduction occurs due to the suppression of large

eddies at scales comparable to those represented by the magnetic geometry itself which can

only be captured with a global (at least on the flux surface) gyrokinetic theory, and can

only be numerically simulated with a code adapted for this purpose. These purely linear

effects govern turbulent activity, and understanding them, along side nonlinear effects such

as zonal flows, etc, can be considered as a critically important step toward forming a full

picture of the turbulence.

Analytical theories of the ITG instability are mostly based, to leading order, on the radial

local approximation, if one excludes the work of Romanelli and Zonca [4], in which the radial

structure of the ITG was derived for the first time, and subsequent works [5–7]. All these

analysis were concerned with axisymmetric systems, thus focusing on the global features of

density and temperature radial profiles, but neglecting the effect of the non-axisymmetric

variation of the equilibrium magnetic field on a flux surface. In a stellarator context, the

latter effects arise – and are observed to be important [3]. The analytical treatment of

surface-global effects was put forth in Ref. [8]. However, the authors considered nearly

axisymmetric systems, and presented an asymptotic theory of the global (on the surface)

ITG stabilization which is valid only for εh � 1, where εh is a parameter that measures the

deviation from axisymmetry.

In the case of stellarators, a non-asymptotic approach is more realistic and constitutes

the aim of this article. Such approach is required since the 3D features of stellarators

are generally not mere perturbative corrections to tokamaks. We cast the original model

equation proposed in Ref. [8] as an eigenvalue problem. This generates a lattice equation for

the electrostatic potential similar to the central equation for the wave function of electrons

in a crystal [9]. The system of equations is studied both numerically and analytically. We

find a residual difference in the growth rate between the local most unstable mode and the
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surface global mode, even in the limit of ρ∗ → 0. Finite−ρ∗ effects can suppress the global

(on the surface) instability, and eigenfunctions are found to be localized off the position

where the magnetic drift has a local maximum. The results are corroborated by surface

global gyrokinetic simulations.

II. LATTICE DRIFT-MODEL

We begin by considering a minimal model for nearly axisymmetric global (on the magnetic

surface) ITG modes in the strong interchange regime [8]

{
τ − vthi

4LTω
g(y) (−iρ∗∂y)3

}
ϕ(y) = −v

2
thif (y)

ω2LBLT
(−iρ∗∂y)2 ϕ(y), (1)

where τ = T0i/T0e, vthi =
√

2T0i/mi, with T0s the equilibrium temperature for the species s,

ω the mode frequency. Here, y = α/ι, α is a field-line label, and ι is the rotational transform.

The scale LB and L−1T = (aB0)d log T0i/dψ are introduced so that the driving of the toroidal

branch of the ITG is

ωdωT = f(y)
ρ2∗

LTLB
v2thi∂

2
y, (2)

where

f(y) = −LBa
2
∂ψB (3)

and g are 2π−periodic functions, ρ∗ ≡ ι−1ρi = ι−1vthi/(Ωia), Ωi = ZeB0/mi. The scale a

characterizes the small scale variation of the equilibrium magnetic field which causes the y

dependence of the magnetic drift frequency, ωd ∝ f(y) [8]. The scales LB ∼ a is expected

to be a fraction of the major radius of the device. We neglect radial wave-number effects.

Equation (1) is in many aspects similar to the local eigenvalue ITG equation formulated

by using the conventional ballooning transform [10, 11]. However, some important differences

need to be explained. First of all, we are considering the toroidal branch of the instability,

thus neglecting a quadratic term in k‖vthi/ω, where k‖ is the component of the wave vector

parallel to the equilibrium magnetic field. This, in ballooning space, would generate a

second order derivative which would compel us to solve, for finite global shear, a differential

problem in the field-line-following variable. Instead, here we are focusing on the field-

line-label dependence of the magnetic drift, that is the dependence on α = ιθ − φ, where
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ι = B · ∇θ/B · ∇φ is the rotational transform, and θ and φ are the poloidal and toroidal

angle-like variables (in magnetic flux co-ordinates). The dependence of the magnetic drift

on α makes the coefficients in Eq. (1) non-constant and forces us to consider a differential

equation in α. This defines our variable y = α/ι, where we are considering a specific toroidal

location, since we are not solving the differential problem along the field line. This does

not imply that the mode we are considering is exactly constant along the field line. It

simply means that our object of study is a type of mode which varies slowly enough for its

structure along the filed line to be neglected. A complete theory of ballooning modes in

3D equilibria is available and was developed by Dewar and Glasser [12]. This proved useful

in the study of the ballooning spectrum in stellarators [13]. After solving for the problem

along the field line, the remaining 2D problem (in general 3D equilibria), can be solved by

using WKB techniques or in analogy with problems in wave propagation in slowly/weakly

varying media. The study of the full structure of the mode is therefore possible, but goes

beyond the purpose of this article and will not be pursued in our present work.

To extend our analysis of Ref. [8], we first notice that the function f(y) is bounded and

periodic on a finite domain [0, 2π]. For all practical purposes, we can use

f(y) = f0 + εh

K∑
k=0

{f ck cos ky + f sk sin ky} , (4)

where K is a finite integer, f0, and f c,sk are some constants, and εh is a real quantity that

measures the “amount of 3D−ness”. The functions g can also be modelled following the

prescription of Eq. (4), however we set g(y) = g′ = const ≡ 1 for simplicity. We now select

two representative elements of the series in Eq. (4) (one even and one odd), and proceed

with our analysis.

Thus, we have[
τ − vthi

4LTω
(−iρ∗∂y)3

]
ϕ(y) = −{1 + εh [f cN cosNy + f sN sinNy]} v

2
thi (−iρ∗∂y)2
ω2LBLT

ϕ(y), (5)

where N is an order one integer. Notice that ϕ satisfies periodic boundary conditions,

whereas the field-line-following problem requires ϕ → 0 for θ → ±∞, if θ is indeed used

to parametrize the field-line-following variable. Equation (5) can be seen as a simplified

version of Eq. (17) of Nunami, Watanabe and Sugama [14]. Due to the specification of the

magnetic drift frequency through the function f = 1 + εh [f cM cosNy + f sM sinNy], we can

study global effects for finite εh, as opposed to what done in Ref. [8], where f was kept
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general, but an asymptotic analysis for εh � 1 was performed. When εh is arbitrary, we

resort to a discrete description of the problem. We Fourier expand Eq. (5) [see Appendix

A for details] and obtain

(
τ − 1

4

vthi/LT
ω

m3ρ3∗

)
ϕm = − v2thi

ω2LBLT
ρ2∗ ×

{
m2ϕm+

εh
2
f cN
[
(m−N)2 ϕm−N + (m+N)2 ϕm+N

]
εh
2i
f sN
[
(m−N)2 ϕm−N − (m+N)2 ϕm+N

]}
.

(6)

Our original model now shows the remarkable property of being described by a lattice equa-

tion for the Fourier components of the eigenfunction. We want to stress that the treatment

adopted is very close to what a surface gyrokinetic code actually does. In particular, the

number of modes required to consider a surface calculation resolved is related to ρ∗. Before

embarking on the study of Eq. (6), we discuss some properties of Eq. (5) and (6) without

finite Larmor radius corrections. This is necessary to create contact with previous [8] and

new analytic results and to shade light on possible issues related to discretization associated

with the surface-global treatment of gyrokinetics, like the emergence of spurious instabilities.

A. No Larmor radius effects

Let us consider Eq. (5) with no FLR terms:

ω̂2ϕ(y) = −{1 + εh cos y} (−iρ∗∂y)2 ϕ(y), (7)

where ω̂ = ω/(vthi/
√
τLTLB). For the case εh ≥ 1, we observe that the coefficient of the

derivative term has zeros, making the equation singular. These singularities, however, are

not essential and Fuchs theorem guarantees that a local solution can always be found in the

neighborhood of y0 such that 1 + εh cos y0 = 0. For the specific case of Eq. (7), for y ≈ y0,

we have

ρ2∗∂
2
yϕ ≈

ω̂2

(y − y0)εh sin y0
ϕ. (8)

By introducing the Frobenius series ϕ = (y − y0)
∑∞

k=0 ck(y − y0)k, it is easy to derive the

recursive relation for its coefficients

ck =
(−1)k

(k + 1) (k!)2

(
ω̂2

ρ2∗εh sin y0

)k
c0,
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which gives

ϕ(y) ≈ √y − y0J1
(

2
ω̂

ρ∗
√
εh sin y0

√
y − y0

)
, for y ≈ y0 (9)

where Jn is the Bessel function of integer order. Thus, ϕ is regular and changes sign at

y = y0, but no statement can be made on whether the solution of the full problem, with

periodic boundary conditions, has only zeros that coincide with the zeros of the function

1 + εh cos y. In fact, by just inspecting Eq. (7) we see that if y0 is a zero of ϕ, the LHS

is identically zero, and the RHS can be zero if ∂2yϕ(y0) = 0, for any non-zero value of

1 + εh cos y0. On the other hand, when 1 + εh cos y has no zeros, the eigenfunction ϕ has an

arbitrary number of zeros! This can be seen in the following way.

When εh is small but finite, insofar the coefficient of the derivative term of Eq. (5) is

not zero, the WKB analysis of Ref. [8] can still be performed. Let us return momentarily

to the more general form, i.e. we consider 1 + εh cos y → hεh(y) in Eq. (7). We intro-

duce ϕ = exp[s(y)/ρ∗], to obtain, in the limit ρ∗ → 0, s′(y) = ±ω̂/h1/2εh (y), where ω̂ =

ω/(vthi/
√
LBLT τ). The approximate WKB solution is then ϕ ∝ exp{ω̂/ρ∗

´ y
dηh

−1/2
εh (η)},

which is 2π−periodic only if

ω = ±i m0ρ∗¸
dη√
hεh (η)

vthi√
LBLT τ

, (10)

where m0 is an integer and
¸

(· · · ) = (2π)−1
´ η0+2π

η0
dη, ∀ η0. We now have, for hεh(y) =

1 + εh cos y,

ϕWKB ∝ exp

[
iπm0

F
(
y
2
, 2ε
1+ε

)
K
(

2ε
1+ε

) ] (11)

where F and K are the elliptic integrals of the first kind (incomplete and complete). The

number of zeros of this eigenfunction is fixed by the arbitrary quantum number m0 ∼ ρ−1∗ �
1. This eigenfunction is plotted in Fig. (1). Here we observe that the mode has a localization

at the location where the magnetic drift has a minimum.

B. Properties of the discrete spectrum: no FLR

We now discuss what are the limitations of a discrete representation for surface-global

effects in gyrokinetics. We find convenient to write Eq. (6) in the following way

Anmϕm = 0, (12)
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Figure 1: Eigenfunction from the WKB approximation Eq. (11) (solid line) for m0 = 10 and

εh = 0.9. The dashed line is the function hεh = 1+ εh cos(y). A localization at the minimum of hεh

is observed.

with

Anm =



. . . 4 (f cN + ifsN )

9 (f cN − if sN ) a−2 1 (f cN + ifsN )

4 (f cN − ifsN ) a−1(ω) 0

1 (f cN − ifsN ) a0(ω) 1 (f cN + ifsN )

0 a1(ω) 4 (f cN + ifsN )

1 (f cN − ifsN ) a2(ω) 9 (f cN + ifsN )

4 (f cN − ifsN )
. . .



,

(13)

and am(ω) =
(
τ +

v2thi
ω2LBLT

m2ρ2∗

)
2
εh

ω2

v2thi/(LBLT )ρ
2
∗

= O(ρ
−2

∗ ), where we are not specifying the

matrix size yet.

The global eigenvalue is therefore the solution of

detAnm = 0. (14)

Equation (14) determines, for any εh, the global eigenvalue we are looking for. Notice that the

number of roots of Eq. (14) depends on the size of the matrix A, and we have no knowledge,

a priori, on which is the most unstable mode. In fact, the choice of the acceptable roots

which we can consider true eigenvalues of the original continuous problem is not a trivial

task.
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We prove the relation between the discrete description and the analytical solution (11).

Thus we take, in Eq. (6) f cN = 1, f sN = 0, and N = 1, to obtain

[
ω̂2δnm + ρ2∗Bnm(M, εh)−

ω̂

4

√
LB
LT τ

ρ3∗Gnm(M)

]
ϕm = 0, (15)

where δnm is the identity matrix,

Bnm(M, εh) =



. . . 4 εh
2

9 εh
2

4 1 εh
2

4 εh
2

1 0

1 εh
2

0 1 εh
2

0 1 4 εh
2

1 εh
2

4 9 εh
2

4 εh
2

. . .


(16)

represents the tridiagonal matrix arising from the operator [1 + εh cos(y)]∂2y ,

Gnm(M) =



. . .

−8

−1 0

0

0 1

8
. . .


(17)

is the diagonal matrix due to ∂3y , and −M < m < M, with M � 1. All matrices are

(2M + 1) × (2M + 1). The matrix Bnm has Nm = 3M − 2 non-zero entries. The FLR

correction has been left and it will be discussed in the next Section, but it is not essential for

now. Equation (15) can be recast as an eigenvalue problem by writing ω̂2δnm = ω̂δnmω̂δnm,

and completing the square for the unknown ω̂δnm. The result is

ω̂(M)δnmϕm =

{
1

8

√
LB
LT τ

ρ3∗Gnm(M)±
[

1

64

LB
LT τ

ρ6∗G
2
nm(M)− ρ2∗Bnm(M, εh)

]1/2}
ϕm. (18)

The solutions ω̂(M) are then obtained as the eigenvalue of the matrix in the curly brackets.

The number of eigenvalues is, of course, a function of the dimension of the problem, M .
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Of all these eigenvalues, from the point of view of the stability of the system, the most

interesting are those with largest imaginary part, that is, the most unstable ones. When the

Gmn (FLR) terms of Eq. (18) are neglected [18], and the eigenvalue problem to solve is

det

[
iB1/2

mn(M, εh)−
ω̂

ρ∗
δmn

]
= 0, (19)

that is, ρ∗ can be factorized, and there seem not to be an ultimate most unstable mode.

This, of course, could be seen in Eq. (1). The situation is analogous to what happens in

the local limit if one neglectes FLR effects, then ω̂ = ikyρi, and indeed the growth rate is an

unbounded function of the wavenumber ky. In the global case, when the dimension of the

problem in Eq. (18) grows, the number of eigenvalues grows as 2M + 1. We then find more

convenient to solve the following eigenvalue problem

det

[
i
B

1/2
mn(M, εh)

M
− ω̂

ρ∗M
δmn

]
= 0. (20)

If we want to compare an eigenvalue solution of Eq. (20) with the WKB formula of Eq. (10),

we fix the parameters of Eq. (10), m0, and ρ∗, let us say m0 = 30, and ρ∗ = 0.015, so that

m0ρ∗ = 0.45. We then select the j−th root of Eq. (20) for which ω̂j(εh = 0.001)/(ρ∗M) =

0.45, (which occurs at j = 90, for M = 100, or j = 180 when M = 200, and so on) and trace

it as a function of εh. The result is in Fig. (2), where it is compared to Eq. (10), and to its

εh � 1 perturbative equivalent of Ref. [8]. The agreement is excellent. For completeness, we

plot the eigenfunction obtained from a periodic boundary-value solution of the continuum

equation, and the reconstruction from the discrete solution withM = 40 Fourier harmonics.

Results are in Fig. (3) and show no discrepancy between the two solutions.

In this process, for each system size, we are not choosing the eigenvalue with the largest

imaginary part, but the one that matches a given WKB eigenvalue for εh → 0 for a given

m0ρ∗. However, by increasing M, we could always evaluate which one is the most unstable

j−th eigenvalue of the 2M + 1 evaluated. If we create a sequence of such most unstable

modes ordered by increasing γ̂ = =[ω̂], for a given ρ∗, we can also select the j for which

ω̂j(ε → 0) is equal to a given m0ρ∗. Let us progressively increase the dimension of Eq.

(19), and find, for each iteration, the j−th eigenvalue with the largest imaginary part at

εh = 0.001. When M = m0 = 30, we then trace this eigenvalue as a function of εh. The

result of this procedure is shown in Fig. 4. Here we observe a surface-global destabilization
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0.1
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0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ℑ[
ω̂
]

ǫh

Eq. (20),M = 100, j = 90
Eq. (53) of Ref. [8],m0 = 30

WKB,Eq. (10),m0 = 30

Figure 2: Comparison of the eigenvalue from the WKB solution [Eq. (10)], Eq. (53) of Ref. [8],

and the j−th solution of (20) for which ω̂j(εh = 0.001)/(ρ∗M) = 0.45. Here M = 100, j = 90.

which, however, is never enough to make the mode due to the discretization of the global

problem more unstable than the local one.

It is possible to derive analytically the properties of the eigenvalues of the matrix B1/2
mn

which are plotted in Fig. 4. Consider the Fourier expansion of Eq. (7). This is Eq. (6) with

N = 1, f sN = 0, f cN = 1, and mρ∗ � 2 (τLT/LB)1/4 . By using the centered finite-difference

formulas of derivatives, for slowly varying ϕm, we obtain

∂2ϕm
∂m2

+
m

1 +m2

∂ϕm
∂m

= −1

2

{
1 +

1

εhρ2∗

ω̂2 +m2ρ2∗
1 +m2

}
ϕm, (21)

where the continuum approximation will be justified a posteriori.

If, for a given m0 ∼ ρ∗ � 1, we seek an eigenvalue ω̂2
0 ∼ m2

0ρ
2
∗(1 + εh), the coefficient on

the RHS of Eq. (21) tends to zero. We can then order the derivatives on the LHS small.

How small will be evident from the analysis. Let us take m ≈ m0−δm, with m0 ∼ ρ−1∗ � 1,

m−20 � δm/m0 � 1 and positive; that is, m0 will be a maximum of ϕm. Then, if we Taylor

expand (21) around m0, we obtain

∂2ϕm
∂m2

+
1

2
(a− bm)ϕm = 0, (22)
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Figure 3: Solution of Eq. (7) as a periodic boundary-value problem (dark dashed line) and from

the discrete eigenvalue formulation (light solid line). Here m0 = 11, εh = 0.9, thus ω̂/ρ∗ =

i11(π/2)
√
1.9/K(1.8/1.9) ≈ i8.26, according to Eq. (10). The number of Fourier harmonics kept

is M = 40. The light dashed line is the function 1 + εh cos y.

where a = 1−[3/(εhρ
2
∗m

2
0)] (ω̂2 +m2

0ρ
2
∗)+2/εh, and b = [2/(εhρ

2
∗m

2
0)] (ω̂2 +m2

0ρ
2
∗) [m0ρ

2
∗/(ω̂

2+

m2
0ρ

2
∗)−2m−10 ] ∼ ρ∗. The solution of this equation that decays form� 1 is the Airy function

ϕm = ϕ0Ai

[
bm− a
(2b2)1/3

]
. (23)

We immediately see that ϕ′m/ϕm ∼ b1/3∼ m
−1/3
0 ∼ρ1/3∗ � 1, which justifies the continuum

approximation. The eigenfunction defined by Eq. (23) has a maximum at m0 if

bm0 − a = a′i
(
2b2
)1/3

, (24)

where a′i are the zeros of the derivative of the Airy function Ai. Explicitly, this is

ω̂2

m2
0ρ

2
∗

= − (1 + εh)− 2
a′iεh

(m0εh)
2/3

[
−
(

1 + 2
ω̂2

m2
0ρ

2
∗

)]2/3
, (25)

where the second term on the RHS is a global correction to the local non-axisymmetric mode

ω̂0 = im0ρ∗
√

1 + εh. (26)

The correction is stabilizing. Indeed, by writing ω̂ ≈ ω̂0 + δω̂, with δω̂ � ω̂0, we obtain

δω̂ = −i (ρ∗εh)
2/3 (m0ρ∗)

1/3 (1 + 2εh)
2/3

(1 + εh)
1/2
|a′i| . (27)
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We now compare the solution of the eigenvalue equation derived by using the continuum

approximation of the Fourier series expansion, Eq. (25) with a′i = −1.01879, with the

eigenvalues of B1/2
mn with largest imaginary part. The results are in Fig (5). The agreement

is remarkable, and it improves for ρ∗ → 0, M → ∞, keeping ρ∗M constant. We conclude

that Eq. (25) is the correct eigenvalue equation that predicts surface-global effects on the

most unstable local non-axisymmetric mode without FLR corrections.

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ℑ[
ω̂
]

ǫh

Eq. (20),G ≡ 0,M = 30
Eq. (25), global
Eq. (26), local

Figure 4: Most unstable eigenvalue (crosses), solution of Eq. (20) for M = 30, ρ∗ = 0.015. Solution

of Eq. (25), derived from the continuum approximation of the discrete Fourier expansion of Eq.

(7) when m0 =M = 30. The local non-axisymmetric mode Eq. (26).

The relation between the WKB and the discrete treatment of the problem is becoming

evident. The global correction to the magnetic drift, 1 + εh cos y, is causing the formation

of small scales due to the localization of the eigenfunction at the minima of the magnetic

drift [See Fig. (3)]. The resolution of these structures requires to consider modes that are

more and more unstable, the larger is the system size. Such modes can be seen as finite−ρ∗
corrections to local non-axisymmetric modes [see Eq. (25)]. In the next section we show

that finite Larmor radius effects can regularize these modes.
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0.5

0.52

0.54

0.56

0 0.1 0.2 0.3 0.4 0.5 0.6

ℑ[
ω̂
]

ǫh

ρ∗ = 0.015,M = 30Eq. (19)
Eq. (25)

ρ∗ = 7.5× 10−3,M = 60Eq. (19)
Eq. (25)

ρ∗ = 3.75× 10−3,M = 120Eq. (19)
Eq. (25)

Figure 5: Comparison of the eigenvalues derived from the discrete representation [Eq. (19)]

and from the continuum approximation [Eq. (25)]. Here m0 = M = (30, 60, 120) and ρ∗ =

(0.015, 0.0075, 0.00375). The product Mρ∗ is kept constant. The agreement improves for larger

system size (larger M).

C. Larmor Radius Effects

When finite Larmor radius effects are included, we expect a maximum growth rate that

needs to be compared to the maximum local one. This is evaluated from Eq. (5) by taking

a costant magnetic drift equal to the maximum of 1 + εh cos y ≡ 1 + εh, using ϕ ∼ exp[iny],

and maximazing the eigenvalue obtained over n, yielding

γ̂ =
4

33/4
(1 + εh)

3/4

(
LT τ

LB

)1/4

, (28)

at ncρ∗ = 2 [(4LT τ/3LB)(1 + εh)]
1/4 .

An interesting limit is ρ∗ → 0. Scanning in εh and taking the limit ρ∗ → 0, we obtain

a residual difference between the local and global maximum growth rates, as shown in

Fig. (6). A maximum M = 38 is enough to resolve the case for smallest ρ∗ = 0.05. This

requires matrices of 3M − 2 = 74 dimension to be considered. The global most unstable

mode shows a dependence in εh similar to the local mode for εh & 0.4, and a slow variation

13



for εh . 0.4. We suggest this is associated to the transition from the axisymmetric spectrum

of normal modes [Eq. (26)] to a spectrum of globally stabilized nonaxisymmetric modes.

0.0 0.2 0.4 0.6 0.8 1.0
�h

0.8

1.0

1.2

1.4

��

Figure 6: Residual difference between local [Eq. (28), solid line] and global [Eq. (18), dots ]

maximum growth rates as axisymmetry is approached in the asymptotic limit ρ∗ = .05. The black

dashed line is the local axisymmetric solution given by Eq. (28) with εh = 0.

This result is more directly related to surface global GENE gyrokinetic simulations [3, 15]

if we plot the most unstable growth rate as a function LB/LT , which is proportional to the

code input parameter ar/LT , with ar an average of the device’s minor radius. Results in

Fig. (10). The global (surface) mode remains more stable than the maximum local one. For

a given value of εh, a complete stabilization of the global mode can occur at sufficiently large

ρ∗, see Fig. (7). It can be verified that ρ∗ = 0.05 is small enough to consider the solution

converged in the sense of Fig. (9).

The presence of the FLR stabilization can be easily understood after inspecting Eq. (18).

This is closely related to the local dispersion relation of the toroidal ITG with FLR effects

[10, 11]

2ω =
1

4
k3αρ

3
i

vthi
LT τ

±
√(

1

4
k3αρ

3
i

vthi
LT τ

)2

− 4v2thi
LBLT τ

k2αρ
2
i (1 + εh). (29)

In fact, Eq. (18) is simply the matrix formulation of Eq. (29) when a whole spectrum of

eigenvalues is induced by the periodic inhomogeneous driving term of Eq. (5).

In the limit of ρ∗m � (τLT/LB)1/4, the contribution of Gmn can be neglected, and a

spectrum of unstable modes is found. Therefore, the balance of the terms associated to

Bmn and Gmn sets the maximum global eigenvalue. This occurs for the maximum integer
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Figure 7: Global vs. local mode as a function of ρ∗ for εh = 0.1. Blue dots represent the maximum

growth rate of the global solution, and the black dashed line is the maximum growth rate of the

local mode, γ̂ = (1 + εh)
3/434/3.

M below the critical Mc for which∥∥(ρ3∗Gnm)2(1/64)LB/LT τ
∥∥ > ∥∥ρ2∗Bnm

∥∥ , (30)

where ‖A‖ denotes the norm of a matrix. As Fig. (8) shows, the norms of Gnm and Bnm

are both monotonic growing functions of M with ∂M ‖G2
nm‖ > ∂M ‖Bnm‖ . Thus, Mc is

only a function of ρ∗, εh, and LB/LT . Figure (9) shows that the most unstable global mode

converges for values of M > Mc. This is a surface-global variety of the common local FLR

stabilization.

The spectrum of ϕ2
m is broader with increasing non-axisymmetry, see Fig (11). The same

feature is reproduced by gyrokinetic simulations on the surface, see Fig (12).

Finally, Fig. (13) shows that the mode localizes around specific value of y, which is

actually not the locally most unstable y=0! This is perhaps the familiar y shift of the “band”

observed in GENE simulations [15, 16], due to the tendency of drift waves to propagate

in a particular direction. In this case, since the density gradient is zero, the drift wave

propagation is due to FLR effects.

From this section we draw some important conclusions: the y−variation of the strength
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Figure 8: Norms of ρ2∗Bnm (solid line) and (ρ3∗Gnm)
2(1/64)LB/LT τ (points) as a function of M,

where (2M + 1) × (2M + 1) is the dimension of Bnm and Gnm. Here LB/LT τ = 24, ρ∗ = .2, and

εh = 0.3. For
∥∥(ρ3∗Gnm)2(1/64)LB/LT τ∥∥ > ∥∥ρ2∗Bnm∥∥ , complete FLR stabilization occurs and the

upper bound of growth rates is reached.
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Figure 9: Normalized maximum global growth rate as a function of M, where (2M + 1) × (2M +

1) is the matrix dimensions. Here LR/LT τ = 24, ρ∗ = 0.2, and εh = 0.3. Convergences is

obtained for M > Mc, where Mc is the smallest integer than satisfies the FLR stability condition∥∥(ρ3∗Gnm)2(1/64)LB/LT τ∥∥ > ∥∥ρ2∗Bnm∥∥ .
of the magnetic drift is averaged so that a global (surface) mode is less unstable than a

local one [Eq. Fig. (6)], global modes show a tendency to rotate [Eq. (18)] in analogy to

what FLR effects do to local modes [contributing to stabilization, see Eq. (18)], FLR effects
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Figure 10: Normalized maximum global growth rate as a function of LT /LB. Here ρ∗ = 0.04,

M = 38, and εh = 0.1.
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Figure 11: The spectrum of the solution of Eq. (6) for different levels of non-axisymmetry. Here

ρ∗ = 0.01, LB/(LT τ) = 24, Mmax = 170. A broadening of the width is observed with increasing εh.

can suppress the global mode [see Fig. (7)], and the global eigenfunction is not localized

at the location where the local instability has a maximum. One final remark is on the

comparison of the nearly axisymmetric results of Fig. (2) and the non-axisymmetric results

of Fig. (6). In the first case, we confirmed the presence of a geometric stabilization for

εh < 1, already derived in Ref. [8] for εh � 1. Here the local growth rate undergoes a global
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Figure 12: Axisymmetric versus non-axisymmetric (poloidally) global spectra from global (on the

surface) GENE simulations.

stabilizing correction, γ̂ = m0ρ∗(1−O(ε2h)), persistent for ρ∗ → 0. For arbitrary εh, the non-

axisymmetric local mode is also stabilized by global effects, but now γ̂ = m0ρ∗(
√

1 + εh −
O((ρ∗εh)

2/3)). Which type of mode would prevail in a numerical simulation depends on the

specific values of εh and ρ∗. All these features make surface-global effects quite different from

radially-global ones.

III. SUMMARY AND DISCUSSION

In this article we extend a previous work on global (surface) effects on ITG modes [8] to

the case of fully non-axisymmetric systems.

It has been found that global (on the surface) effects are stabilising for all cases inves-

tigated [Figs. (6), (10)]. The spectrum obtained (see Fig. (11)) is consistent with surface

gyrokinetic simulations shown in Fig. (12). The mechanism for stabilization is an averaging

effect and is analogous to the εh � 1 case of Ref. [8] [Eqs. (10) and (20)]. The present

analysis also includes finite Larmor radius (FLR) effects. We found that the global insta-

bility can be completely suppressed in this regime [see Fig. (7)], and the localisation of
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Figure 13: Real part of the most unstable mode solution of the eigenvalue problem (18) for ρ∗ = 0.04,

M = 100, and εh = 0.1. Note that the mode location is shifted relative to the position of greatest

local instability, y = 0.
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Figure 14: Imaginary part of the most unstable mode solution of the eigenvalue problem (18) for

ρ∗ = 0.04, M = 100, and εh = 0.1. Note that the mode location is shifted relative to the position

of greatest local instability, y = 0.

the mode is shifted to locations where the curvature drive does not have a maximum, as

observed in surface gyrokinetic simulations [3]. This effect is due to the mode propagation

associated with the presence of a real frequency, in this case generated by FLR corrections.

The dynamics of wave packets is also investigated. When FLR corrections are taken into
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consideration, an additional stabilizing ρ∗− effect is identified.

The present results are complementary to a recent nonlinear numerical study by the same

authors [3]. Most of the features of the small−ρ∗ regime of Xanthopoulos et al. [3] are indeed

recovered in our work, specifically: the stabilization of the ITG on the surface, the poloidal

(y) offset of the mode from the location of maximum magnetic drift (y = 0) due to FLR

effects, the broader spectrum of modes for more non-axisymmetric systems.

The analysis has been concerned with normal modes, i.e. those which have a single

complex frequency ω, determining their global dynamics. However, it may not be the case

that such modes survive in fully developed turbulence. In particular, although normal modes

have been observed as a key component of the turbulence in flux-tube simulations, the issue

is open for the global normal modes arising when larger domains are used. Indeed, it is

doubtful that spatial correlation across a magnetic flux surface can be maintained in the

nonlinear state when the propagation of a typical drift wave over this distance takes much

longer than the nonlinear decorrelation time (in the small ρ∗ limit). Thus, a more complete

understanding of turbulence properties in a surface-global setting would require to consider

an improved linear calculation involving the dynamics of a wave packet, i.e. a structure that

is localized in space. Indeed, what is observed in turbulence simulations is reminiscent of a

wave packet, localized to regions of greater instability [3]. This aspect of the study is left

for future work.
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Appendix A: Derivation of Equation (6)

In Eq. (5), we introduce

ϕ(y) =
∑
n

ϕne
iny, (A1)

and obtain ∑
n

[
τ − vthin

3ρ3∗
4LTω

]
ϕne

iny = − v2thi
ω2LBLT

{
1 +

εhf
c
M

2

[
eiNy + e−iNy

]
+
εhf

s
M

2i

[
eiNy − e−iNy

]}∑
n

ρ2∗n
2ϕne

iny.

(A2)

Now, we project Eq. (30) onto the basis functions with the integral

1

2π

ˆ π

−π
dye−imy, (A3)
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and get∑
n

ˆ π

−π
dy

[
τ − vthin

3ρ3∗
4LTω

]
ϕne

i(n−m)y = − v2thi
ω2LBLT

ˆ π

−π
dy
∑
n

ρ2∗n
2ϕne

i(n−m)y

− v2thi
ω2LBLT

εhf
c
N

2

ˆ π

−π
dy
∑
n

ρ2∗n
2
[
ei(N+n−m)y + e−i(N−n+m)y

]
ϕn

− v2thi
ω2LBLT

εhf
s
N

2i

ˆ π

−π
dy
∑
n

ρ2∗n
2
[
ei(N−n−m)y − e−i(N−n+m)y

]
ϕn.

(A4)

We use the identity

δn,l =
1

2π

ˆ π

−π
dyei(n−l)y, (A5)

and obtain Eq. (6).

Appendix B: A new class of functions

Our fundamental equation with no FLR

ω̂2ϕ(y) = −{1 + εh cos y} (−iρ∗∂y)2 ϕ(y). (B1)

shares many features with the Mathieu equation. It is worth following a standard procedure

[17] to construct a new class of functions which solve for it.

We know that, for εh = 0, the solutions of Eq. (B1) are

ϕ(y) = cos

(
γ̂

ρ∗
y

)
, (B2)

with γ̂ = =[ω̂] = ρ∗m, with m and integer. We are considering even solutions, however, a

similar treatment is possible also for odd solutions. We now write

γ̂

ρ∗
= m2 + α1εh + α2ε

2
h + . . . , (B3)

and

ϕ(y) = cos(my) + εhc1,m(y) + ε2hc2,m(y) + . . . (B4)

We want to construct periodic solutions by using Eqs. (B3)-(B4) in Eq. (B1) and choosing

the constants αi to annihilate secular terms. It is easy to check that

c1,m(y) =
m2

4m2 − 1
{cos(my) cos y − 2m sin(my) sin y} (B5)
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where

α1 = 0, (B6)

and

c2,m(y) =
m2

8

1

4m2 − 1

{(
2m2 − 1

)
cos(2y) cos(my)− 2m cos y sin y sin(my)

}
, (B7)

where

α2 =
m2

2

1− 3m2

4m2 − 1
, (B8)

and so on. Notice that for m � 1 we obtain, in yet another way, the stabilizing second

order correction to the eigenvalue already derived in Eq. (53) of Ref. [8]. The new special

functions are plotted in Fig. (15) for a low m : m = 4. For a higher value of m : m = 20,

their typical behavior is plotted in Figs. (16)-(18).
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Figure 15: For m = 4.
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Figure 16: The function c1,20
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Figure 17: The function c2,20
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Figure 18: The function c3,20
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