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We show how second-order Floquet engineering can be employed to realize systems in which many-
body localization coexists with topological properties in a driven system. This allows one to implement and
dynamically control a symmetry protected topologically ordered qubit even at high energies, overcoming
the roadblock that the respective states cannot be prepared as ground states of nearest-neighbor
Hamiltonians. Floquet engineering—the idea that a periodically driven nonequilibrium system can
effectively emulate the physics of a different Hamiltonian—is exploited to approximate an effective
three-body interaction among spins in one dimension, using time-dependent two-body interactions only. In
the effective system, emulated topology and disorder coexist, which provides an intriguing insight into the
interplay of many-body localization that defies our standard understanding of thermodynamics and into the
topological phases of matter, which are of fundamental and technological importance. We demonstrate
explicitly how combining Floquet engineering, topology, and many-body localization allows one to harvest
the advantages (time-dependent control, topological protection, and reduction of heating, respectively) of
each of these subfields while protecting them from their disadvantages (heating, static control parameters,

and strong disorder).
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In the longstanding quest for the practical realization of
key quantum technologies such as quantum computing
[1], a key goal is to fight off decoherence and manipulate
quantum systems in a controlled way [2]. Several prom-
ising concepts have been proposed within the past decade
and have become central research fields in the study of
quantum many-body phenomena: Topological phases of
matter are reflected by robust degeneracies of ground
states and are signified by nonlocal order parameters [3,4].
Many-body localization in disordered systems defies our
standard understanding of thermodynamics by breaking
ergodicity and barring the system from thermalization
[5-8]. By this many-body localization can extend the
aforementioned topological protection to high energies
[9,10]. Floquet engineering—the idea that a periodically
driven nonequilibrium system [11,12] can effectively
emulate the physics of a different Hamiltonian—allows
one to realize “toy models” in real-life systems and to
establish stable real-time protocols to manipulate quantum
states [13].

Most of the proposals on how topology, disorder, and
Floquet engineering can be exploited in the design of
quantum devices [14-25] either concentrate on one or two
of these phenomena separately or use special models.
Floquet engineering has been suggested as a route to
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realizing effective topological systems [26—32], but those
studies neglect two-body interactions and thus ignore the
fact that a generic driven system will heat up [33]. Heating
can be efficiently suppressed by many-body localization
[34,35], but the topological properties of a clean system are
normally lost in the presence of strong disorder [36-38].

Recently, an artificial toy model exhibiting three-body
interactions was identified in which topology and many-
body localization coexist instead of hampering each other
[39-42]. Both phenomena conspire to provide topological
protection of an edge spin degree of freedom even at high
energies as the quantum system is localized for the entire
eigenspectrum (in contrast to only some part of it). Three
body-interactions as needed to realize such artificial sys-
tems are, however, excessively difficult to realize in a
real-life Hamiltonian, but they can naturally arise in
Floquet-engineered setups, as suggested in Ref. [43].
Here, we build on these ideas and extend them in four
different directions: (i) We show how the toy Hamiltonian
of Refs. [39,40] can be obtained by means of Floquet
engineering, starting from a physical quantum spin model
t — H(t) with time-periodic two-body interactions; (ii)
we explicitly benchmark how well the effective time-
independent Floquet Hamiltonian H° describes the strobo-
scopic physics of ¢ +— H(¢); (iii) we demonstrate to what
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FIG. 1. We combine insights from the subfields of Floquet

engineering, many-body localization, and topology. By doing so,
we demonstrate how to harvest the full advantages promised by
these fields—flexible control, suppression of heating, and topo-
logical protection—hile removing their respective disadvantages.
These advantages are accessible with programmable quantum
simulators. We explicitly illustrate this in Fig. 3 (topological
protection), Fig. 4 (suppression of heating), and Fig. 5 (control),
which are schematically given as insets here.

extent heating is suppressed by many-body localization;
and (iv) we design a dynamical protocol that allows one to
flip the edge spin on a short timescale.

In sum, Floquet engineering, many-body localization
(i.e., disorder and interactions), and topological protection
are three pillars on which useful quantum applications can be
built. The combination of these three ingredients elegantly
counteracts all their individual shortcomings—if one
removes only one of them, one can no longer fully harvest
their strengths. We now illustrate this explicitly and dem-
onstrate the coexistence of topology and many-body locali-
zation in a driven system, the avoidance of heating, and the
topologically protected dynamical control of quantum states.
A brief summary is given in Fig. 1.

Model.—We consider a one-dimensional spin—%
Hamiltonian consisting of a time-periodic and a time-
independent contribution, H(t) = H,(t) + H,. The time-
periodic part is given by

L)2

H, (1) = Vwsin(wt) Z a;65;_,05; + Vo cos(wr + ¢y)
=1

(L=1)/2
X z (Bi0%i03: 11 + 1i03,03141) (1)
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where @ denotes the driving frequency. The time-
independent contribution reads
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FIG. 2. Representation of the nonvanishing part of the com-
mutator [H;(r), H{(7)] relevant to the second-order Magnus
expansion for a chain consisting of eight sites. The vertical lines
represent the sites, while the light blue rectangles represent the
terms acting on the sites. The red crosses mark terms that are
commuting even though they are acting on the same site. The
commutator of two two-body interactions effectively generates a
three-body interaction.

L—1
Hy =Y Vioiof, + > hot. (2)

i= i=1

with 67”° being the Pauli matrices. The prefactors h;, V;,
a;, f;, v; can be chosen differently for each lattice site i, and
we draw them from a random Gaussian distribution with a
standard deviation of 6,y , 3, in order to drive the system
into a many-body localized phase.

The above Hamiltonian is time periodic, H(t + T) =
H(t), with T = 27/ w for all times . In order to gain some
understanding of what physics one should expect to be
modeled by ¢+ H(t), one can exploit the fact that the
stroboscopic dynamics (which neglect the micromotion)
can be described by an effective time-independent
Hamiltonian H®. In the high frequency limit > h;,
Vi.a;, Bi,v;, this effective Hamiltonian can be obtained by
virtue of a Magnus expansion [44] (see Supplemental
Material [45] for details). An expansion up to order

O(1/\/w) yields

hioi,  (3)
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with coupling terms

Aioda = €08(ho)aifB;, Aieven = €08(o)viiv1.  (4)
The second and third terms in Eq. (3) arise from a first-
order Magnus expansion (which amounts to a time average)
of H, (the first-order expansion of H; vanishes as the time
average is zero). The first term in Eq. (3), which is an
effective three-spin interaction, arises from the second-
order Magnus expansion that involves a time-averaged
commutator of [H,(¢),H(¢')] (see Fig. 2 for a pictorial
representation). All of the other commutators in the second-
order Magnus expansion, as well as all higher-order terms,
scale away with 1/+/w or faster. We note that by this we have
explicitly constructed an effective three-body Hamiltonian
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FIG. 3. Topological protection at high energies.—Time evo-

lution of the edge spin (L.) governed by Egs. (1) and (2) for
different system sizes and a driving frequency of @ = 1000. The
edge spin decays exponentially with ~exp[— \/t_/‘r] As the
system size increases, the lifetime 7 ~ exp[0.752L] of the spin
becomes exponentially large in the system size (inset) due to the
protection by topology and many-body localization even at high
energies. The deviation from (L,) = 1 is due to the fact that,
although this operator has a nonzero overlap to the operator
describing the topologically protected gapless edge mode, they
are not identical. We choose ¢y =0, disorder strengths
65y = 1.0,0y = 0.1, 6, = 0.05, and average over 1000 random
configurations. For L =8, we show data obtained using the
effective time-independent Hamiltonian of Eq. (3) for comparison.

from a time-dependent two-body one. We choose to Floquet
engineer this particular example of a three-body Hamiltonian
as it has been shown before to harbor intriguing physics for
which disorder coexists with symmetry protected topological
features [39-42], which we will discuss in more detail in
the “Results” section. However, one should note that this
procedure is general and can be used to engineer effective
three-body terms of a different desired form in the same way
as illustrated here.

A benchmark of how well the Floquet-engineered physics
of the time-dependent Hamiltonian given in Egs. (1)
and (2) agrees with that of the effective time-independent
Hamiltonian H° of Eq. (3) is shown in Fig. 3 as well as in the
Supplemental Material [45]. We find perfect agreement in
the high frequency limit where the Magnus expansion is
justified. We emphasize that the results in this work are
obtained using the full time-dependent Hamiltonian and that
the effective Hamiltonian H° only facilitates the physical
interpretation.

Results.—The beauty of the effective Hamiltonian in
Eq. (3) is that it can host a symmetry protected topological
phase with protected gapless spin—% edge excitations that
can be used to define a qubit [39,40]. In the presence of
disorder and interactions, many-body localization inhibits
ergodicity and prevents the system from thermalizing,

thereby extending the topological protection to high ener-
gies. The downside of this highly desirable behavior is that
Eq. (3) contains three-body interactions that are generally
not available. It is key to the understanding of the
significance of the present scheme to acknowledge that
no nearest-neighbor Hamiltonian H = ) ,(A;B;; + H.c.)
can give rise to the ground state of H [46]. The Floquet
approach presented here hence overcomes a roadblock
against preparing such states of matter, as native three-body
interactions of this type are generally not available. Cluster
states as ground states of H°M can be approximated by
nearest-neighbor Hamiltonians [47,48], but they require
very strong interactions and high levels of control to
effectively arrive at Hamiltonians with higher locality in
perturbation theory.

Floquet engineering overcomes this hurdle [43] and
moreover provides a natural way to dynamically control
the edge qubit. Normally, a periodically driven system
would heat up and eventually approach an infinite-
temperature state. In our case, however, many-body locali-
zation suppresses heating. In a nutshell, the combination of
Floquet engineering, topology, and many-body localization
can be utilized to level disadvantages while harvesting the
full advantages of the respective subfields. This allows one
to implement and dynamically control a spin—% qubit at high
energies. We illustrate the three different aspects—disorder,
heating, and control—separately in the following sections
(see Fig. 1 for a schematic summary).

Topological protection.—The time-dependent
Hamiltonian in Egs. (1) and (2) hosts a symmetry protected
topological phase at high energies since the system is
barred from thermalization by many-body localization (in
the sense that edge modes remain protected and suitable
nonlocal order parameters take nonzero values even away
from ground states). One can illustrate this explicitly by
demonstrating that the gapless spin—% edge mode has an
infinitely long life. To this end, we prepare the system in a
product state in which all the spins are initially pointing
along the positive z direction. The driving frequency is
chosen as w = 1000. We calculate the time evolution of the
expectation value of the boundary spin L, = ¢} using the
full  — H(¢) in Egs. (1) and (2). The operator describing
the exact topologically protected gapless spin—% edge mode
at the left boundary has a nonzero overlap with L, and is of
the form L, = aL_ + bB, for suitable complex a and b,
with B, being a bulk contribution that does not contribute in
the thermodynamic limit. The results are summarized in
Fig. 3. As the system becomes larger, topological protec-
tion becomes increasingly robust, and the lifetime of (L)
becomes exponentially large. We emphasize that the spins
(07) away from the edge decay quickly for arbitrary L since
they do not have a finite overlap with a topologically
protected mode (data not shown). In a nutshell, Fig. 3
illustrates that topology and many-body localization team
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FIG. 4. Suppression of heating.—Time evolution of the excess
energy pumped into the system by the periodic drive. The energy
saturates quickly, and the system does not approach an infinite-
temperature state. This suppression of heating is due to many-
body localization and detuning from single-particle resonances.
We choose L =10, ¢y =0, 6,5, = 1.0, 6y = 0.1, 5, = 0.05,
and average over 1000 random configurations. Note that the
scaling of the linear time axis changes at t = 100.

up so that information can be stored robustly at the edge of
a driven system at high energies.

Heating.—An interacting, periodically driven quantum
system is generically expected to heat up over time [33].
This would be detrimental to our aim of storing information
in the topologically protected edge states, as the system
would heat up to infinite temperature, an equal super-
position of all many-body states with no memory of the
initial state. However, many-body localization bars the
system from thermalizing [6,8], and it has been shown that
this can be exploited to push the effects of heating to
exponentially large times [34,35] where the scaling of the
heating is determined by the localization length in the
system. This is less obvious than it may seem, as many-
body localized systems still allow for quantum information
propagation [49], a feature that is reflected by a logarithmic
entanglement growth in time following global quenches
[50,51]. At the same time, an approximate emergent picture
of L quasilocal constants C;, j=1,...,L, of motion
emerges for H° that commute with each other and with
H®". This suppression of driving-induced heating by the
many-body localization can be understood by acknowledg-
ing that many-body localized systems behave very similarly
to so-called integrable ones, which feature an extensive set of
(quasi)local constants of the motion. These integrable
systems are known to feature interesting periodically driven
long-term states immune to runaway heating in contrast to
generic (nonintegrable) driven systems [52].

Detuning away from single-particle resonances by going
to high frequencies has a similar effect. Therefore, a system
like ours is doubly protected from heating by employing
both mechanisms: many-body localization and detuning.
This is illustrated in Fig. 4, where we monitor the time
evolution of the energy pumped into the system by the
periodic drive in ¢ — H(t). We initially prepare the system
in the ground state of the effective Hamiltonian in Eq. (3) of
the corresponding Magnus expansion. The energy initially

increases as the drive produces excess energy, which, if
redistributed thermally, would translate to heating. As we
approach the high frequency limit and Floquet engineer the
many-body localized Hamiltonian in Eq. (3), excess heat
production ceases and the system remains close to its
ground state for arbitrary large times. This demonstrates
that many-body localization and Floquet engineering con-
spire to efficiently suppress heating, which would be
detrimental to storing information.

Control.—Finally, we demonstrate how to dynamically
control the Floquet-engineered system. Our aim is to
manipulate the edge spin on a short timescale by changing
the parameters of the drive. To this end, we introduce a
time-dependent phase ¢ — ¢(¢) replacing ¢, in Eq. (1),
which in general breaks the time periodicity. However, in
either the case of (i), a slowly varying ¢, or (ii), a piecewise
constant phase ¢, the above arguments still hold within
each time interval in which ¢ is (approximately) constant.
Changing the phase of the drive allows us to effectively
control the system as the phase governs the magnitude of
the couplings 4; in the effective Hamiltonian Eq. (3) via
Eq. (4). We will now concentrate on the following,
particularly instructive, example:

t>T,,

(5)

¢(t)—{0 t<T, or

77.'/2 TISZSTZ

We aim at rotating the spin and thus for times 7| <t < T,
add a constant field along the x direction, H, — H,+
B, > ;o}. The effective (now piecewise time-dependent)
Hamiltonian from a second-order Magnus expansion reads

L-2 L-1
(1) = 3 A()oiot10hs + Y Vool
i=1 i=1
L
+ ) [B.(1) + hilo}, (6)
i=1
where
a;fi(yia; t<Ty or t>T
Ai,odd(even)@) = { ﬁ (}/ +1) 1 ’ (7)
0 T] <t< T27

and Bx(t) = Bx for T] <t< T2.

In Fig. 5, we present results for the time evolution of the
edge spin (L.) for different switching times 7, — T ~ 1,
B, = 1.0, and a driving frequency of @ = 1000 (disorder
parameters are given in the caption). We again stress that
the time evolution is calculated using the full time-
dependent Hamiltonian ¢+ H(¢) and that its high fre-
quency counterpart, the effective Hamiltonian H®', only
facilitates the interpretation of the results. For times r < T,
the edge state is protected by topology, and its information
(i.e., being in the up state) can be stored for exponentially

190601-4



PHYSICAL REVIEW LETTERS 124, 190601 (2020)

t

0 2000 4000 6000 8000 10000
0.8 . . . .
0.4
= 6=0 6=0
~
= o0l B,=0 B, =0
04
0.8
Ty—T, =094 —Ty—T, =11 —Ty—T, =1.26
0.4 - T -T, =141 — Ty, —T, = 1.57
=
0.4 . .

0.0 0.2 0.4 0.6 0.8 1.0
(t=1)/(T = Th)

FIG.5. Dynamical control—The edge spin can be flipped on a
short timescale 7y <t < T,, T, — T; ~ 1 by applying a constant
magnetic field B, as well as a brief z/2 phase shift to the drive
(lower panel). Before (t < T;) and after (¢ > T,), the spin is
stable on exponentially long timescales (upper panel). We choose
L = 10, a driving frequency of @ = 1000, and disorder strengths
6apy = 1.0, oy = 0.1, and 6, = 0.05. Disorder averages are
performed over 1265 random configurations.

long times. At t = T, the phase of the driven Hamiltonian
is switched from ¢y = 0 to z/2, and a magnetic field is
applied. The magnetic field flips the direction of the spin.
At time t = T», both the phase and the magnetic field are
switched back off, ¢y = B, = 0. The new state (where the
edge spin now points down) can again be stored for
exponentially long times as the topological properties are
restored. This exemplifies how the versatility inherent to
Floquet engineering can be utilized to dynamically control
and manipulate the information in the topologically pro-
tected edge states.

Conclusion—We have demonstrated how quantum
states can be dynamically manipulated in a stable way in
a periodically driven, realistic spin system. Starting from a
simple spin model with two-body interactions, Floquet
engineering allows one to design a toy Hamiltonian in
which topology and disorder conspire to protect (qubit)
spin states even away from low energies, as suggested in
Refs. [39,40]. We explicitly demonstrated how heating is
suppressed efficiently and investigated how well the toy
Hamiltonian approximates the dynamics governed by the
original one. Taking these properties together, this could
provide a fascinating new route to implementing and
controlling stable qubits, even at high temperatures, which
should be the subject of future research.
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