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Abstract

Prostate cancer (PCa) has a broad spectrum of clinical behavior;
hence, biomarkers are urgently needed for risk stratification. Here,
we aim to find potential biomarkers for risk stratification, by
utilizing a gene co-expression network of transcriptomics data in
addition to laser-microdissected proteomics from human and
murine prostate FFPE samples. We show up-regulation of oxidative
phosphorylation (OXPHOS) in PCa on the transcriptomic level and
up-regulation of the TCA cycle/OXPHOS on the proteomic level,
which is inversely correlated to STAT3 expression. We hereby
identify gene expression of pyruvate dehydrogenase kinase 4
(PDK4), a key regulator of the TCA cycle, as a promising indepen-
dent prognostic marker in PCa. PDK4 predicts disease recurrence
independent of diagnostic risk factors such as grading, staging,

and PSA level. Therefore, low PDK4 is a promising marker for PCa
with dismal prognosis.
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Introduction

Prostate cancer (PCa) is the second most frequent cancer and the

fifth leading cause of death from cancer in men worldwide (Bray

et al, 2018). The diagnosis of PCa is largely based on the
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histopathological evaluation of biopsies, which are graded by the

Gleason score (GSC) (Gleason & Mellinger, 1974). In 2005, the GSC

was modified by the International Society of Urological Pathology

(ISUP) (Epstein et al, 2005), resulting in the ISUP grade, which

ranges from I to V (National Collaborating Centre for Cancer (UK),

2014). PCa shows a wide variety in clinical behavior, ranging from

harmless, indolent tumors to aggressive metastatic disease (Epstein

& Lotan, 2014; Sathianathen et al, 2018). As a consequence, treat-

ment following biopsy of the prostate is individualized and based

on four main criteria: the amount of tumor in the biopsy, the histo-

logical GSC/ISUP grading, clinical staging, and—to a lesser extent—

the level of prostate-specific antigen (PSA) in the serum (National

Collaborating Centre for Cancer (UK), 2014). Nonetheless, there is a

significant risk of over- and under-treatment (Sathianathen et al,

2018), and additional biomarkers for risk stratification are urgently

needed.

Molecular characterization reveals PCa as a highly heteroge-

neous disease with diverse genetic, epigenetic and transcriptomic

alterations (Taylor et al, 2010; The Cancer Genome Atlas Research

Network, 2015). As a consequence, there is a strong need to define

molecular subgroups of PCa to identify potential targets for treat-

ment. In a previous attempt, our group studied the role of signal

transducer and activator of transcription 3 (STAT3) in PCa, which

turned out to exert tumor suppressor activities: Mice with a deletion

of both Pten and Stat3 in the prostate epithelium develop aggressive

metastatic tumors (Pencik et al, 2015).

In this study, we compared low STAT3 to high STAT3 PCa at the

transcriptomic and proteomic levels. In this setting, our aim was to

find markers that are associated with earlier BCR by analyzing

biological processes correlated with STAT3 expression. We used

The Cancer Genome Atlas-Prostate Adenocarcinoma (TCGA-PRAD)

RNA-Seq data set (The Cancer Genome Atlas Research Network,

2015) and established a gene co-expression network. We found a

negative association of STAT3 expression with oxidative phosphory-

lation (OXPHOS) and ribosomal biogenesis. These results were

corroborated in additional data sets and by findings in shotgun

proteomics of laser-microdissected formalin-fixed and paraffin-

embedded (FFPE) PCa material from human and murine samples.

Furthermore, we found that gene expression of PDK4, which inhi-

bits pyruvate oxidation through the TCA cycle and thereby nega-

tively impacts OXPHOS (Gray et al, 2014; Zhang et al, 2014), was

significantly down-regulated in low STAT3 patients. We show that

low PDK4 expression is significantly associated with a higher risk of

BCR and that PDK4 predicts disease recurrence independent of ISUP

grading in low-/intermediate-risk primary tumors. In addition, PDK4

is an independent predictor of BCR compared to ISUP grading and

clinical staging, as well as pathological staging and pre-surgical PSA

levels in primary and metastatic tumors, identifying PDK4 as a

promising prognostic marker in PCa.

Results

Low STAT3 expression in primary PCa is associated with
increased OXPHOS and ribosomal biosynthesis

In order to assess biological processes associated with STAT3

expression in primary PCa, we employed two different approaches

of analyzing the TCGA PRAD RNA-Seq data of 498 patients

(Fig 1A). Firstly, we compared low STAT3 to high STAT3 patients

and analyzed differentially expressed genes. Secondly, we used

weighted gene co-expression network analysis (WGCNA) (Lang-

felder & Horvath, 2008, 2012), to create a network of co-expressed

gene clusters.

To compare low STAT3 with high STAT3 patients, samples were

ranked according to STAT3 expression and split into three groups:

“high STAT3” consisted of the 1–0.8th quantile (n = 100), “low

STAT3” of the 0.2nd quantile (n = 100), and “medium STAT3” of all

samples in between (n = 298).

We compared low STAT3 to high STAT3 samples and found

1,194 genes to be significantly differentially expressed (log-FC ≥ 1,

adj. P-value ≤ 0.05, Table EV1). Overexpression analysis of differen-

tially expressed genes showed “Ribosome” and “OXPHOS” among

the top up-regulated Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways (Fig 1B, Table EV1).

Gene set testing for KEGG signaling pathways using the Ensem-

ble Of Gene Set Enrichment Analyses (EGSEA) method (Alham-

doosh et al, 2017) showed the “JAK-STAT signaling pathway” to be

down-regulated, whereas “Ribosome” was the top up-regulated

pathway (Figs EV1A and EV2A, Table EV1). “OXPHOS” was among

the top three up-regulated metabolic KEGG pathways (Fig EV2B,

Table EV1). The top three up-regulated Hallmark gene sets were

“DNA Repair”, “Myc targets v1”, and “OXPHOS” (Table EV1).

“TGF-beta signaling”, “Unfolded protein response”, and “P53 path-

way” were the top three down-regulated Hallmark gene sets.

As a conclusion, gene sets representing OXPHOS and ribosomal

activity were consistently present among the most significantly up-

regulated pathways.

To assess whether STAT3 expression in this setting is associated

with the expression of its target genes, we used a collection of 57

genes known to be up-regulated by STAT3 signaling (“STAT3

TARGETS UP”, Table EV1) (Carpenter & Lo, 2014). STAT3 target

genes were significantly up-regulated in the high STAT3 group

compared to low STAT3 (gene set testing with roast, P-value = 2.5e-

05, Table EV1), indicating that STAT3 gene expression is correlated

to its activity as transcription factor. STAT3 is acting as a transcrip-

tion factor in its tyrosine-phosphorylated (pY) form. Therefore, we

correlated STAT3 log counts per million (cpm) with TCGA PRAD

Reverse Phase Protein Array (RPPA) data for pY-STAT3 (Li et al,

2013, 2017a), which resulted in a positive correlation (q = 0.24, P-

value = 7.8e-06, Fig EV3A left). Finally, we correlated STAT3 log

cpm to two STAT3 target signatures assessed by ssGSEA (Barbie

et al, 2009). Gene sets “AZARE STAT3 TARGETS” (Azare et al,

2007) (q = 0.67, adj. P-value = 4.72e-63, Fig EV3A, center) and

“STAT3 TARGETS UP” (Carpenter & Lo, 2014) (q = 0.46, adj.

P-value = 1.95e-26, Fig EV3A, right) were positively correlated to

STAT3. Accordingly, STAT3 expression seems to represent its tran-

scriptional activity in this setting.

Next, we established a co-expression network from the TCGA

PRAD data set to derive clusters of highly correlated genes. Gene

clusters can be analyzed for common biological themes and for their

association with a trait of interest, such as tumor grade, stage, or

expression of a specific gene. We aimed to detect clusters that are

associated with STAT3 expression and to compare them with clus-

ters correlated to clinical traits, such as BCR, tumor grading, and

staging.
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For the network, only samples with matching clinical data were

used (n = 397, Table EV2). After removal of outliers by hierarchical

sample clustering, we generated a network from 13,932 genes and

382 patients which resulted in 13 gene clusters (=modules,

Appendix Fig S1A and B). Using overexpression analysis for Gene

Ontologies (GO), we analyzed the clusters for enriched biological

processes (Fig 2A). Genes in cluster 2 were mainly associated with

cellular respiration (OXPHOS, “mitochondrial respiratory chain

complex assembly”, and others) and RNA splicing. Cluster 3 repre-

sented ribosomal translation and protein targeting to the

endoplasmic reticulum (ER). Clusters 4 and 7 were both associated

with immune pathways and inflammatory response. Cluster 6 was

associated with extracellular structure organization, extracellular

matrix organization, angiogenesis and blood vessel morphogenesis,

among others. Cluster 11 was associated with epigenetic processes

(histone and chromatin modification, gene silencing). We subse-

quently investigated which gene clusters were associated with

STAT3 expression by using the cluster eigengene (= the first princi-

pal component, Methods, Table EV2) and found strong correlations

for three clusters. While genes in “Epigenetic” cluster 11 (Pearson

A

B

Figure 1. Identification of STAT3-associated pathways in prostate cancer.

A Overview of transcriptomic (top) and proteomic (bottom) analyses.
B Overexpression analysis of enriched KEGG pathways of significantly differentially expressed genes between low STAT3 versus high STAT3 groups in TCGA PRAD. Dotted

line: adj. P-value = �log10(0.05).
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correlation; q = 0.59, adj. P-value = 8e-36) showed a positive correla-

tion with STAT3 expression, “OXPHOS” cluster 2 (q = �0.67, adj.

P-value = 7e-50) and “Ribosomal” cluster 3 (q = �0.74, adj. P-

value = 1e-65) were negatively correlated (Fig 2B). Further, we wanted

to know whether STAT3 pathway genes and transcriptional targets

were associated with specific clusters. We investigated the STAT3 path-

way genes Interleukin 6 Signal Transducer (IL6ST), STAT3, Suppressor

Of Cytokine Signaling 3 (SOCS3), Janus Kinase 1 (JAK1), Janus Kinase

2 (JAK2), Tyrosine Kinase 2 (TYK2), and “STAT3 TARGETS UP” genes

derived from Carpenter and Lo (2014). There were 55 STAT3 pathway

and target genes associated with different clusters (Table EV2). Cluster

6 (20 genes) and cluster 11 (10 genes) included the highest number of

genes, followed by cluster 4 (seven genes) and cluster 7 (five genes).

STAT3 itself belonged to cluster 3. Genes in a cluster are highly corre-

lated, which can be both positive and negative correlation (Langfelder

& Horvath, 2008). The cluster eigengene (first principal component) of

a cluster is used as an average representative for the gene expression in

the cluster (Langfelder & Horvath, 2008). In this case, STAT3 is—in

contrast to the majority of genes in cluster 3—highly negatively corre-

lated to the cluster 3 eigengene (q = �0.74) while being significantly

associated with cluster 3 (adj. P-value = 8.45e-66, Table EV2).

Next, we investigated the correlation between gene clusters with

the clinical traits BCR, GSC, pathological tumor staging (pT), and

pathological lymph node staging (pN; Table 1, Table EV2). Clusters

10 and 12 were the clusters most strongly (q > 0.3) positively corre-

lated to GSC (cluster 10: q = 0.44, adj. P-value = 1e-18; cluster 12:

q = 0.51, adj. P-value = 5e-25) and pT risk (cluster 10: q = 0.38,

adj. P-value = 1e-13; cluster 12: q = 0.35, adj. P-value = 3e-11;

Fig 2B). Cluster 10 was associated with Gene Ontologies relating to

the extracellular matrix, such as “extracellular structure organiza-

tion”, “extracellular matrix organization”, and “blood vessel

morphogenesis”, whereas cluster 12 was represented by Gene

Ontologies “cell division”, “chromosome segregation”, and “nuclear

division”, among others (Fig 2A). There was no overlap with clus-

ters correlated with STAT3 (Fig 2B).

To verify that STAT3 was not correlated with clinical traits, we

analyzed the direct association of STAT3 pathway genes IL6ST,

STAT3, SOCS3, JAK1, JAK2, and TYK2 with clinical traits by multi-

way ANOVAs (Table EV2). Again, association with clinical traits

was not significant, with the exception of SOCS3 expression. SOCS3

was lower in GSC 8 compared to GSC 6 (adj. P-value = 0.018, one-

way ANOVA with Tukey HSD), GSC 7 (adj. P-value = 0.035), and

GSC 9 (adj. P-value = 0.048).

Since there was no association between STAT3 and clinical traits

in the WGCNA, we focused on the negatively STAT3-correlated

clusters 2 and 3. We wanted to know which genes from clusters 2

and 3 overlapped with the differentially expressed genes resulting

from the low STAT3 to high STAT3 comparison. From 1,194 dif-

ferentially expressed genes, 316 overlapped with “OXPHOS” cluster

2 and 103 with “Ribosome” cluster 3 (Fig 2C). KEGG pathway over-

expression analysis resulted in enriched KEGG “OXPHOS” in cluster

2: differentially expressed genes, and in enriched KEGG “Ribosome”

in cluster 3: differentially expressed gene sets.

To evaluate GO biological processes of the genes most strongly

negatively correlated with STAT3 in clusters 2 and 3, we selected

the respective 50 genes most strongly negatively correlated with

STAT3 (q ≤ –0.6), while at the same time being highly associated

with the respective gene cluster (q ≥ 0.8). We analyzed those genes

for enriched GO biological process terms. The top 50 cluster 2 genes

were associated with GO biological process “OXPHOS” (45.71%),

“mitochondrial ATP synthesis coupled protein transport” (42.86%),

and “mitochondrial translational elongation” (11.43%) (Fig 2D). In

cluster 3, GO biological process terms were associated with “SRP-

dependent co-translational protein targeting to membrane” (50%),

“ribosomal small subunit biogenesis” (38.89%), “negative regula-

tion of ubiquitin protein ligase activity” (5.56%), and “cytoplasmic

translation” (5.56%) (Fig 2E).

As a conclusion, WGCNA suggests a negative correlation of

STAT3 expression to genes associated with both increased OXPHOS

and ribosomal activity. Comparison of low to high STAT3 samples

supports these results. To further validate this association, we corre-

lated STAT3 expression with KEGG “OXPHOS” and KEGG “Ribo-

some” signatures derived by ssGSEA (Barbie et al, 2009) in three

additional public PCa data sets. We used The Netherlands Cancer

Institute (NCI, n = 91, BioProject: PRJNA494345; GEO: GSE120741)

(Stelloo et al, 2018), the Vancouver Prostate Center (VPC, n = 43,

BioProject: PRJEB21092) (Lapuk et al, 2012; Wyatt et al, 2014;

Akamatsu et al, 2015; Beltran et al, 2016; Mo et al, 2018), and the

Russian Academy of Science (RAS, n = 33, BioProject:

PRJNA477449) data sets. All three data sets showed a significant

negative Pearson correlation of STAT3 log cpm with KEGG

“OXPHOS” (Fig EV3B): NCI: q = �0.77, adj. P-value = 4.53e-19;

VPC: q = �0.53, adj. P-value = 3.55e-04; RAS: q = �0.57, adj.

P-value = 1.19e-03. Similarly, STAT3 expression was negatively

correlated with the KEGG “Ribosome” signature (Fig EV3C): NCI:

q = �0.82, adj. P-value = 8.33e-23; VPC: q = �0.65, adj. P-value =

1.04e-05; RAS: q = �0.78, adj. P-value = 2.46e-07.

We also correlated the STAT3 target signatures “AZARE STAT3

TARGETS” and “STAT3 TARGETS UP” to KEGG “OXPHOS” and

KEGG “Ribosome” in these data sets (Appendix Fig S2A–D). In VPC

and NCI, “AZARE STAT3 TARGETS” were significantly negatively

correlated to KEGG “OXPHOS” (VPC: q = �0.36, adj. P-value =

0.017, NCI: q = �0.39, adj. P-value = 1.5e-04) and KEGG “Ribo-

some” (VPC: q = �0.37, adj. P-value = 0.017, NCI: q = �0.39, adj.

P-value = 1.5e-04). RAS was negatively correlated, but not signifi-

cant (“OXPHOS”: q = �0.28, adj. P-value = 0.11, “Ribosome”:

q = �0.36, adj. P-value = 0.08). Correlations for “STAT3 TARGETS

UP” were significantly negatively correlated in NCI (OXPHOS:

q = �0.32, adj. P-value = 0.002, Ribosome: q = �0.34, adj. P-value

= 0.002) and negatively correlated in VPC (OXPHOS: q = �0.31,

adj. P-value = 0.045, Ribosome: q = �0.32, adj. P-value = 0.045),

whereas RAS was again not significant.

Proteomics analysis of human FFPE samples shows high TCA/
OXPHOS in low STAT3 PCa

In a next step, we compared low STAT3 with high STAT3 groups on

the protein level (Fig 1A). We conducted a shotgun proteomics

experiment with FFPE patient material, comparing low STAT3 with

high STAT3 PCa (n = 6 in each group, GSC 7–8) and a healthy pros-

tate control group (n = 7). Control samples consisted of healthy

prostates, derived after prostatectomy of bladder cancer patients.

Low and high STAT3 groups were chosen from a patient cohort

tissue microarray (TMA) after immunohistochemistry (IHC) staining

of STAT3. We confirmed STAT3 levels by additional IHC STAT3

staining of the selected samples (Fig 3A). The high STAT3 group
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showed high STAT3 levels with ≥ 80% positive nuclei in the tumors

and staining intensities between 2 and 3 (in a range from 0 to 3).

The low STAT3 group had 0–20% positive nuclei in the tumors with

staining intensities between 0 and 2. Tumor and control material

was procured by laser microdissection (LMD) of prostate epithelial

cells only, thereby excluding stroma and immune cells. In the tumor

samples, only transformed PCa glands were dissected, whereas pre-

transformed non-tumorous glands were excluded, as indicated by

arrows in Fig 3A. A label-free quantification (LFQ) approach was

used to obtain protein intensities. We identified 1,949 proteins

A

B

C

ED

Figure 2.
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across all 19 samples, but PCA did not show clear separation of

groups (Appendix Fig S3A) and no proteins were differentially

expressed (log-FC ≥ 1, adj. P-value < 0.05, Table EV3). Also, STAT3

could not be detected in the majority of samples. After comparison

of low STAT3 with high STAT3 groups, 30 proteins had a log-

FC > 2. Gene set testing between low STAT3 and high STAT3

showed metabolic KEGG pathways to be up-regulated (Fig 3B,

Table EV3). Consistent with the results of our TCGA analysis,

several metabolic pathways, among them the hallmark gene set

“OXPHOS” and the KEGG pathway “TCA cycle” (Fig 3B and C,

Table EV3), were up-regulated. The hallmark “Epithelial mesenchy-

mal transition” and the KEGG pathways “ECM-receptor interac-

tion”, “Focal adhesion”, and “Protein digestion and absorption”

were down-regulated.

Similar to the transcriptomic data, low STAT3 samples show

enrichment of OXPHOS gene sets. In addition, the TCA cycle is up-

regulated, as well-branched chain amino acid degradation and fatty

acid degradation, which provide intermediates for the TCA cycle

(Owen et al, 2002; Li et al, 2017b) (Fig 3D). At the same time, the

TCA cycle delivers intermediates for lipid, amino acid, and nucleo-

tide synthesis, which are necessary to support tumor growth (Owen

et al, 2002; Jang et al, 2013).

Proteomics and metabolomics show increased ribosomal and
metabolic activity in PtenStat3pc�/� tumors

We wanted to know whether proteomics from a PCa mouse model

would reflect the results we obtained from human data. We used a

previously established genetic PCa mouse model (Alonzi et al,

2001; Suzuki et al, 2001; Wu et al, 2001; Pencik et al, 2015) with

conditional loss of either Pten (referred to as Ptenpc�/�) or concomi-

tant loss of Pten and Stat3 (PtenStat3pc�/�) in the prostate epithe-

lium. Whereas Ptenpc�/� mice show slow, localized tumor

progression, the additional deletion of Stat3 leads to rapid tumor

growth, dissemination, and early death (Pencik et al, 2015).

We selected triplicates from each genotype (wild type [WT],

Ptenpc�/�, and PtenStat3pc�/�) and performed LMD and LFQ shotgun

proteomics on FFPE tumors and controls. We were able to detect

2,994 proteins on average (2,052–3,465), with 1,510 being differen-

tially expressed between all three groups (log-FC ≥ 1, adj. P-

value < 0.05). PCA showed a clear separation between groups

(Appendix Fig S3B), and Stat3 was the strongest differentially

expressed protein in PtenStat3pc�/� compared to Ptenpc�/� tumors

(log-FC = �5.34, adj. P-value = 5e-04; Fig 4A and B, Table EV4).

Comparing PtenStat3pc�/� to Ptenpc�/� mice, the KEGG pathways

“Ribosome” and “Protein processing in ER” were most strongly

enriched (Fig 4C). Other up-regulated pathways included “PI3K-Akt

signaling”, whereas several pathways related to immune response

were down-regulated (Fig 4C). Gene set testing on GO biological

process terms, comparing PtenStat3pc�/� to Ptenpc�/� tumors,

showed up-regulation of “Ribosome biogenesis”, “Translational initi-

ation”, “rRNA metabolic process”, “Protein localization to ER”, and

“Establishment of protein localization to ER”, among others

(Table EV4). This enrichment of ribosomal gene sets on the protein

level was consistent with our human TCGA samples and corre-

sponded to gene cluster 3.

As we observed metabolic changes in human samples, we

further investigated these in our PCa mouse model. Therefore, we

did additional gene set testing with metabolic KEGG pathways

(Table EV4). We observed up-regulation of the TCA cycle and

OXPHOS in PtenStat3pc�/� compared to WT mice, where both were

among the top three deregulated metabolic pathways (Fig 4D).

Accordingly, isocitrate dehydrogenase subunits (Idh), which are

enzymes involved in the TCA cycle, such as Idh3a (log-FC = 1.24,

Figure 2. “OXPHOS” and “Ribosome” clusters are negatively correlated with STAT3.

A Biological themes comparison of enriched Gene Ontology (GO) Biological Process (BP) terms for all gene clusters (labeled with numbers and colors). Clusters not
shown did not contain significantly enriched gene sets. Dot color represents significance levels ranging from P < 0.01 (= red) to P = 0.05 (= blue). Dot size
represents the gene ratio (= number of genes in the cluster significant in the GO term/number of all genes in the cluster).

B Heatmap of correlations of gene cluster eigengenes with traits of interest. Pearson correlation is indicated by values and colors (1 = red, �1 = blue). Adj. P-values
(q-values) indicate significance. BCR, biochemical recurrence; GSC, Gleason score; pT, pathological tumor staging; pN, pathological lymph node staging;
STAT3 = STAT3 gene expression in counts per million (cpm). Low risk = pT2abc, pN0; High risk = pT3-T4, pN1.

C Euler diagram of overlap between low STAT3 versus high STAT3 differentially expressed (DE) genes, cluster 2 genes, and cluster 3 genes. Overexpressed KEGG
pathways are shown.

D, E Network representation of enriched Gene Ontology (GO) Biological Process (BP) terms of top 50 genes most strongly negatively correlated with STAT3 (GS ≤ �0.6,
adj. P-value ≤ 0.01) in cluster 2 (D, blue) and cluster 3 (E, pink; MM ≥ 0.8, adj. P-value ≤ 0.01). Node size indicates the percentage of associated genes. Similar
colors indicate terms of the same GO group. GS, gene significance; MM, module membership.

Table 1. Summary of TCGA PRAD clinical data used for WGCNA.

TCGA PRAD clinical data n = 397

Biochemical recurrence (BCR)

No BCR = 0 345

BCR = 1 52

pT risk groups

pT low/intermediate risk (= T2a–c) 147

pT high/very high risk (= T3–T4) 245

NA 5

pN risk groups

pN low/intermediate risk (= N0) 285

pN high/very high risk (= N1) 61

NA 51

Gleason score (GSC)

6 35

7 197

8 55

9 107

NA 3

Distribution of clinical variables among patients.
pN, pathological lymph node staging; PT, pathological tumor staging.
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Figure 3. Proteomics show TCA/OXPHOS up-regulation in low STAT3 human FFPE PCa.

A STAT3 immunohistochemistry staining of low STAT3 and high STAT3 PCa samples. Red arrows indicate transformed PCa glands; black arrows indicate pre-transformed
normal prostate glands. Scale bar = 100 lm. #, sample-IDs.

B Significantly enriched KEGG pathways in low STAT3 versus high STAT3 groups. Dotted line: adj. P-value = -log10(0.05).
C Significantly enriched hallmark gene sets in low STAT3 versus high STAT3 groups. Dotted line: adj. P-value = -log10(0.05). Red = up-regulated; blue = down-

regulated.
D Simplified scheme of the TCA cycle and associated metabolic pathways. TCA cycle, tricarboxylic acid cycle; PDC, pyruvate dehydrogenase complex; PDK, pyruvate

dehydrogenase kinase. Graphic adapted from Gray et al, 2014 and Jang et al, 2013.
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adj. P-value = 0.005), Idh2 (log-FC = 1.1, adj. P-value = 0.01), and

Idh1 (log-FC = 1, adj. P-value = 0.04), were differentially expressed

in PtenStat3pc�/� compared to WT mice (Table EV4). In contrast, in

Ptenpc�/� compared to WT, only OXPHOS was significantly up-regu-

lated (rank 12/20), but the TCA cycle was not. In the direct compar-

ison of PtenStat3pc�/� with Ptenpc�/�, OXPHOS and the TCA cycle

were not significantly differentially expressed. We hypothesize that

the metabolic differences between the two mouse models are too

subtle to show significant differences upon direct comparison.

However, the additional effect of Stat3-deficiency becomes visible if

we compare PtenStat3pc�/� versus WT with Ptenpc�/� versus WT

enriched gene sets.

We sought to additionally investigate Stat3-dependent changes of

metabolites involved in the TCA cycle. We performed a targeted

metabolomics experiment on WT, Ptenpc�/�, and PtenStat3pc�/�

mice (with biological replicates n = 5 for WT/Ptenpc�/� and n = 3

for PtenStat3pc�/�). We measured absolute amounts (nmol/lg) of

pyruvate, citrate, a-ketoglutarate, succinate, fumarate, and malate in

mouse prostate tumors and WT prostates. PtenStat3pc�/� prostate

tumors showed significantly higher amounts of pyruvate (ANOVA

with Tukey HSD, adj. P-value = 0.01), fumarate (adj. P-

value = 0.027), and malate (adj. P-value = 0.029) compared to WT

tumors (Fig 4E, Table 2). Citrate levels were not statistically dif-

ferent between groups (Table 2). Whereas there was a trend of up-

regulation of TCA cycle metabolites between WT and Ptenpc�/�, only
succinate showed a significant difference (adj. P-value = 0.023).

Generally, measured metabolite concentrations showed a trend to be

higher in PtenStat3pc�/� compared to Ptenpc�/� mice, but due to the

high variability in metabolite levels of Ptenpc�/� mice, significance

was not reached in these samples. Higher levels of TCA metabolites

suggest higher activity of the TCA cycle. Of interest were also the

high pyruvate levels in PtenStat3pc�/� tissue. Since we measured

metabolites in the whole tissue and not specifically in mitochondria,

measured pyruvate could be both mitochondrial and cytosolic. Mito-

chondrial pyruvate is either converted to acetyl-CoA, which enters

the TCA cycle, or converted to oxaloacetate (Fig 3D) (Gray et al,

2014). Oxaloacetate links carbohydrate, lipid, amino acid, and

nucleotide metabolism and provides intermediates to replenish the

TCA cycle (Gray et al, 2014). Via the TCA cycle, pyruvate also

provides carbon for the synthesis of biomolecules, such as the amino

acids arginine and proline (Gray et al, 2014). Notably, proteomic

data show up-regulation of the KEGG pathway “Arginine and proline

metabolism” in PtenStat3pc�/� versus Ptenpc�/� as well as Pten-

Stat3pc�/� versus WT comparisons (Fig 4C and D) and also in low

STAT3 versus high STAT3 human proteomic data (Fig 3B). Gener-

ally, high pyruvate levels suggest metabolic active tumors in this

setting. Our data show that TCA/OXPHOS gene sets and TCA

metabolites are significantly up-regulated in PtenStat3pc�/� mice

compared to the WT. The high TCA/OXPHOS activity in Pten-

Stat3pc�/� mice is accompanied by high ribosome activity and ribo-

some biogenesis, which suggests enhanced protein synthesis, cell

growth, and proliferation (Donati et al, 2012).

IDH2 and SDHB protein levels are associated with higher
Gleason grades

In a next step, we used the results from human transcriptomic and

proteomic data to select candidate pathways and genes for further

analysis as possible biomarkers. We focused on TCA/OXPHOS,

since we observed OXPHOS up-regulation in human data both on

transcriptomic and proteomic levels. The TCA cycle was addition-

ally enriched in the proteomics samples. TCA/OXPHOS genes are

promising because of their peculiar regulation in PCa. In contrast to

most cancers, PCa does not show the Warburg effect (Cutruzzolà

et al, 2017). Instead, PCa tumorigenesis is accompanied by an acti-

vation of the TCA cycle and OXPHOS, rendering the cell more

energy efficient (Costello et al, 1997; Costello & Franklin, 2006;

Cutruzzolà et al, 2017). Therefore, we evaluated protein levels of

TCA/OXPHOS enzymes succinate dehydrogenase (SDH) complex

iron–sulfur subunit B (SDHB) and isocitrate dehydrogenase (NADP

(+)) 2 (IDH2) in different Gleason grades. We also examined the

impact of TCA/OXPHOS genes and gene signatures on BCR on gene

expression level.

We performed IHC stainings of a TMA consisting of primary PCa

and adjacent tumor-free tissue from 83 patients. We stained for

SDHB, IDH2, and STAT3. SDHB forms together with SDHA, SDHC,

and SDHD the SDH complex (or respiratory complex II, CII), which

is located in the inner mitochondrial membrane. SDH/CII partici-

pates in both the TCA cycle by oxidizing succinate to fumarate and

OXPHOS by shuttling electrons (Anderson et al, 2018). IDH2 is the

TCA cycle enzyme that converts isocitrate to a-ketoglutarate (Ander-
son et al, 2018).

Both SDHB and IDH2 showed higher expression levels in tumors

than in normal tissue (Kruskal–Wallis test and Dunn’s all-pairs test:

SDHB: adj. P-value = 1.4e-05, IDH2; adj. P-value. = 5.3e-07). More-

over, Gleason grade (GL) 5 areas showed a stronger expression of

both SDHB (adj. P-value = 4.4e-04 to GL3 and 1.4e-04 to GL4) and

IDH2 (adj. P-value = 2.4e-05 to GL3 and 4.6e-03 to GL4), when

compared to GL3 or GL4 areas (Fig 5A–D). STAT3 expression levels,

in contrast, were overall lower in the tumors than in normal tissue

(Kruskal–Wallis test and Dunn’s all-pairs test: Nuclear STAT3: adj.

P-value = 3e-04, cytoplasmic STAT3: adj. P-value = 0.049), but

were higher in GL5 than in GL3 and GL4 (nuclear: adj. P-

value = 2.6e-05 to GL3 and 0.001 to GL4; cytoplasmic: adj. P-

value = 1e-04 to GL3 and 0.003 to GL4; Fig 5E). We also wanted to

know whether SDHB, IDH2, and STAT3 expression levels were

correlated with each other. Whereas overall SDHB and IDH2 were

moderately correlated in the tumor (Spearman, q = 0.37, adj. P-

value = 0.017), they were not correlated in the respective Gleason

grades. Neither SDHB nor IDH2 was correlated with nuclear or cyto-

plasmic STAT3 (Appendix Fig S3C).

In order to assess the influence of STAT3, SDHB, and IDH2 on

time to BCR, we performed survival analyses with a public gene

expression data set (MSKCC PCa, GSE21032) (Taylor et al, 2010),

consisting of 181 primary and 37 metastatic clinically annotated PCa

samples. We carried out univariate Cox proportional hazards (PH)

regressions for each gene (Table EV5).

Low STAT3 had a significant influence on earlier BCR (beta:

�1.354, hazard ratio [HR]: 0.258, adj. P-value: 4.24e-05), but SDHB

(beta: �0.390, HR: 0.677, adj. P-value: 0.653) and IDH2 (beta:

�0.207, HR: 0.813, adj. P-value: 0.804) did not (Table EV5,

Fig EV4E and F). After a median split of samples though, low versus

high STAT3 was not significant anymore after log-rank testing and

P-value adjustment in the Kaplan–Meier plot (Fig EV4A).

Since we did not observe changes in time to BCR for IDH2 and

SDHB, we reasoned that possible effects on BCR might be dependent
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Figure 4. Proteomics and metabolomics show enhanced ribosome and TCA/OXPHOS activity in PtenStat3pc�/� mice.

A Differentially expressed proteins in PtenStat3pc�/� versus Ptenpc�/� proteomic samples. Colors indicate adj. P-value and log2-FC. (Black = Log2-FC ≤ 1 & adj. P-
value ≥ 0.05; orange = Log2-FC > 1 & adj. P-value ≥ 0.05; red = Log2-FC > 1 & adj. P-value < 0.05). FC, fold change.

B Stat3 immunohistochemistry staining of wild-type, Ptenpc�/�, PtenStat3pc�/� mouse prostates. Scale bar = 100 lm.
C Significantly enriched KEGG pathways in PtenStat3pc�/� versus Ptenpc�/� groups. Dotted line: adj. P-value = �log10(0.05).
D Significantly enriched metabolic KEGG pathways in PtenStat3pc�/� versus wild-type (WT) groups. Dotted line: adj. P-value = �log10(0.05). Red = up-regulated;

blue = down-regulated.
E Metabolite concentrations in nmol/lg of 5 metabolites in WT, Ptenpc�/�, and PtenStat3pc�/� prostates. Box-plot shows median, 1st and 3rd quartiles, and whiskers

extend to � 1.5 interquartile range. Jitter represents biological replicates. ANOVA tests and Tukey multiple comparisons were applied. Red = PtenStat3pc�/� (n = 3);
blue = Ptenpc�/� (n = 5); gray = wild type (WT, n = 5); q, adj. P.-value; n.s., not significant.

Source data are available online for this figure.
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on a whole set of genes. We therefore analyzed TCA and OXPHOS

gene set activity signatures derived by ssGSEA in the same way. We

also included the KEGG “Ribosome” gene signature, since it was up-

regulated in both the human TCGA data and also in PtenStat3pc�/�

compared to Ptenpc�/� mice. Yet, neither had significant influence

on BCR (Table EV5).

Although IDH2 and SDHB protein levels are higher in tumors

than in normal tissue and have higher expression levels in GL5 than

in GL3 and GL4, thereby suggesting an association with tumor

aggressiveness, its gene expression has no significant effect on BCR.

Although increase in TCA cycle and OXPHOS activity plays a crucial

role in PCa tumorigenesis, it does not seem to be a reliable indicator

of earlier BCR.

Low PDK4 expression is significantly associated with earlier BCR
in PCa

Considering that TCA cycle activation and enhanced OXPHOS are

described as important events in PCa tumorigenesis (Costello &

Franklin, 2006; Cutruzzolà et al, 2017), but are not associated with

BCR in our data sets, we were looking for genes that antagonize

TCA/OXPHOS activity.

In the TCGA data, pyruvate dehydrogenase kinase 4 (PDK4) was

significantly down-regulated in low STAT3 samples (log-

FC = �1.126, adj. P-value = 1.47E-07, Fig 6B). PDK, which consist

of PDK1–4, phosphorylate the pyruvate dehydrogenase complex

(PDC) and thereby reduce its activity. As a result, metabolic flux

through the TCA cycle and concurrent OXPHOS is reduced (Gray

et al, 2014; Zhang et al, 2014; Jeoung, 2015) (Fig 6A).

We analyzed the association of PDK4 expression with BCR in the

MSKCC data set. PDK4 was a significant predictor of BCR both in

primary tumors (univariate Cox PH model: beta: �0.758, HR: 0.469,

P-value: 0.001, Fig 6C) and in primary and metastatic tumors

combined (beta: �0.981, HR: 0.375, adj P-value: 2.25e-05, Fig 6D,

Table EV5). When compared to diagnostic risk factors (Table EV5),

it predicted BCR in low-/intermediate-risk primary tumors (= clini-

cal staging T1c–T2c) independent of ISUP grades (multivariate Cox

PH model). In addition, PDK4 was a significant predictor indepen-

dent of ISUP grading and clinical tumor staging as well as pathologi-

cal tumor staging and pre-surgical PSA levels in primary and

metastatic tumors combined.

Considering the possibility of a data set-specific effect of PDK4

expression, we additionally tested four other data sets with the

SurvExpress tool (Aguirre-Gamboa et al, 2013). They all showed a

similar trend: Low PDK4 patients have a higher chance for earlier

BCR or death. The Sboner Rubin Prostate data set (Sboner et al,

2010) consists of survival data of 281 patients with primary PCa

from a watchful waiting cohort with up to 30 years of clinical

follow-up. In this cohort, patients in the low PDK4/high-risk group

had a higher chance of earlier death (Risk Groups HR = 1.4 [confi-

dence interval (CI) 1–1.98], P-value = 0.05, Appendix Fig S4A). Dif-

ference in survival for PDK4 groups was significant for Gleason 6

(Risk Groups HR = 2.92 [CI 1.16–7.36], P-value = 0.023,

Appendix Fig S4B) and 8 (Risk Groups HR = 3.06 [CI 1.06–8.85], P-

value = 0.039, Appendix Fig S4D) and had a P-value = 0.057 in

Gleason 7 (Risk Groups HR = 1.85, [CI 0.98–3.51], Appendix Fig

S4C). It has to be considered that due to the advanced age of PCa

patients (85% of all cases are diagnosed in patients > 65 years) and

the duration of the follow-up period of up to 30 years, patients in

this study might possibly have suffered from multiple co-morbid-

ities, which also affect survival time. We also analyzed the TCGA-

PRAD data set (The Cancer Genome Atlas Research Network, 2015)

which includes data on survival time, but no reliable information on

time to BCR. Since the overall number of patient deaths is only 10

in this data set, statistical significance was not reached (HR = 3.14,

[CI 0.65–15.11], P-value = 0.15). Nevertheless, eight out of 10

patients who died were in the low PDK4/high-risk group after a

median split of sample groups (Appendix Fig S5A). We tested two

additional data sets—Gulzar et al (2013) and Lapointe et al

(2004)—that are considerably smaller (n = 89 with 24 events in

Gulzar and n = 29 with seven events in Lapointe). In those, PDK4

did not reach significance, presumably because of the smaller

sample sizes. However, there is a trend of low PDK4 showing risk of

earlier BCR (Appendix Fig S5B and C).

From the PDK genes, only PDK4 was significantly differen-

tially expressed in low versus high STAT3 samples. Other tested

candidates that were linked to TCA/OXPHOS or regulated riboso-

mal activity, such as hypoxia-inducible factor-1a (HIF-1a), MYC

Proto-Oncogene (c-MYC), and CCR4-NOT transcription complex

subunit 1 (CNOT1), were not or only weakly predictive of

increased risk to earlier disease recurrence (Table EV5,

Fig EV4B–D).

Table 2. Targeted metabolomics group comparisons.

Metabolite

ANOVA WT-Ptenpc�/� Ptenpc�/�-Ptenpc�/� WT-PtenStat3pc�/�

P-value F value df P- adj. P- adj. P- adj.

alpha-Ketoglutarate 0.0606 3.761 2 0.2325 0.5149 0.0572

Citrate 0.4210 0.944 2 0.9737 0.4177 0.5202

Fumarate 0.0333* 4.872 2 0.3683 0.1913 0.0268*

Malate 0.0347* 4.791 2 0.2538 0.2901 0.0292*

Pyruvate 0.0097* 7.646 2 0.0555 0.3728 0.0100*

Succinate 0.0174* 6.24 2 0.0233* 0.9987 0.0512

ANOVAs with Tukey multiple comparisons of means between wild-type (WT), Ptenpc�/�, and PtenStat3pc�/� mice for each metabolite.
df, degree of freedom; asterisk indicates significant P-values (< 0.05). Group comparisons with Tukey multiple comparisons of means. 95% family-wise confidence
level.
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STAT3 as putative transcriptional regulator of PDK4

To analyze the influence of both STAT3 and PDK4 on BCR, we strati-

fied patients into low STAT3/low PDK4, high STAT3/high PDK4, and

mixed groups (low STAT3/high PDK4 and high STAT3/low PDK4)

by a median split of both STAT3 and PDK4 (Fig 7A). Low STAT3/

low PDK4 showed earlier time to BCR in a log-rank test (p = 6.5e-04)

and in a Cox PH model with high STAT3/high PDK4 as reference

(beta: 1.53, HR: 4.62, P-value: 3.89e-04). Mixed groups did not show

a significant difference to the reference group (Table EV5).

PDK4 could not be detected in our proteomic analyses. To

observe PDK4 protein levels in dependence of STAT3, we used the

A

B

E

D

C

Figure 5.
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human PCa cell line 22Rv1. Western blotting showed reduced PDK4

levels in short hairpin (sh) knockdowns of STAT3 with two different

constructs (shSTAT3#456 and shSTAT3#843) compared to a scram-

bled control (Ctrl; Fig 7B), suggesting regulation of PDK4 by STAT3.

To investigate whether PDK4 could be a direct transcriptional

target of STAT3, we used chromatin immunoprecipitation DNA-

sequencing (ChIP-Seq) data created by the ENCODE Consortium

(ENCODE Project Consortium, 2012; Davis et al, 2018). STAT3

ChIP-Seq on human HeLa-S3 cells (ENCSR000EDC, GEO:

GSM935276), on human MCF10A-Er-Src cells (ENCSR000DOZ,

GEO:GSM935457), and on mammary glands of wild-type mice

(GSE84115) (Willi et al, 2016) showed binding of STAT3 to the

promoter region of PDK4 (Appendix Fig S6A and B) in the Genome

Browser (http://genome.ucsc.edu) (Kent et al, 2002). In addition,

we conducted ChIP assays on 22Rv1 Ctrl and shSTAT3 cells with or

without previous human interleukin 6 (IL-6) stimulation. 22Rv1 Ctrl

cells stimulated with IL-6 showed binding of STAT3 to the promoter

region of PDK4, detected by quantitative polymerase chain reaction

(qPCR) using PDK4 promoter-specific primer pairs (Fig 7C,

Table EV6, Appendix Supplementary Methods). PY-STAT3 levels

after 30-min. IL-6 stimulation were detected by Western blot (WB)

in Ctrl, shSTAT3#456, and shSTAT3#843 cells (Appendix Fig S6C

and D). Both pY-STAT3 levels and binding of STAT3 to the

promoter region of PDK4 were highest in IL-6-stimulated Ctrl cells

and reduced in the shSTAT3#456 and shSTAT3#843 cells compared

to Ctrl (Appendix Fig S6C and D, Fig 7C). Known STAT3 targets

Leucine Zipper ATF-Like Transcription Factor (BATF) and JunB

Proto-Oncogene, AP-1 Transcription Factor Subunit (JUNB) (Tri-

pathi et al, 2017) were used as a positive control (Appendix Fig S6E

and F, Table EV6). Immunoglobulin G (IgG) was used as a negative

control.

Furthermore, we assessed the correlation of PDK4 gene expres-

sion with STAT3 expression in additional data sets (Figs 7A and

EV5A): PDK4 was correlated with STAT3 in the MSKCC data set

(q = 0.5, adj. P-value = 7.2e-11) and in the VPC data set (q = 0.39,

adj. P-value = 8.99e-03). The NCI (q = 0.06, adj. P-value = 0.57)

and RAS (q = 0.1, adj. P-value = 0.56) data sets showed no correla-

tion between STAT3 and PDK4. However, PDK4 was positively

correlated to a STAT3 target gene signature (“AZARE STAT3

TARGETS”) (Azare et al, 2007) in both data sets (NCI: q = 0.34,

adj. P-value = 0.002, RAS: q = 0.4, adj. P-value = 0.04) as well as in

the VPC data set (q = 0.64, adj. P-value = 8.6e-06) (Fig EV5B).

PDK4 was also positively correlated to “AZARE STAT3 TARGETS”

(q = 0.52, adj. P-value = 4.5e-34) and “STAT3 TARGETS UP” signa-

tures (q = 0.43, adj. P-value = 2.9e-23) in TCGA PRAD (Fig EV5C).

Besides STAT3, also HIF-1a and c-MYC are possible regulators of

PDK4 as well as TCA/OXPHOS. HIF-1a induction suppresses TCA/

OXPHOS, is linked to STAT3 signaling (Niu et al, 2008; Demaria

et al, 2010; Camporeale et al, 2014; Pawlus et al, 2014; Poli &

Camporeale, 2015), and can also indirectly regulate PDK4 expres-

sion (Lee et al, 2012). Conversely, c-MYC represses PDK4 and

increases mitochondrial transcription (Morrish et al, 2008). In addi-

tion, STAT3 can suppress c-Myc signaling (Ecker et al, 2009).

Therefore, we assessed HIF-1a and c-MYC gene expression in the

low STAT3 versus high STAT3 TCGA data. Here, HIF-1a was signifi-

cantly down-regulated (log-FC = �1.012, adj. P-value = 1.47e-29,

Fig EV1B), whereas c-MYC was not differentially expressed (log-

FC = 0.105, adj. P-value = 0.468, Fig EV1A). In the WGCNA, HIF-1a
showed a high correlation to STAT3 (GS = 0.633, adj. P-

value = 1.91e-42), whereas c-MYC was not correlated to STAT3

(GS = 0.09, adj. P-value = 0.09).

Using the MSKCC data set, we correlated STAT3, MYC, and HIF-

1a expression with PDK1–4, the genes composing the PDC (PDHA1,

PDHB, PDHX, DLAT, DLD) and 7 TCA/OXPHOS genes (CS, IDH2,

IDH3A, SDHB, SDHC, ATP5A1, NDUFS1) (Fig 7D). Here, STAT3

was positively correlated to HIF-1a (Pearson correlation, q = 0.273,

adj. P-value = 2.61e-04) and again not correlated to c-MYC

(q = �0.134, adj. P-value = 0.071). After hierarchical clustering of

correlated genes, STAT3 and PDK4 clustered together, whereas HIF-

1a clustered with PDK3 and PDK1. The TCA/OXPHOS genes formed

a large cluster of positively correlated genes, but c-MYC did not clus-

ter with any of these genes. c-MYC was weakly negatively correlated

to PDK4 (q = �0.196, adj. P-value = 0.009).

Our data suggest that STAT3 and HIF-1a influence TCA/OXPHOS

gene expression in this setting, but not c-MYC. As a conclusion,

STAT3 does play a role in the transcription of PDK4 in this setting,

but other factors, such as HIF-1a, should also be considered. This

needs to be further evaluated in future studies.

Discussion

In this study, we used gene co-expression network analysis in addi-

tion to proteomics from LMD human and murine FFPE samples to

identify PDK4 as a highly relevant independent candidate prognostic

marker in PCa. We here demonstrate for the first time that PCa

patients with low PDK4 expression have a higher risk of earlier

disease recurrence, independent of ISUP grading and tumor staging.

Moreover, in low-/intermediate-risk T1c–T2c tumors, PDK4 proves

to be a significant predictor of earlier BCR, independent of ISUP

Figure 5. SDHB and IDH2 protein levels are associated with Gleason grade.

A SDHB protein expression levels in a TMA (n = 83) detected by immunohistochemistry (IHC). Box-plot shows median, 1st and 3rd quartiles, and whiskers extend
to � 1.5 interquartile range. Jitter represents single values in groups. Kruskal–Wallis test and Dunn’s all-pairs test were applied. Q, adj. P-value; n.s., not significant.
TMA, tissue microarray.

B Representative IHC staining of SDHB in normal prostate glands and Gleason grade (GL) 3–5 PCa glands. Scale bar = 100 lm.
C IDH2 protein expression levels in a TMA (n = 83) detected by IHC. Box-plot shows median, 1st and 3rd quartiles, and whiskers extend to � 1.5 interquartile range.

Jitter represents single values in groups. Kruskal–Wallis test and Dunn’s all-pairs test were applied. Q, adj. P-value; n.s., not significant.
D Representative IHC staining of IDH2 in normal prostate glands and GL 3–5 PCa glands. Scale bar = 100 lm.
E Nuclear (N) and cytoplasmic (C) STAT3 protein expression levels in a TMA (n = 83) detected by IHC. Box-plot shows median, 1st and 3rd quartiles, and whiskers extend

to � 1.5 interquartile range. Jitter represents single values in groups. Kruskal–Wallis test and Dunn’s all-pairs test were applied. Q = adj. P-value; n.s., not significant.

Source data are available online for this figure.
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grading. Therefore, PDK4 is a strong candidate marker for risk strati-

fication of the large group of T1c–T2c tumors, which are prone to

over- or under-treatment. By comparing low STAT3 to high STAT3

tumors, we show an association of low STAT3 with high TCA/

OXPHOS both on transcriptomic and proteomic levels. Also, STAT3

expression is correlated with PDK4 and knockdown of STAT3 in

22Rv1 cells results in reduced PDK4 levels. ChIP-Seq data and ChIP

assays show binding of STAT3 at the promoter region of PDK4.

These data are of interest considering the peculiar energy

metabolism of the prostate cell: The generation of mitochondrial

adenosine triphosphate (ATP) through aerobic respiration via

TCA/OXPHOS is the primary source of energy in most healthy

cells (Hanahan & Weinberg, 2011; Stacpoole, 2017). Prostate

epithelial cells, however, are characterized by a physiological

inhibition of the TCA cycle and low levels of OXPHOS caused by

citrate secretion and zinc accumulation in the cell (Costello et al,

1997; Costello & Franklin, 2006; Cutruzzolà et al, 2017). This is

due to the highly specialized role of prostate epithelial cells

which excrete citrate-rich prostatic fluid (Costello et al, 1997).

The healthy prostate cell therefore relies mostly on inefficient

B

C D

A

Figure 6. Low PDK4 is significantly associated with earlier disease recurrence in PCa.

A Simplified scheme of upstream regulation of the TCA cycle. Arrows indicate activation, and bar indicates repression. PDC, pyruvate dehydrogenase complex; PDK,
pyruvate dehydrogenase kinase; TCA, tricarboxylic acid cycle.

B Genes of the hallmark gene set “Oxidative phosphorylation” that are differentially expressed in low STAT3 versus high STAT3 TCGA-PRAD tumors. Dotted lines show
Log2-FC = � 1 (x-axis) and adj. P-value = �log10(0.05; y-axis). Orange, up-regulated genes; green, down-regulated genes. DE, differentially expressed.

C, D Kaplan–Meier plots showing time to biochemical recurrence in months for PDK4 in primary tumors (C) and in primary and metastatic tumors combined (D) in the
MSKCC PCa GSE21032 data set. Groups were generated by a median split. P-values were estimated by log-rank test (C, D) and adjusted with Benjamini–Hochberg
method (D). + = censored.
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energy generation by aerobic glycolysis (Dakubo et al, 2006;

Cutruzzolà et al, 2017). In most cancers, malignant transforma-

tion is accompanied by a shift from aerobic respiration via TCA/

OXPHOS to aerobic glycolysis, an event also known as the

Warburg effect (Hanahan & Weinberg, 2011; Stacpoole, 2017).

PCa cells, however, do not show the Warburg effect, but are

characterized by increased energy efficiency due to activation of

the TCA cycle and OXPHOS, which leads to the generation of

additional 24 ATP (Costello & Franklin, 2006). Citrate is no

longer secreted, but used as intermediary in the TCA cycle (Cost-

ello & Franklin, 2006). Cytosolic pyruvate can be reversibly

reduced to lactate or reversibly transaminated to alanine (Gray

A

B C

D

Figure 7.
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et al, 2014). In PCa, it was shown that lactate generated as waste

product by cancer-associated fibroblasts (CAFs) is used by PCa

cells to fuel TCA/OXPHOS by conversion to pyruvate (Fiaschi

et al, 2012). Pyruvate also provides carbon for the synthetic path-

ways of lipids and amino acids, which are interconnected with

the TCA cycle (Gray et al, 2014). Summing up, PCa cells are

metabolically characterized by high TCA/OXPHOS activity

(Dakubo et al, 2006; Latonen et al, 2018; Shao et al, 2018) and

consumption of citrate, glucose, and lactate (Cutruzzolà et al,

2017), thereby generating energy and “building blocks” for

growth and proliferation.

PDK4, which is one of four PDK isoforms, plays a central role

in the regulation of TCA/OXPHOS (Gray et al, 2014; Zhang et al,

2014). PDK4 phosphorylates the PDC subunits and thereby inhi-

bits the formation of acetyl-coenzyme A from pyruvate. This

leads to a down-regulation of metabolic flux through the TCA

cycle (Gray et al, 2014; Zhang et al, 2014; Jeoung, 2015; Stac-

poole, 2017). The crucial role of PDK4 as inhibitor of PDC activ-

ity renders it important as a target gene in many cancers and

metabolic disorders (Yamane et al, 2014; Zhang et al, 2014;

Jeoung, 2015). In non-PCa cells, high PDK4 facilitates the transi-

tion from OXPHOS to aerobic glycolysis and is therefore consid-

ered a risk factor enhancing the Warburg effect (Zhang et al,

2014). High PDK4 is associated with poor survival in breast

cancer (Guda et al, 2018) and increased cell growth in bladder

cancer cell lines (Woolbright et al, 2018). In addition to direct

interaction with PDC, PDK4 has been shown to enhance the

Warburg effect via mammalian target of rapamycin (mTOR) and

HIF-1a: In mouse embryonic fibroblasts (MEFs) and Eker leiomy-

oma tumor-3 (ELT3) cells, Liu et al show that PDK4 activates

mTOR signaling via cAMP-response element-binding protein

(CREB) and Ras homolog enriched in brain (Liu et al, 2014). The

mTOR effector HIF-1a and its downstream target pyruvate kinase

isozyme M2 (PKM2) were elevated in PDK4 overexpressing cells

and reduced in PDK4 knockdown cells (Liu et al, 2014). Both

HIF-1a and PKM2 have been known to modulate key processes

required for the Warburg effect (Courtnay et al, 2015). Conver-

sely, in cancer cells that have undergone tumor progression via

epithelial–mesenchymal transition (EMT), a low PDK4-mediated

metabolic shift from glycolysis to OXPHOS was reported, and

knockdown of PDK4 was sufficient to induce EMT in human non-

small-cell lung cancer (NSCLC) cell lines (Sun et al, 2014). In

accordance with these findings, Sun et al show reduced overall

survival of NSCLC patients with low PDK4 expression. Yang et al

show that down-regulation of PDK4 is associated with earlier

recurrence and lower survival time in hepatocellular carcinoma

(Yang et al, 2019). In concurrence with our data, Chen et al

(2018) show that prostate tumors exhibit higher gene expression

and higher protein levels of both PDC subunit pyruvate dehydro-

genase A1 (PDHA1) and the PDC activator pyruvate dehydroge-

nase phosphatase 1 (PDP1). Mengual et al find PDK4 to be

significantly differentially expressed in both tumors and post-

prostatic massage urine samples from PCa patients compared to

the respective control groups (Mengual et al, 2014).

Although STAT3 signaling is linked to various regulatory events

causing increased proliferation, stemness, and inflammation and

therefore has oncogenic properties, STAT3 can also act as tumor

suppressor (Zhang & Lai, 2014; Zhang et al, 2016; Huynh et al,

2019). The deletion of Stat3 in prostate epithelial cells in a loss of

Pten PCa mouse model leads to increased tumor growth and early

death (Pencik et al, 2015). It is well established that STAT3 is able

to influence the activity of mitochondria, the electron transport

chain (ETC), and the ER in its pY form as a transcription factor,

but also via direct binding to these cell compounds in its serine-

phosphorylated (pS) form (Wegrzyn et al, 2009; Poli & Campore-

ale, 2015; Avalle et al, 2018; Huynh et al, 2019). On the one hand,

pY-STAT3 is associated with increase in glycolysis and the

suppression of the ETC by its function as transcription factor.

Specifically, STAT3 signaling is linked to the induction of HIF-1a,
which suppresses OXPHOS and reprograms TCA (Niu et al, 2008;

Demaria et al, 2010; Camporeale et al, 2014; Pawlus et al, 2014;

Poli & Camporeale, 2015). Likewise, HIF-1 was shown to transcrip-

tionally up-regulate PDK (Lee et al, 2012; Courtnay et al, 2015).

On the other hand, however, pS-STAT3 can physically associate

with mitochondrial complexes, thereby improving ETC activity and

transcription of mitochondrial genes (Wegrzyn et al, 2009; Poli &

Camporeale, 2015). Yet, STAT3 is most likely altering OXPHOS via

its function as transcription factor, rather than by protein–protein

interaction (PPI), as Phillips et al show (Phillips et al, 2010). By

measuring absolute STAT3 concentrations and the stoichiometric

relationship between STAT3 and complex I/II in human heart

tissue, they show that the cellular ratio of complex I/II to STAT3 is

not 1:1, as required for regulation by PPI, but ~ 105, rendering the

regulation of OXPHOS by mitochondrial STAT3 unlikely (Phillips

et al, 2010). Our data show up-regulation of TCA/OXPHOS and

low HIF-1a in low STAT3 tumors and thereby reflect the reported

transcriptional regulation of TCA/OXPHOS by pY-STAT3 as

described above. Nevertheless, the tissue-specific regulation of

◀ Figure 7. PDK4 as putative STAT3 target.

A STAT3- and PDK4-stratified subgroups were generated by median splits in MSKCC PCa GSE21032 data set. Pearson correlation between STAT3 and PDK4 is shown.
Kaplan–Meier plot shows stratified subgroups. P-values were estimated by log-rank test and adjusted with Benjamini–Hochberg method. Hi, high; lo, low.

B Western blot of STAT3, PDK4, and b-TUBULIN proteins in 22Rv1 cells with or without knockdown of STAT3. Ctrl, scrambled control; shSTAT3, short hairpin knockdown
of STAT3.

C ChIP assay from IL-6-stimulated or non-stimulated 22Rv1 cells with or without knockdown of STAT3 was immunoprecipitated with a STAT3-specific antibody (blue
shades) and IgG antibody as a negative control (orange shades) followed by qPCR with a promoter-specific primer pair for the PDK4 gene. Bars represent mean � SD
from two technical replicates. Precipitated DNA is presented as % of input. One representative experiment is shown. Result of qPCR using primer pair 2 is shown.
Ctrl = scrambled control; shSTAT3 = short hairpin knockdown of STAT3; +IL-6 = IL-6-stimulated.

D Correlation of STAT3, c-MYC, and HIF-1a with PDK1-4, PDC genes (PDHA1, PDHB, PDHX, DLAT, DLD) and TCA/OXPHOS genes (CS, IDH2, IDH3A, SDHB, SDHC, ATP5A1,
NDUFS1) in MSKCC PCa (GSE21032). Dot colors represent Pearson correlation (1 = red; �1 = blue); dot sizes represent adj. P-values ≤ 0.05. Only significant
correlations are shown. P-values were adjusted with Benjamini–Hochberg method.

Source data are available online for this figure.
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OXPHOS by STAT3 in PCa needs to be resolved in further mecha-

nistic studies.

For proteomic characterization, we used human FFPE material

up to 21 years old. The used FFPE material was routinely collected

and therefore subjected to different lengths of time between surgery

and fixation. Fixation of the whole prostate starts on the periphery

of the tissue and slowly proceeds to the core. Thereby, proteins can

be lost for later detection. This was probably the reason why

proteomic coverage was low. For this reason, we used the proteo-

mics data only as addition to the TCGA analyses and the MSKCC

data analyses, which constitute the core of this paper.

Due to the slow clinical progression rate of PCa, BCR is gener-

ally used for risk determination. On account of the protracted

nature of a prospective study, we evaluated the effect of PDK4 on

PCa BCR retrospectively. We therefore believe that it might be

beneficial to conduct additional prospective studies to support the

postulated effects of PDK4 on PCa outcome. In addition, further

research is needed to evaluate the mechanistic regulation of PDK4

in PCa.

In summary, the present study uses a systems-biology approach

to show the association of low STAT3 with high TCA/OXPHOS. We

hereby identify PDK4 as a promising independent prognostic marker

for PCa which will facilitate to distinguish between a good and bad

prognostic PCa. Therefore, our results are of high general and clini-

cal importance, and further studies on the function of PDK4 in PCa

are urgently needed.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source
Identifier or catalog
number

Experimental models

Human FFPE prostate blocks this study

Mouse: PB-Cre4: B6.Cg-Tg (Pbsn-cre) 4Prb/Nci Frederick National Laboratory for Cancer Research IMSR Cat# NCIMR:01XF5,
RRID:IMSR_NCIMR:01XF5

Mouse: Ptentm2Mak Suzuki et al (2001)

Mouse: Stat3 loxP/loxP Alonzi et al (2001)

Mouse: PtenStat3pc�/� Pencik et al (2015)

Cell line: 22Rv1 (Homo sapiens) ATCC Cat# CRL-2505, RRID:
CVCL_1045

Recombinant DNA

TRC1/1.5 (pLKO.1-puro) SHC002 Sigma-Aldrich Cat #SHC002

TRC1/1.5 (pLKO.1-puro) shSTAT3#456 Sigma-Aldrich Bacterial stock Clone-ID:
NM_011486.3-1238s1c1

TRC1/1.5 (pLKO.1-puro) shSTAT3#843 Sigma-Aldrich Bacterial stock Clone-ID:
NM_003150.2-361s1c1

Antibodies

Rabbit Anti-Human IDH2, polyclonal, 1:100
dilution IHC

Proteintech Group Cat# 15932-1-AP, RRID:
AB_2264612

Mouse Anti-SDHB, monoclonal, Clone 21A11,
1:100 dilution IHC

Abcam Cat# ab14714, RRID:
AB_301432

Mouse Anti-STAT3, monoclonal, 1:100 dilution
IHC
1:1,000 dilution WB

Cell Signaling Technology Cat# 9139, RRID: AB_331757

Rabbit Anti-STAT3, polyclonal, 1:100 dilution
IHC

Santa Cruz Biotechnology Cat# sc-7179, RRID:
AB_661407

Rabbit Anti-PDK4, polyclonal, 1:1,500 dilution
WB

Proteintech Cat# 12949-1-AP, RRID:
AB_2161499

Rabbit Anti-b-Tubulin polyclonal, 1:2,000
dilution WB

Cell Signaling Technology Cat# 2146, RRID:AB_2210545

Rabbit Anti-STAT3, monoclonal, 1:1,000
dilution WB
1:50 dilution ChIP

Cell Signaling Technology Cat# 12640, RRID:
AB_2629499

Rabbit Anti-IgG, 1:250 dilution ChIP Thermo Fisher Scientific
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Reagents and Tools table (continued)

Reagent/Resource Reference or source
Identifier or catalog
number

Cat# 10500C, RRID:
AB_2532981

Rabbit Anti-Phospho-STAT3 (Tyr705),
monoclonal, 1:1,000 dilution WB

Cell Signaling Technology Cat# 9145, RRID:AB_2491009

Rabbit Anti-GAPDH, monoclonal, 1:1,000
dilution WB

Cell Signaling Technology Cat# 5174, RRID:AB_10622025

Oligonucleotides and other sequence-based reagents

PCR primers This study, (Tripathi et al, 2017) Table 3

Chemicals, enzymes and other reagents

Recombinant Human IL-6 Peprotech Cat# 200-06

Software

R v3.5.1 and v3.6.2 https://www.r-project.org/
The R Foundation for Statistical Computing

limma_3.40.6, R package https://bioconductor.org/packages/release/bioc/html/limma.html (Ritchie
et al, 2015)

EGSEA_1.12.0, R package https://bioconductor.org/packages/release/bioc/html/EGSEA.html
(Alhamdoosh et al, 2017)

edgeR_3.24.3, R package https://bioconductor.org/packages/release/bioc/html/edgeR.html (Robinson
et al, 2010; McCarthy et al, 2012)

WGCNA_1.66, R package https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/
WGCNA/ (Langfelder & Horvath, 2008, 2012)

clusterProfiler_3.10.1, R package https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html (Yu
et al, 2012)

KEGG: Kyoto Encyclopedia of Genes and
Genomes

https://www.genome.jp/kegg/ (Kanehisa & Goto, 2000; Kanehisa et al, 2017,
2019)

Hallmark pathway database http://software.broadinstitute.org/gsea/msigdb/collection_details.jsp
(Liberzon et al, 2015)

Gene Ontology http://geneontology.org/ (Ashburner et al, 2000; The
Gene Ontology Consortium, 2018)

Perseus v1.5.8.6 and v1.5.5.5 https://maxquant.net/perseus/ (Tyanova et al, 2016b)

MaxQuant https://maxquant.net/maxquant/ (Cox & Mann, 2008; Cox et al, 2011a,
2014; Schaab et al, 2012; Tyanova et al, 2015, 2016a)

Andromeda http://coxdocs.org/doku.php?id=maxquant:andromeda:start (Cox et al,
2011b)

SurvExpress http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp (Aguirre-
Gamboa et al, 2013)

Thermo ScientificTM TraceFinderTM Software 4.1 https://www.thermofisher.com/order/catalog/product/OPTON-30626
Thermo Fisher Scientific

Cytoscape v3.6.1. https://cytoscape.org (Shannon et al, 2003)

ClueGO v2.5.1, Cytoscape plug-in http://apps.cytoscape.org/apps/cluego (Bindea et al, 2009)

STAR https://github.com/alexdobin/STAR/releases (Dobin et al, 2013)

Gencode https://www.gencodegenes.org (Harrow et al, 2012)

DESeq2 v1.24.0 https://bioconductor.org/packages/release/bioc/html/DESeq2.html (Love
et al, 2014)

GSVA v1.32.0 https://www.bioconductor.org/packages/release/bioc/html/GSVA.html
(Hänzelmann et al, 2013)

survival v3.1-8 https://cran.r-project.org/web/packages/survival/index.html (Therneau &
Grambsch, 2000; Therneau, 2015)

survminer v0.4.6 https://cran.r-project.org/web/packages/survminer/index.html (Kassambara
et al, 2019)
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Reagents and Tools table (continued)

Reagent/Resource Reference or source
Identifier or catalog
number

tidyverse v1.3.0 https://www.tidyverse.org/blog/2019/11/tidyverse-1-3-0/ (Wickham et al,
2019)

Image Lab v5.2.1 https://www.bio-rad.com/de-at/product/image-lab-software

Primer3web v4.1.0 http://primer3.ut.ee (Koressaar & Remm, 2007; Untergasser et al, 2012;
Kõressaar et al, 2018, 3)

Other

Micro BCATM Protein Assay Kit Thermo ScientificTM Cat# 23235

Fully 13C-labelled Yeast Extract ISOtopic solutions Cat# ISO1

Thermo ScientificTM Q Exactive HFTM

quadrupole-Orbitrap mass spectrometer
Thermo Fisher Scientific

EASY-nLC 1000/Q Exactive HF mass
spectrometer

Thermo Fisher Scientific

Clinical specimens

Formalin-fixed and paraffin-embedded prostate material was

obtained from the Department of Pathology of the Medical Univer-

sity of Vienna (MUW), Vienna, Austria. The FFPE material origi-

nated from 84 primary PCa patients and seven bladder cancer

patients who underwent radical prostatectomy at the General Hospi-

tal of Vienna from 1993 to 2015. Use of patient FFPE material in this

study was approved by the Research Ethics Committee of the Medi-

cal University Vienna, Austria (1877/2016).

Animal model

Mice carrying a prostate-specific deletion of Pten (Ptenpc�/�) were

received from Prof. Johannes Schmidt (Birbach et al, 2011). They

were generated by crossing Ptentm2Mak (PtenloxP/loxP) mice (Suzuki

et al, 2001) with male PB-Cre4 transgenic mice (RRID:

IMSR_NCIMR:01XF5) (Wu et al, 2001). Furthermore, mice carrying

Stat3 loxP/loxP (Alonzi et al, 2001) were crossed with Ptenpc�/� mice

to obtain mice with a concomitant loss of Pten and Stat3

(PtenStat3pc�/�) in the prostate epithelium (Pencik et al, 2015). All

mice were maintained on a C57BL/6 and Sv/129 mixed genetic

background. Animal experiments were reviewed and approved by

the Austrian ministry authorities and conducted according to

relevant regulatory standards (BMWFW-66.009/0281-I/3b/2012 and

BMWFW-66.009/0088-WF/V/3b/2018). Mice were housed on a

12–12 light cycle (light on 6 am and off 6 pm) and provided food

and water ad libitum. For experiments, 19-week-old male mice were

used. All efforts were made to minimize suffering.

RNA-Seq and RPPA data acquisition

TCGA PRAD (https://portal.gdc.cancer.gov/projects/TCGA-PRAD)

(The Cancer Genome Atlas Research Network, 2015) RNA-Seq data

were acquired as HTSeq-Counts from GDC Legacy Archive via

TCGAbiolinks v.2.10.5 (Colaprico et al, 2015). For subsequent data

transformation and normalization, edgeR v3.24.3 (Robinson et al,

2010, McCarthy et al, 2012) was used. Raw data were transformed

to cpm values, and genes that were expressed in less than 70% of

samples were omitted. Gene expression distributions were

normalized using weighted trimmed mean of M values (TMM)

method (Robinson & Oshlack, 2010). Only primary tumor samples

(n = 489) were used in this study, to focus on the comparison

between low STAT3 and high STAT3 tumors. Samples were ranked

according to STAT3 expression and assigned to groups: “high

STAT3” consisted of the 1–0.8th quantile (n = 100), “low STAT3” of

the 0.2nd quantile (n = 100), and “medium STAT3” of all samples in

between (n = 298). RNA-Seq data from The NCI (BioProject:

PRJNA494345; GEO: GSE120741) (Stelloo et al, 2018), the VPC

(BioProject: PRJEB21092) (Lapuk et al, 2012; Wyatt et al, 2014;

Akamatsu et al, 2015; Beltran et al, 2016; Mo et al, 2018), and the

RAS (BioProject: PRJNA477449) RNA-Seq data were downloaded in

form of fastq files from the Short Read Archive. Sequencing reads

were aligned to the human reference genome (hg38) using STAR

(Dobin et al, 2013). Gene expression was quantified at the gene

level using GENCODE annotations (v29) (Harrow et al, 2012).

Subsequent analysis and normalization were performed using

DESeq2 v1.24.0 (Love et al, 2014) and edgeR pipelines. TCGA

PRAD-normalized RPPA data for pY-STAT3 were derived from The

Cancer Proteome Atlas (Li et al, 2013, 2017a).

Weighted gene co-expression network analysis

TCGA PRAD RNA-Seq data were used to generate a weighted

gene co-expression network analysis with WGCNA v1.66 R pack-

age as described by Langfelder and Horvath (2012, 2008). For

creation of a trait matrix, TCGA PRAD clinical data were acquired

via GDC Legacy Archive. Patients without information on disease

recurrence were excluded. Following clinical traits were used for

analyses: biochemical disease recurrence (BCR), pathological

tumor staging (pT), pathological lymph node staging (pN), and

histological grading with GSC. Pathological staging was split into

low- to intermediate-risk (indicated as 1) and high- to very high-

risk (indicated as 2) groups. For pT, the low- to intermediate-risk

group consisted of T2abc and the high- to very high-risk group of

T3–T4 samples. For pN, low to intermediate risk was assigned to

N0 samples and high to very high risk to N1 samples. The emer-

gence of BCR was indicated as 1, and no BCR was indicated as

0. GSCs were not split into groups. STAT3 cpm was included

from RNA-Seq data.
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RNA-Seq data were acquired and prepared as described above.

We intended to analyze PCa samples in relation to STAT3; there-

fore, only tumor samples with matching clinical trait data were used

for network creation (n = 397). In this setting, it is not possible to

include normal samples, as they would require the generation of a

separate network. Gene expression data were voom-transformed

with limma v3.40.6 R package (Law et al, 2014; Ritchie et al, 2015),

and outliers were removed by hierarchical sample clustering. Three

hundred eighty-two samples and 13,932 genes were used for

network construction.

First, a correlation matrix was created using biweight midcorrela-

tion of genes. Second, an adjacency matrix was established from the

correlation matrix with a soft thresholding power beta of 6. Third, a

topological overlap matrix (TOM) was calculated from the adja-

cency matrix (Zhang & Horvath, 2005). The TOM provides informa-

tion on the interconnectedness of genes by a similarity measure: It

indicates whether two genes share co-expression to a similar set of

other genes (Zhang & Horvath, 2005; Yip & Horvath, 2007). For the

creation of gene clusters (= modules), hierarchical clustering based

on TOM-based dissimilarity was performed. Minimum gene cluster

size was set to 30. Genes that did not belong to any cluster were

summarized as cluster 13. To compare expression profiles of gene

clusters, the 1st principal component (= module eigengene [ME]) of

each cluster was calculated and clusters with similar eigengenes

(q > 0.75) were merged. Genes in each gene cluster were tested for

over-representation of GO biological process terms with clusterPro-

filer v3.10.1 (Yu et al, 2012). Significance was defined by an adj. P-

value ≤ 0.05, and adjustment method was Benjamini–Hochberg.

Gene clusters were associated with external traits by correlating

MEs with trait data (= cluster- trait correlation) by Pearson correla-

tion. Student’s asymptotic P-values for given correlations were

adjusted by Benjamini–Hochberg method. Likewise, correlation of

each gene to both the respective gene cluster (= module member-

ship, MM) and STAT3 expression (= Gene significance, GS) was

calculated by Pearson correlation. Student’s asymptotic P-values

were calculated and adjusted with Benjamini–Hochberg method.

Significance was defined by an adj. P-value ≤ 0.05.

We defined a strong correlation to be between � 0.6 and � 1, a

moderate correlation to be between � 0.59 and � 0.3, and a weak/

no correlation between � 0.29 and 0. Two clusters were strongly

negatively correlated to STAT3 expression (q ≤ �0.6, adj. P-

value ≤ 0.01). For both clusters, genes were sorted for their MM

and GS. The top 50 genes with a MM ≥ 0.8 and a GS ≤ �0.6 (adj.

P-value ≤ 0.05) were used for overexpression analysis with

clusterProfiler v3.10.1. GO biological process enrichment was addi-

tionally performed using Cytoscape v.3.6.1. (Shannon et al, 2003)

and the ClueGO v2.5.1. plug-in (Bindea et al, 2009) on those genes.

Human tissue microarray generation

For generation of a TMA, we used FFPE material from a patient

cohort of 83 patients with primary PCa who underwent radical

prostatectomy from 1993 to 2003. The TMA consists of tumor and

normal prostate areas from the same patient (two spots of each).

Whole-mount prostate FFPE blocks were sliced into 3-lm-thick

sections, mounted on slides, and stained with hematoxylin and

eosin. Subsequently, a pathologist marked the respective areas on

the slides. To generate the TMA, cores of 2 mm diameter were cut

out of the donor block and placed into the recipient TMA block

using a manual tissue arrayer (Beecher Instruments). Tissue

sections were placed onto superfrost slides.

Immunohistochemistry

Immunohistochemistry was performed on FFPE TMAs using consec-

utive sections. After deparaffinization, heat-induced antigen

retrieval was performed with Tris-EDTA buffer, and primary anti-

bodies were incubated as listed in the table below, followed by DAB

and hematoxylin staining, respectively. The following antibodies

were used: anti-IDH2 (Cat# 15932-1-AP, Proteintech), anti-SDHB

(Cat# ab14714, Abcam), and anti-STAT3 (Cat# sc-7179, Santa Cruz

Biotechnology and Cat# 9139, Cell Signaling Technology). Antibod-

ies were validated for FFPE IHC by using human colon cancer for

IDH2, human muscle tissue for SDHB, and human pancreas for

STAT3 as positive controls. STAT3 antibody was validated as

described previously (Pencik et al, 2015). Staining was conducted

as shown in the table below.

Antibody Dilution
Incubation time
(min)

anti-IDH2 (Proteintech, Cat# 15932-1-
AP)

1:100 32

anti-SDHB (Abcam, Cat# ab14714) 1:100 32

anti-STAT3 (Santa Cruz Biotechnology,
Cat# sc-7179)

1:100 120

anti-STAT3 (Cell Signaling Technology,
Cat# 9139)

1:100 20

Cell culture

Human PCa 22Rv1 cells (Cat# CRL-2505, ATCC) were grown in

RPMI-1640 medium (Sigma) supplemented with 10% FBS, 1% peni-

cillin and streptomycin, 25 mM HEPES, 0.4 mM L-glutamine, and

0.2 mM sodium pyruvate (Gibco) at 37°C under 5% CO2. For IL-6

stimulation, cells were treated with 100 ng/ml recombinant human

IL-6 (PeproTech) for 30 min and immediately harvested.

Short hairpin-mediated knockdown

Short hairpin-mediated knockdown was performed as previously

described in Eberl et al (2012). For the knockdown of STAT3 in

22Rv1 cells, the following short hairpin RNA (shRNA) constructs

from the Mission TRC shRNA library (Sigma) were used: scrambled

control shRNA (SHC002), shSTAT3#456 (TRCN0000071456), and

shSTAT3#843 (TRCN0000020843). Transduced cells were selected

for puromycin resistance, and the knockdown was verified via WB.

Western blotting

For WB analysis, cells were lysed in RIPA buffer (R0278, Sigma)

containing 1 mM sodium fluoride, 1 mM sodium orthovanadate,

1 mM PMSF, 1 lg/ml leupeptin, 10 lg/ml aprotinin, and cOmplete

Mini protease inhibitors (11836153001; Roche) or Hunt buffer

(20 mM Tris–HCl pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5% w/v
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NP-40) in the presence of cOmplete protease inhibitors and Phos-

STOPTM (Roche). 20 lg of each sample was loaded onto a 10% SDS–

PAGE minigel (Invitrogen) for electrophoresis. For IL-6 stimulation

of 22Rv1 cells, 40 lg protein extract was separated on a 4–20%

precast gradient TGXTM SDS–PAGE (Bio-Rad) and transferred onto

nitrocellulose membranes with the Trans-Blot Turbo Transfer

system (Bio-Rad). Membranes were blocked with 5% BSA in 1×

TBS/0.1% Tween-20 for 1 h and incubated with the primary anti-

body overnight at 4°C. Primary antibodies were reactive to STAT3

(1:1,000, Cat#12640, Cell Signaling), PDK4 (1:1,500, Cat#12949-1-

AP, Proteintech), b-Tubulin (1:2,000, Cat#2146, Cell Signaling),

Phospho-STAT3 Tyr705 (1:1,000, Cat#9145, Cell Signaling), total

STAT3 (1:1,000, Cat#9139, Cell Signaling), and GAPDH (1:1,000,

Cat # 5174, Cell Signaling). For protein quantification, Image Lab

software v5.2.1 (Bio-Rad) was used. Phospho-STAT3 signal was

normalized to TGX total protein lanes and total STAT3 expression.

Chromatin immunoprecipitation assays

Soluble chromatin preparation and ChIP assays were carried out as

described previously (Hauser et al, 2002) with some modifications.

In short, cells were crosslinked with 1% v/v formaldehyde for

10 min at room temperature and the crosslink was stopped by the

addition of glycine to a final concentration of 125 mM for 5 min

while shaking. Chromatin was sonicated using a Twin Bioruptor

(Diagenode) 30 s on/off for 15 cycles at 4°C. Two hundred micro-

gram of chromatin was used for IP with 10 ll of STAT3 (1:50,

Cat#12640, Cell Signaling) and 4 lg of IgG (1:250, Cat#10500C,

Thermo Fisher Scientific) antibodies and incubated overnight.

Protein–antibody complexes were bound to magnetic protein G

beads (Life Technologies) for 4–5 h and washed with standard IP

wash buffers for 10 min at 4°C. The crosslink was reversed by addi-

tion of 0.05 volume of 4M NaCl overnight at 65°C. After proteinase

K digestion, DNA was recovered by phenol–chloroform–isoamylal-

cohol extraction and dissolved in 200 ll H2O. Real-time PCR of

diluted ChIP DNA and corresponding input DNA was performed on

ViiA 7 Real-Time PCR system (Thermo Fisher Scientific). Primer

sequences used for ChIP are listed in Table 3. Known STAT3 bind-

ing sites in BATF and JUNB promoters described in Tripathi et al

(2017) were chosen as positive controls and confirmed by extraction

of corresponding peaks from ENCODE STAT3 ChIP-Seq HeLa-S3

data (ENCSR000EDC) with UCSC Genome Browser (http://genome.

ucsc.edu). For the generation of PDK4 primer pairs, a STAT3 bind-

ing site in the promoter region of PDK4 detected by ENCODE STAT3

ChIP-Seq HeLa-S3 was extracted (see Appendix Supplementary

Methods). Primer pairs were created with Primer3web v4.1.0 soft-

ware (Koressaar & Remm, 2007; Untergasser et al, 2012; Kõressaar

et al, 2018).

Sample selection and preparation for laser microdissection

From the TMA and patient cohort described above, STAT3 protein

expression was previously (Pencik et al, 2015) quantified by a

pathologist after IHC staining. Quantification was assessed by %

positive nuclei in the tumor. Group 0 consisted of 0% positive

nuclei, group 1 of 1–10% positive nuclei, group 2 of 11–50% posi-

tive nuclei, and group 3 of 51–100% positive nuclei.

We selected seven patients with GSC 7–8 and no STAT3 expres-

sion (group 0) as low STAT3 group and seven patients with GSC 7–8

from groups 2 and 3 as high STAT3 group. Additionally, seven

healthy prostate FFPE samples were included as control group, stem-

ming from bladder cancer patients. To facilitate LMD, we created a

TMA for each patient. Whole-mount prostate FFPE blocks were sliced

into 3-lm-thick sections, mounted on slides, and stained with hema-

toxylin and eosin. A pathologist marked tumor areas with GL4 or GL5

on the slides. For each patient, a TMA block was created with 2-mm-

diameter spots using a manual tissue arrayer (Beecher Instruments).

Since PCa tumors are heterogeneous and respective punches in

TMAs cover only a small part of the tumor, we reconfirmed STAT3

levels in our samples by IHC. The low STAT3 group had ≤ 20%

positive nuclei in the tumor and intensities of the staining ranged

between 0 and 2 on a scale of 0–3. The high STAT3 group had

≥ 80% positive nuclei in the tumors, with intensities of the staining

ranging between 2 and 3. One sample in the high STAT3 group was

STAT3 negative and therefore excluded from data analysis following

LC/MS-MS. One low STAT3 sample did not include any tumor and

was excluded as well.

For LMD of murine samples, FFPE tumor material was used from

WT, Ptenpc�/�, and PtenStat3pc�/� mice (n = 3 for each genotype).

Blocks were sliced into 3-lm-thick sections, mounted on slides, and

stained with hematoxylin and eosin. Tumor areas were marked by a

pathologist. Since mouse tumors are much smaller and contain only

few stroma compared to human PCa, there was no need to create

sample TMAs for LMD.

LMD for proteomic analysis

For LMD of human samples, a PALM Zeiss Microbeam 4 was used.

Sample TMA blocks were cut into 10-lm-thick sections and

mounted on superfrost slides. For LMD of mouse samples, a Leica

Table 3. Primer sequences used for ChIP.

BATF_pro_1 TGA AGT TTC CGC CCA TGT Tripathi et al (2017)

BATF_pro_2 GCA CGC TCT CTC TCT CTC TTG Tripathi et al (2017)

JUNB_pro_1 GAA ACC CCT CAC TCA TGT GC Tripathi et al (2017)

JUNB_pro_2 AGG GGC TCA AAG GAC CTC Tripathi et al (2017)

PDK4_pro_pair1_1 GCATTCATGATAGCTGGCCT See also Appendix Supplementary Methods

PDK4_pro_pair1_2 ACCTGAGAAGAGAAGTGCCA See also Appendix Supplementary Methods

PDK4_pro_pair2_1 CCCAGTTGGCTAAGATGCTATG See also Appendix Supplementary Methods

PDK4_pro_pair2_1 AGTGCCACTCTTTTCCCAGG See also Appendix Supplementary Methods

Pro, promoter; _1 and _2 indicate parts of a primer pair.
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LMD6000 was used. Tissue blocks were cut into 10-lm-thick

sections and mounted on membrane slides (PEN Membrane,

2.0 lm, Leica). LMD was conducted similarly for mouse and human

samples: For each sample, a slide was stained with hematoxylin and

eosin for inspection before LMD. To obtain the minimum amount of

tissue (100 nl = 0.1 mm³) necessary for consecutive LC-MS/MS

analysis, at least 10 mm² of target area were laser-microdissected.

To obtain proteomic profiles solely from the tumor, stroma and

immune cells were excluded from dissection. In tumor samples,

only cancerous prostate glands were dissected. Microdissected FFPE

samples were stored at �20°C before LC-MS/MS analysis.

Proteomic liquid chromatography tandem mass spectrometry
(LC-MS/MS) measurements

Protein extraction and enzymatic digestion
One hundred nanoliter (10 mm2 of 10 lm slides) of FFPE material

per sample was used for analysis. Lysis of microdissected tissue was

carried out in 50% trifluoroethanol (TFE), 5 mM dithiothreitol

(DTT), 25 mM ammonium bicarbonate (ABC) at 99°C for 45 min.

followed by 5-min. sonication (Bioruptor, Diagenode). After

centrifugation at 16,000 g for 10 min., the cleared protein lysate

was alkylated with 20 mM iodoacetamide for 30 min. at room

temperature. Upon vacuum centrifugation, digestion was carried out

in 5% TFE, 50 mM ABC to which 0.15 lg of LysC and 0.15 lg of

trypsin were added for digestion overnight at 37°C. The following

day, digestion was arrested by adding trifluoroacetic acid (TFA) to

1% and the digestion buffer removed by vacuum centrifugation.

Peptides were suspended in 2% acetonitrile and 0.1% TFA and puri-

fied on C18 StageTips. Finally, purified peptides were resolved in

2% acetonitrile and 0.1% TFA, and the entire sample was injected

for MS analysis in a single-shot measurement. Protocols were

adapted from Roulhac et al (2011) and Wang et al (2005).

LC-MS/MS analysis
LC-MS/MS analysis was performed on an EASY-nLC 1000 system

(Thermo Fisher Scientific) coupled online to a Q Exactive HF mass

spectrometer (Thermo Fisher Scientific) with a nanoelectrospray ion

source (Thermo Fisher Scientific). Peptides were loaded in buffer A

(0.1% formic acid) into a 50-cm-long, 75-lm inner diameter column

in house packed with ReproSil-Pur C18-AQ 1.9 lm resin (Dr. Maisch

HPLC GmbH) and separated over a 270-min gradient of 2–60%

buffer B (80% acetonitrile, 0.1% formic acid) at a 250 nl/min flow

rate. The Q Exactive HF operated in a data-dependent mode with

full MS scans (range 300–1,650 m/z, resolution 60,000 at 200 m/z,

maximum injection time 20 ms, AGC target value 3e6) followed by

high-energy collisional dissociation (HCD) fragmentation of the five

most abundant ions with charge ≥ 2 (isolation window 1.4 m/z,

resolution 15,000 at 200 m/z, maximum injection time 120 ms,

AGC target value 1e5). Dynamic exclusion was set to 20 s to avoid

repeated sequencing. Data were acquired with the Xcalibur software

(Thermo Scientific).

LC-MS/MS data analysis
Xcalibur raw files were processed using the MaxQuant software

v.1.5.5.2 (Cox & Mann, 2008), employing the integrated Andromeda

search engine (Cox et al, 2011b) to identify peptides and proteins

with a false discovery rate of < 1%. Searches were performed against

the Human or Mouse UniProt database (August 2015), with the

enzyme specificity set as “Trypsin/P” and 7 as the minimum length

required for peptide identification. N-terminal protein acetylation

and methionine oxidation were set as variable modifications, while

cysteine carbamidomethylation was set as a fixed modification.

Matching between runs was enabled in order to transfer identifi-

cations across runs, based on mass and normalized retention times,

with a matching time window of 0.7 min. Label-free protein quan-

tification (LFQ) was performed with the MaxLFQ algorithm (Cox &

Mann, 2008; Cox et al, 2011a, 2014; Schaab et al, 2012; Tyanova

et al, 2015, 2016a) where a minimum peptide ratio count of 1 was

required for quantification. Data pre-processing was conducted with

Perseus software (Tyanova et al, 2016b); v.1.5.8.6 was used for

human data and v.1.5.5.5 for mouse data. Data were filtered by

removing proteins only identified by site, reverse peptides, and

potential contaminants. After log2 transformation, biological repli-

cates were grouped. In human samples, 1 low STAT3 and 1 high

STAT3 sample were excluded after confirmatory IHC staining as

described in the section on sample selection above. For mouse

samples, we continued analyses with three replicates per group.

Label-free protein quantification intensities were filtered for valid

values with a minimum of 70% valid values per group, after which

missing data points were replaced by imputation. The resulting data

sets were exported for further statistical analyses using R. Filtered,

normalized, and log2-transformed data were imported, and PCA

and unsupervised hierarchical clustering were performed. Plots

were generated with ggplot2 v.3.1.1. (Wickham, 2016), gplots

v.3.0.1.1 (Warnes et al, 2019), and EnhancedVolcano v.1.0.1

(Blighe, 2019) R packages. Differential expression was conducted as

described in the section “Differential expression analysis”.

Metabolomic liquid chromatography high-resolution mass
spectrometry (LC-HRMS) measurements

Standards and solvents
Acetonitrile (ACN), methanol (MeOH), and water were of

LC-MS grade and ordered at Fisher Scientific (Vienna, Austria) or

Sigma-Aldrich (Vienna, Austria). ABC, ammonium formate, and

ammonium hydroxide were purchased as the eluent additive for LC-

MS at Sigma-Aldrich. Formic acid was also of LC-MS grade and

ordered at VWR International (Vienna, Austria). Sodium hydroxide

(NaOH) was obtained from Sigma-Aldrich (Vienna, Austria).

Metabolite standards were purchased from Sigma-Aldrich (Vienna,

Austria) or Carbosynth (Berkshire, UK).

Sample preparation of mouse organs
Analysis was conducted with n = 5 biological replicates of wild-type

and Ptenpc�/� mice and n = 3 biological replicates of PtenStat3pc�/�

mice. For WT and Ptenpc�/�, technical replicates (n = 3) were made

from two biological samples in each group. For PtenStat3pc�/� mice,

technical replicates (n = 3) were made for all biological samples.

The prostates of sacrificed 19-week-old mice were immediately

collected, quickly washed in fresh PBS, snap-frozen in liquid N2,

and stored on dry ice in Petri dishes until extraction. Tissue pieces

were transferred into glass vials, and 50 ll of fully 13C labeled inter-

nal standard from ISOtopic solutions e.U. (Vienna, Austria) and

950 ll extraction solvent were added (80% MeOH, 20% H2O, both

LC-MS grade [Sigma-Aldrich, Vienna, Austria]). Subsequently, the
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tissue was homogenized with a probe sonicator head (Polytron PT

1200E Handheld Homogenizer, Kinematica) in the extraction

solvent. After homogenization, the contents of the glass tubes were

transferred to a 2-ml Eppendorf tube and the glass tubes were

washed two more times with 500 ll extraction solvent to transfer all

tissue content. The Eppendorf tubes were thoroughly vortexed and

kept on dry ice during the processing of other samples.

The samples were centrifuged (14,000 g, 4°C, 20 min), four

400 ll aliquots were extracted into LC vials, and 3 × 100 ll was

used for pooled quality controls (QC) for each sample, respectively.

Remaining extraction solvent on the pellets was discarded. Aliquots

were evaporated until dryness in a vacuum centrifuge. The dried

samples and the high molecular pellets were stored at �80°C until

measurement.

Quantification of metabolites with LC-HRMS
Before the LC-HRMS analysis, the samples were reconstituted in

water with thorough vortexing, diluted either 1:100 or 1:40 in water,

and adjusted to be in total of 500 ll 50:50 H2O:ACN.

Quantification was carried out by external calibration using

U13C-labeled internal standards. The internal standard always origi-

nated from the same aliquot as used for the extraction and was

diluted to the same extent as the sample.

The LC-HRMS measurement was adopted from Schwaiger et al

(2019). Shortly, a SeQuant� ZIC�-pHILIC column (150 × 2.1 mm,

5 lm, polymer, Merck Millipore) was utilized with a 15-min long

gradient and 10 mM ABC pH 9.2/10% ACN and 100% ACN as

eluents. Sample measurements were randomized, and within every

10 injections, a pooled QC sample, a QC with standards and a blank,

was injected. HRMS was conducted on a high-field Thermo Scien-

tificTM Q Exactive HFTM quadrupole-Orbitrap mass spectrometer

equipped with an electrospray source. Full mass scan data with

resolution of 12,000, maximum injection time (IT) of 200 ms, auto-

matic gain control (AGC) target of 1e6 in the mass range of 65–

900 m/z were acquired with positive–negative polarity switching.

Targeted analysis of the metabolomics data was carried out with

Thermo Trace Finder 4.1 software. In all cases, the [M–H]� ion was

extracted with 5 ppm mass tolerance.

Quantification of total protein content from pellet
The pellets resulting from extraction with 80% MeOH were

dissolved in 0.2M NaOH solution, diluted 1:10, and quantified for

total protein content with the Micro BCA Protein Assay kit from

Thermo (Rockford, USA), according to the manufacturer’s instruc-

tions.

Absolute metabolite amounts were normalized to the protein

content. If multiple technical replicates were available from the

same organ, the sum of metabolite concentrations was calculated

for each metabolite and it was normalized with the sum of total

protein content for that organ. This way, absolute metabolite

amounts (nmol) were normalized to the total protein content (lg)
from the tissue of origin.

Statistical analyses

Statistical analyses were performed using the R software environ-

ment v3.5.1 and v3.6.2. (https://cran.r-project.org/) and are

described in detail in the following sections.

Statistical analysis of WGCNA clusters and clinical traits

Statistical analyses of WGCNA gene clusters were conducted as

described in the section “Weighted gene co-expression network anal-

ysis (WGCNA)”. Generally, correlations were assessed by Pearson

correlation and Student’s asymptotic P-values were calculated. P-

values were adjusted by Benjamini–Hochberg method. Significance

was defined as adj. P-value ≤ 0.05. Associations between STAT3

pathway genes and clinical traits were assessed by multi-factorial

ANOVAs. Type III sums of squares and F-tests were used because of

unbalanced design of covariates. An Euler diagram showing the over-

lap of differentially expressed genes and cluster 2 and cluster 3 genes

was plotted with R package eulerr v.6.0.0 (Larsson, 2019). Overex-

pression analysis and visualization of overlapping genes were

conducted with R package clusterProfiler v.3.10.1 (Yu et al, 2012).

Human TMA quantification

For statistical evaluation of a human TMAs, IHC stainings on tumor

and normal tissue were evaluated by a pathologist. Stainings were

quantified by evaluating staining intensities and percentage of posi-

tive cells, described by the IHC expression level:

EL ¼ Int� Perc

100
:

Here, staining intensity (Int) ranges from 0 to 3 and percentage

of positive cells (Perc) from 0 to 100. Therefore, expression levels

can take values from 0 to 3. To compare GLs, expression levels were

evaluated separately for each present GL in a spot. To test for signif-

icant differences between groups, Kruskal–Wallis test was applied

after rejection of null hypothesis for normality testing with Pearson

chi-square normality test. Visual inspection of the distribution of

data was conducted using Q–Q (quantile–quantile) plots and density

plots. Pairwise comparisons were done using Dunn’s all-pairs test.

Significance was defined by adj. P-value ≤ 0.05, and adjustment

method was Benjamini–Hochberg. Statistical tests were performed

using the R software environment with packages DescTools

v.0.99.28 (Signorell et al, 2018), PMCMRplus v.1.4.1 (Thorsten

Pohlert, 2018), and nortest v.1.0-4 (Gross & Ligges, 2015). Plots

were generated with ggplot2 v.3.1.1 (Wickham, 2016). Data were

processed using tidyverse v.1.3.0 (Wickham et al, 2019).

Correlations

Correlation analyses were performed with either Pearson correlation

or Spearman correlation after testing for normality as described in

the section on TMA quantification above. R packages stats, Hmisc

v4.3-0 (Harrell & Dupont, 2019), and corrplot v0.84 (Wei & Simko,

2017) were used. P-values were adjusted by Benjamini–Hochberg

method for each family of tests. Significance was defined by an adj.

P-value ≤ 0.05. For detailed description of correlations in the

WGCNA, please refer to respective section.

Survival analysis

Survival analyses were performed using R packages survival v3.1-8

(Terry M. Therneau, 2015; Therneau & Grambsch, 2000) and
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survminer v0.4.6 (Kassambara et al, 2019). Univariate Cox PH

models were fitted for candidate genes and gene set enrichment

signatures. P-values were adjusted by Benjamini–Hochberg (BH)

method. Significance was defined by an adj. P-value ≤ 0.05. Multi-

variate Cox PH models were fitted for PDK4. As a rule of thumb,

one predictor per 10 events was included in the model. In addition,

Kaplan–Meier curves and log-rank tests were performed after a

median split of samples by gene expression. All statistical tests were

considered significant with an adj. P-value ≤ 0.05 after adjustment

with BH method. BCR is defined by an increase of > 0.2 ng/ml PSA

in serum on two occasions.

Additional data sets were analyzed using SurvExpress online tool

(Aguirre-Gamboa et al, 2013). Here, prognostic index (PI) of tested

genes was estimated by fitting a Cox PH model. Risk groups were

generated by ranking samples by their PI (with high PI indicating a

high risk) followed by either a median split or a maximizing split

(with a split point where the P-value is minimum). Median split was

used for PDK4 in the TCGA PRAD and Lapointe data set, maximizing

split for the remainder. Risk groups were analyzed by a concurrent

Cox model and used for Kaplan–Meier plots and log-rank tests. All

statistical tests were considered significant with a P-value ≤ 0.05.

Following publicly available data sets were used for survival anal-

yses: integrative genomic profiling of human PCa (MSKCC PCa,

BioProject: PRJNA126455; GEO: GSE21032) (Taylor et al, 2010),

Molecular Sampling of PCa: a dilemma for predicting disease

progression (Sboner Rubin Prostate, BioProject: PRJNA116195; GEO:

GSE16560) (Sboner et al, 2010), TCGA PRAD (The Cancer Genome

Atlas Research Network, 2015), Gene expression profiling of prostate

tumors (Gulzar Prostate, BioProject: PRJNA173433; GEO:

GSE40272) (Gulzar et al, 2013) and Gene expression profiling identi-

fies clinically relevant subtypes of PCa (Lapointe Prostate, http://

microarray-pubs.stanford.edu/prostateCA) (Lapointe et al, 2004).

Differential expression analysis

Differential gene and protein expression analysis was conducted

using limma v.3.40.6 (Ritchie et al, 2015) R package. Limma uses

linear models and borrows information across genes using empirical

Bayes method and is therefore applicable for analyses of high-

dimensional omics data with limited sample size. RNA-Seq data

were transformed using voom. Proteomic differential expression

was calculated using the algorithm for single-channel microarray

gene expression data. Groups for comparison were defined in a

design matrix. Linear models were fitted for expressions of each

gene/intensities of each protein. Empirical Bayes method was used

to borrow information across genes/proteins. Multiple testing

correction was performed using the Benjamini–Hochberg method.

Differential expression was defined as minimum log-FC ≥ 1 and adj.

P-value ≤ 0.05.

Gene set testing

For gene set testing of transcriptomic and proteomic data, the

EGSEA R package v.1.12.0 (Alhamdoosh et al, 2017) was used.

EGSEA allows to use results from up to twelve Gene Set Enrichment

(GSE) algorithms, covering competitive and self-contained methods

(Goeman & Bühlmann, 2007), to calculate collective gene set scores.

We used the collective gene set score results from 11 of those

methods, namely from ora, gage, camera, and gsva (competitive

null hypothesis) along with roast, safe, padog, plage, zscore, ssgsea,

and globaltest (self-contained hypothesis). We tested for enrichment

on all eight Molecular Signatures Database (MSigDB) provided

collections, including Gene Ontologies (GO) (Ashburner et al, 2000;

The Gene Ontology Consortium, 2018), KEGG pathways (Kanehisa

& Goto, 2000; Kanehisa et al, 2017, 2019), and hallmark gene sets

(Liberzon et al, 2015). Significance was defined by an adj. P-

value ≤ 0.05, and adjustment method was Benjamini–Hochberg. To

test for enrichment of STAT3 target genes in high STAT3 versus low

STAT3 groups, Rotation Gene Set Tests (roast), implemented in R

package limma v3.40.6 (Ritchie et al, 2015), were used with 20,000

rotations. STAT3 target genes were derived from Carpenter and Lo

(2014). Significance was defined by a P-value ≤ 0.05. Overexpres-

sion analysis of WGCNA gene clusters and genes correlated to

STAT3 expression is described in the section “Weighted gene co-

expression network analysis (WGCNA)”. Quantification of gene set

activities (“signatures”) was assessed using single-sample Gene Set

Enrichment analysis (ssGSEA) (Barbie et al, 2009), by using R pack-

age GSVA v1.32.0 (Hänzelmann et al, 2013). The associations

between genes/gene sets and their respective statistical significances

were assessed using Pearson’s correlation. Significance was defined

by an adj. P-value ≤ 0.05, and adjustment method was Benjamini–

Hochberg.

Statistical analysis of targeted metabolomics data

To evaluate differences between three groups for six metabolites,

ANOVA and Tukey honest significant differences (HSD) test were

performed for each metabolite after normality testing. Normality

was tested using Pearson chi-square normality test and Levene’s test

for homogeneity of variance (center = median). Visual inspection of

the distribution of data was conducted using Q–Q plots and density

plots. Significance was defined as P-value ≤ 0.05 after ANOVA and

as adj. P-value ≤ 0.05 after Tukey HSD (95% family-wise confidence

level). Since this was an exploratory experiment used for hypothesis

generation, no P-value adjustment was performed between the six

individual ANOVAs. Results of all ANOVAs can be found in Table 2.

Analyses were performed with R packages as described in the

section “Human TMA quantification”.

Data availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE partner repository with

the data set identifier PXD014251 (http://www.ebi.ac.uk/pride/arc

hive/projects/PXD014251).

Expanded View for this article is available online.
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