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Limiting extrinsic curvature theory and stable non-singular anisotropic universe
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We propose a class of theories that can limit scalars constructed from the extrinsic curvature.
Applied to cosmology, this framework allows us to control not only the Hubble parameter but also
anisotropies without the problem of Ostrogradsky ghost, which is in sharp contrast to the case of
limiting spacetime curvature scalars. Our theory can be viewed as a generalization of mimetic and
cuscuton theories (thus clarifying their relation), which are known to possess a structure that limits
only the Hubble parameter on homogeneous and isotropic backgrounds. As an application of our
framework, we construct a model where both anisotropies and the Hubble parameter are kept finite
at any stage in the evolution of the universe in the diagonal Bianchi type I setup. The universe
starts from a constant-anisotropy phase and recovers Einstein gravity at low energies. We also show
that the cosmological solution is stable against essentially all modes of perturbation, provided some
reasonable conditions are satisfied.

I. INTRODUCTION

Singularities in the universe [1–3] have been recognized as a problem that demonstrates the failure to describe
the universe in classical Einstein gravity. As is well known, a decelerating and expanding universe inevitably has an
initial big bang singularity. Even in an inflationary universe, there is a hard-to-avoid initial singularity [4–6]. Since
classical Einstein gravity should be a low-energy effective theory of some more fundamental theory of quantum gravity,
the presence of singularities is expected to be an artifact of the classical theory, and they should be removed if the
effects of quantum gravity are taken into consideration. This has been the hypothesis behind the proposed limiting
curvature conjecture: there exists a fundamental energy scale, which bounds all physical quantities [7–9]. The idea of
the existence of a fundamental energy scale (or length scale [10]) is similar to the speed of light in special relativity
and the Planck constant in quantum mechanics. This hypothesis has motivated studies of, e.g., a black hole geometry
with finite curvature invariants [11–14]. Such a non-singular black hole solution was first proposed by Bardeen [15],
which is now known to be a stable solution of Einstein gravity with non-linear electrodynamics [16–18].

The purpose of the present paper is to propose a new framework to realize the hypothesis of limiting curvature
dynamically. Such a theory can be regarded as a candidate of a low-energy effective theory of some unknown theory of
quantum gravity.1 A dynamical realization of the hypothesis, called the limiting curvature theory, was first proposed
by Refs. [30, 31] in the context of cosmology. The theory was then applied not only to avoid the initial singularity of
the universe [32–34] but also to remove the singularity appearing inside black hole horizons [35–37]. In the original
proposals [30, 31], the authors introduced two scalar fields with a specific potential to limit two spacetime curvature
invariants which reduce to the Hubble parameter and its time derivative for a homogeneous and isotropic universe.
They found non-singular solutions approaching the de Sitter spacetime at past infinity in the homogeneous and
isotropic setup. Regarding the stability, it was shown in Ref. [34] that the solutions with the curvature invariants
of the original proposals are unstable. A stable solution was obtained in the same paper with another choice for
the curvature invariants (though bounding the same quantities in the homogeneous and isotropic limit), where the
potential and the initial conditions for the scalar fields were fine-tuned. As such, the limiting curvature theory
generically exhibits instabilities, which may be associated with the Ostrogradsky ghost [38] due to the presence of
higher-order curvature invariants. It should be noted that the assumption that the spacetime is homogeneous and
isotropic might be too strong. Indeed, if anisotropies exist, they give a non-negligible contribution to the Friedmann
equations. Yet, anisotropies typically tend to diverge in the approach to a spacetime singularity. Moreover, in a
collapsing universe, anisotropies are believed to behave chaotically, which is known as the Belinsky-Khalatnikov-
Lifshitz (BKL) instability [39]. Accordingly, the stability against deviations from perfect isotropy is rather non-
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trivial, and some solutions that are typically stable against inhomogeneities can become unstable when introducing
anisotropies (e.g., [34, 40, 41]).

The original limiting curvature theory [30, 31] is not the only way to realize the limiting curvature hypothesis. It
was pointed out that mimetic gravity [42–44] and cuscuton gravity [45, 46] have a structure that limits the Hubble
parameter, and hence they possess non-singular cosmological and black hole solutions [47–51]. One of the critical
differences between mimetic and cuscuton theories (and extensions thereof) is the number of degrees of freedom;
mimetic gravity has three degrees of freedom (e.g., [52–54]), while cuscuton gravity has only two degrees of freedom
on a cosmological background (e.g., [55–60]). In mimetic gravity, the authors of Ref. [47] studied an anisotropic
universe and found a non-singular Kasner solution.2 However, it is expected that this solution is unstable since we
know that cosmological solutions are unstable in a large class of mimetic gravity [54, 62–65]. On the other hand,
cosmological solutions in cuscuton gravity and its extensions can be stable [46, 58, 66, 67], implying that one can
construct stable non-singular solutions in cuscuton theories [50, 51].

What we propose in the present paper is that mimetic and cuscuton theories can be understood in a unified frame-
work by reformulating them as limiting curvature theories with respect to the trace of the extrinsic curvature rather
than spacetime curvature invariants. In addition, we provide a wider class of theories that can limit desired spatial
scalar quantities constructed from the extrinsic curvature. We mention that this model reduces to the framework of
spatially covariant theories proposed in Ref. [68] (further studied in Refs. [60, 69–73]) after eliminating the auxiliary
scalar fields by using their equations of motion. As an important application of our theory, we explore a stable non-
singular universe with anisotropies. For this purpose, we limit the trace and traceless parts of the extrinsic curvature,
which makes both the Hubble parameter and the anisotropies finite.

Our paper is organized as follows. In section II, we give a general picture of the proposed limiting extrinsic
curvature theory. In section III, we show how to interpret mimetic gravity and cuscuton gravity in the language
of limiting extrinsic curvature theory. Also, we demonstrate the similarity between mimetic and cuscuton models
by comparing the covariant equations of motion and how the Hubble parameter is kept finite on a homogeneous
spacetime. In section IV, we study a model where anisotropies are also bounded, which can be regarded as an
extension of cuscuton gravity. Based on this model, we construct a Bianchi I spacetime solution with finite Hubble
parameter and anisotropies. We also examine the stability of the cosmological solution. Section V is devoted to the
conclusions and discussion.

II. GENERAL SETUP FOR LIMITING EXTRINSIC CURVATURE

We propose a framework of limiting extrinsic curvature theories from an analogy with the limiting spacetime
curvature theory proposed in Refs. [30, 31]. The original limiting curvature models are based on a Lagrangian density

L = (terms independent of χk) +

n∑
k=1

χkIk(Rµνρσ, gµν ,∇µ)− V (χ1, χ2, . . . , χn) , (1)

where the Ik’s are some scalar curvature invariants constructed from the Riemann tensor Rµνρσ, the metric tensor gµν ,
and its associated covariant derivative ∇µ. Here, the χk’s are auxiliary scalar fields, whose role is to bound the
curvature invariants Ik. From the variation of χk, we obtain a set of equations of motion, which act as constraint
equations:

Ik = Vχk
(χ1, χ2, . . . , χn) :=

∂V

∂χk
. (2)

Indeed, by choosing the potential V so that all of its first derivatives are finite for any configuration of χk, the curvature
invariants Ik remain finite (see the Appendix for a detailed discussion). Our proposal is to extend the idea of the
limiting curvature theories (1) by employing the extrinsic curvature tensor Kµν . Thus, we deal with a Lagrangian

L = (terms independent of χk) +

n∑
k=1

χkIk(Kµν , hµν , Dµ)− V (χ1, χ2, . . . , χn) , (3)

2 Even if singularities are avoided in one anisotropic spacetime, it does not mean singularity resolution is achievable in any arbitrary
anisotropic spacetime. For example, mimetic gravity cannot avoid the divergence of anisotropies in an anisotropic Kantowski-Sachs
universe [61].
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where now the Ik’s are some spatial scalars constructed from the extrinsic curvature Kµν , the induced metric hµν ,
and the spatial covariant derivative Dµ with respect to a given space-like foliation Σt. By introducing the unit normal
vector to Σt (let us call it nµ), we can express the induced metric and the extrinsic curvature as

hµν = gµν + nµnν ,

Kµν = hµ
ρ∇ρnν = ∇µnν + nµn

ρ∇ρnν , (4)

where nµn
µ = −1 and where spacetime indices are raised or lowered with the spacetime metric tensor.

In order to write the action of limiting extrinsic curvature, we need to specify the foliation Σt, i.e., the configuration
of the time-like normal vector nµ. One way to achieve this is to assume that the theory breaks general covariance, and
thus the spacetime foliation Σt is chosen from the beginning. This is the case of spatially covariant gravity [60, 68–73].
Another way is to characterize the foliation by a dynamical field. For example, if we regard nµ as the gradient of some
scalar field, nµ = −∇µφ, we can say that this is a theory limiting the extrinsic curvature with respect to constant-φ
slices. Since nµ has to be a unit vector, we need to impose an additional constraint, ∇µφ∇µφ = −1, by hand.
Similarly, we can regard nµ itself as a dynamical vector field Aµ, which is normalized according to AµA

µ = −1.3 This
means that Aµ here is nothing but the aether field [74–79]. We focus on these two characterizations of a spacetime
foliation,

nµ =

{
−∇µφ with ∇µφ∇µφ = −1 ,

Aµ with AµA
µ = −1 .

(5)

Adding the Einstein-Hilbert term, the actions of interest can be written explicitly as

Sφ =

∫
d4x
√
−g

[
M2

Pl

2
R+ λ(∇µφ∇µφ+ 1) +

n∑
k=1

χkIk(Kφ
µν , h

φ
µν , D

φ
µ)− V (χ1, χ2, . . . , χn)

]
(6a)

for nµ = −∇µφ and

SA =

∫
d4x
√
−g

[
M2

Pl

2
R+ λ(AµA

µ + 1) +

n∑
k=1

χkIk(KA
µν , h

A
µν , D

A
µ )− V (χ1, χ2, . . . , χn)

]
(6b)

for nµ = Aµ. Here, the superscripts φ and A on Kµν , hµν , and Dµ mean that these quantities are defined with
respect to constant-φ hypersurfaces and those normal to Aµ, respectively. The role of the term proportional to λ
in the Lagrangian densities is to enforce the constraints ∇µφ∇µφ = −1 and AµA

µ = −1. As such, λ is a Lagrange
multiplier. The above actions thus represent the general framework of limiting extrinsic curvature theories that we
propose in this paper. As we will see in the next section, Sφ and SA can be regarded as extensions of mimetic
and cuscuton gravity, respectively. Hence, in what follows, we refer to models constructed in the form of Sφ as
‘mimetic-type’ theories and to those constructed in the form of SA as ‘cuscuton-type’ theories.

Let us apply this framework to non-singular cosmology. We first focus on a flat Friedmann-Lemâıtre-Robertson-
Walker (FLRW) spacetime,

gµνdxµdxν = −N(t)2dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (7)

where a(t) is the scale factor and N(t) is the lapse function. The Hubble parameter H is defined by H := ȧ/(Na),
with a dot denoting the time derivative. The question is then what should be chosen for the scalar functions Ik to
avoid divergence in the Hubble parameter H. The simplest example would be the case where we limit the trace of
the extrinsic curvature, K = Kµ

µ, which corresponds to the Hubble parameter as

K|FLRW = 3H . (8)

Since the trace of the extrinsic curvature in general satisfies K = Kµ
µ ≈ ∇µnµ, where the symbol ≈ represents

equality under the condition nµn
µ = −1, let us fix n = 1 (i.e., we bound a single extrinsic curvature invariant) and

take I1 = ∇µnµ for our purpose. Depending on the choice of the normal vector, we find two types of theories:

Sφ,H =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(∇µφ∇µφ+ 1)− χ�φ− V (χ)

]
(9a)

3 To avoid imposing such constraints, one could instead regard nµ as an automatically-normalized vector such as nµ = −∇µφ/
√
−∇νφ∇νφ

or nµ = Aµ/
√
−AνAν . Each case may define yet another class of limiting extrinsic curvature theories.
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for nµ = −∇µφ, where � := gµν∇µ∇ν is the d’Alembertian; and

SA,H =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(AµA

µ + 1) + χ∇µAµ − V (χ)

]
(9b)

for nµ = Aµ. In the next section, we will see that the former action is equivalent to mimetic gravity with an extension,
while the latter is equivalent to cuscuton gravity.

Anisotropies are also problematic when we seek a model avoiding the initial singularity of the universe. This is
because anisotropies dominate the universe at early times since their energy density scales as a−6. To avoid such a
divergence of anisotropies, in addition to limiting the Hubble parameter, we also limit anisotropies by making use of
the mechanism of limiting extrinsic curvature. Here, we consider the diagonal Bianchi I spacetime,

gµνdxµdxν = −N(t)2dt2 + a(t)2
(
e2β+(t)+2

√
3β−(t)dx2 + e2β+(t)−2

√
3β−(t)dy2 + e−4β+(t)dz2

)
. (10)

The following combination of the extrinsic curvature characterizes the overall anisotropy,

Kµ
νK

ν
µ −

1

3
K2 = 6Σ2 , (11)

where Σ2 := σ2
+ + σ2

− and σ± := β̇±/N . We shall call Σ :=
√

Σ2 the anisotropy parameter. Thus, a model with
limiting Hubble parameter and limiting anisotropy parameter can be obtained by fixing n = 2 (i.e., we bound two
extrinsic curvature invariants) and choosing I1 and I2 as follows,4

I1 = K2 ≈ (∇µnµ)2 ,

I2 = Kµ
νK

ν
µ −

1

3
K2 ≈ ∇µnν∇νnµ −

1

3
(∇µnµ)2 , (12)

where the symbol ≈ represents again the equality under the condition nµn
µ = −1. Hence, we have two versions of

this limiting anisotropy construction as

Sφ,Σ =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(∇µφ∇µφ+ 1)− χ1�φ+ χ2

(
∇µ∇νφ∇ν∇µφ−

1

3
(�φ)2

)
− V (χ1, χ2)

]
(13a)

for nµ = −∇µφ and

SA,Σ =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(AµA

µ + 1) + χ1(∇µAµ)2 + χ2

(
∇µAν∇νAµ −

1

3
(∇µAµ)2

)
− V (χ1, χ2)

]
(13b)

for nµ = Aµ, as before. We investigate cosmological solutions of this theory and their stability in section IV.

III. LIMITING K MODELS

In this section, we investigate properties of the theories described by (9), which can limit the trace of the extrinsic
curvature K. In section III A, we demonstrate that the actions (9a) and (9b) are respectively equivalent to those of
mimetic and cuscuton gravity. Then, we derive the covariant equations of motion from the actions (9) in section III B.
Finally, we investigate cosmological solutions in section III C.

A. Relation to mimetic and cuscuton models

The limiting K models are useful to avoid the initial divergence of the Hubble parameter. Here, we show the
equivalence of the limiting K models we proposed in the previous section with mimetic and cuscuton gravity.

4 In order to make H and Σ finite, we could instead consider a theory limiting only Kµ
νKν

µ since Kµ
νKν

µ = 3H2 + 6Σ2 and since H2

and Σ2 are both positive semi-definite. One might think that this model is simpler and sufficient to avoid the divergence of both the
Hubble parameter and anisotropies at the same time. However, as far as we investigated, it is impossible to find a theory of this type
that recovers Einstein gravity at low energies and that has a homogeneous non-singular spacetime solution in the asymptotic past.
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1. Mimetic gravity

First, let us focus on the action (9a), which we reprint below for convenience:

Sφ,H =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(∇µφ∇µφ+ 1)− χ�φ− V (χ)

]
.

Let us assume ∂2V/∂χ2 6= 0 so that the equation of motion,

1√
−g

δSφ,H

δχ
= −�φ− ∂V

∂χ
= 0 , (14)

can be solved for χ, namely, χ = χ(�φ). Then, eliminating the auxiliary field χ from the action, we obtain

Sφ,H =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(∇µφ∇µφ+ 1) + f(�φ)

]
. (15)

Here, f is the Legendre transformation of V defined by

f(�φ) := −χ(�φ)�φ− V (χ(�φ)) . (16)

This is nothing but mimetic gravity with an f(�φ) extension [47, 48] (a model of this form was first studied in
Ref. [43]).

2. Cuscuton gravity

Next, let us focus on the action (9b),

SA,H =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(AµA

µ + 1) + χ∇µAµ − V (χ)

]
.

We take the variation of the action with respect to Aµ and obtain

Aµ =
1

2λ
∇µχ . (17)

By taking into account the normalization of the vector field, which is obtained by variation with respect to λ,

AµA
µ + 1 = 0 , (18)

we find5

λ = ±1

2

√
−∇µχ∇µχ , (19)

and therefore,

Aµ =
±∇µχ√
−∇νχ∇νχ

, (20)

where the ± sign is in the same order. If we substitute this expression into the action, we get

SA,H =

∫
d4x
√
−g
[
M2

Pl

2
R±

√
−∇µχ∇µχ− V (χ)

]
. (21)

This is nothing but cuscuton gravity6 with an arbitrary potential [45, 46]. Let us mention that the relation between
the above action for cuscuton gravity and the limiting extrinsic curvature action (9b) was already observed in Refs. [27,
80, 81] (in addition to the link with Hořava-Lifshitz gravity and the Einstein-aether theory). However, the link to a
wider class of limiting extrinsic curvature theories and the correspondence with mimetic gravity were not realized at
the time.

5 By construction, Aµ is ensured to be time-like, as seen from (18). Thus from (17), ∇µχ is also necessarily time-like. Consequently,√
−∇µχ∇µχ always yields a real number in this setup.

6 The Lagrangian of cuscuton gravity usually has a kinetic term of the form ±µ2
√
−∇µχ∇µχ, but the coefficient µ2 can be absorbed

without loss of generality if we define χ̃ := µ2χ.
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B. Covariant equations of motion

We saw that both mimetic gravity and cuscuton gravity can be understood as a kind of limiting extrinsic curvature
theory. They actually have a similar structure at the level of their equations of motion. To see the similarities and
the differences, here we show the covariant equations of motion for the mimetic-type and the cuscuton-type limiting
K models.

The equations of motion for the mimetic-type model (9a) with respect to λ, χ, and φ are

∇µφ∇µφ+ 1 = 0 , (22a)

−�φ− ∂V

∂χ
= 0 , (22b)

−∇µ(2λ∇µφ+∇µχ) = 0 , (22c)

respectively. The second equation implies that the trace of the extrinsic curvature, K = −�φ, can be bounded
if we choose a potential whose derivative, ∂V/∂χ, does not diverge at any value of χ. We can integrate the last
equation (22c) by introducing a divergenceless vector uµ (i.e., ∇µuµ = 0, so uµ is akin to an integration constant) as

λ =
1

2
(∇µχ+ uµ)∇µφ . (23)

Taking into account these equations, we find the equation of motion for gravity,

Gµν := Rµν −
1

2
gµνR =

1

M2
Pl

{
Tµν + gµν [∇ρχ∇ρφ− V (χ)]− 2∇(µχ∇ν)φ−∇µφ∇νφ(∇ρχ+ uρ)∇ρφ

}
, (24)

where round brackets in the spacetime indices denote symmetrization, i.e., ∇(µχ∇ν)φ := (∇µχ∇νφ + ∇νχ∇µφ)/2.
Here,

Tµν = − 2√
−g

δSmatter

δgµν
(25)

is the energy-momentum tensor of any additional matter, which is assumed to be minimally coupled to gravity.
On the other hand, the equations of motion for the cuscuton-type model (9b) with respect to λ, χ, and Aµ are

AµA
µ + 1 = 0 , (26a)

∇µAµ −
∂V

∂χ
= 0 , (26b)

2λAµ −∇µχ = 0 , (26c)

respectively. Since the trace of the extrinsic curvature is written as K = ∇µAµ, it can again be bounded by an
appropriate choice of the potential. In this case, we do not need to integrate the last equation (26c) and simply obtain

λ = −1

2
∇µχAµ . (27)

This can be applied to the equation of motion for gravity, and we have

Gµν =
1

M2
Pl

{
Tµν + gµν [−∇ρχAρ − V (χ)] + 2∇(µχAν) +AµAν∇ρχAρ

}
. (28)

It is straightforward to see that the equations of motion for the cuscuton-type model coincide with those for the
mimetic-type model if we replace Aµ with −∇µφ, except for the appearance of uµ in (24). As shown in (23), this
uµ is nothing but an integration constant originating from the covariant derivative in (22c) for the mimetic case.
This integration constant is the origin of the matter-like contribution pointed out in Ref. [42]. Note that, from the
corresponding equation (26c) for the cuscuton case, one can determine λ without the ambiguity of an integration
constant. Given this similarity between the mimetic and cuscuton models, it is expected that any solution in the
mimetic theory reduces to a solution in the cuscuton theory in the limit uµ → 0. Nevertheless, the stability of the
solutions can be different due to the different number of degrees of freedom in the two theories. It should also be
noted that the additional mode solution that uµ introduces in the mimetic-type model makes it manifest that the
theory generally has one more degree of freedom compared to the cuscuton-type model.
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C. Homogeneous spacetime

We pointed out that solutions found in mimetic gravity should also appear in the context of cuscuton gravity. Along
this line, we see that this is indeed true for the diagonal Bianchi I universe described by the metric (10) in the absence
of the mimetic matter field. In this subsection, we consider the vacuum case with no additional matter fields.

1. Mimetic gravity

To be consistent with a homogeneous spacetime, we assume

χ = χ(t) , φ = φ(t) , λ = λ(t) . (29)

We use the covariant equations of motion (22a), (22b), and (24) to study the spacetime dynamics.7 In what follows,
we choose the N = 1 gauge. From (22a) and (22b), we obtain

φ̇ = ±1 , (30a)

H =
1

3

∂V

∂χ
. (30b)

It should be noted that (30b) is essential for limiting the Hubble parameter. By choosing V in such a way that ∂V/∂χ
is finite, the range of the Hubble parameter is also restricted to a finite energy interval. In what follows, we choose
the plus branch of (30a) so that φ behaves as our clock. The evolution of the Hubble parameter and the anisotropies

is determined from the modified Einstein equation (24). The anisotropies σ± = β̇± can be obtained as

σ± =
σ

(0)
±
a3

, (31)

where σ
(0)
± are constants determined by the initial conditions. Then, the Friedmann equation is written as

H2 − Σ2
0

a6
=

1

3M2
Pl

[
V (χ)− u0

]
, (32)

with Σ2
0 :=

(
σ

(0)
+

)2

+
(
σ

(0)
−

)2

. Here, χ in the right-hand side should be understood as a function of H through (30b).

Provided that uµ = uµ(t), we have ∇µuµ = u̇0 + 3Hu0 = 0, namely, u0 ∝ a−3. This implies that the second term in
the right-hand side of (32) plays the role of pressureless dust as pointed out in Ref. [42].

2. Cuscuton gravity

In the case of cuscuton gravity, we assume

χ = χ(t), Aµ = (A0(t),0), λ = λ(t) . (33)

We choose again the N = 1 gauge after variation. The equations of motion (26a) and (26b) read

A0 = ±1 , (34a)

H =
1

3

∂V

∂χ
, (34b)

and we choose the minus branch for A0 to make Aµ future-directed. The Friedmann equation is given by

H2 − Σ2
0

a6
=

1

3M2
Pl

V (χ) (35)

7 Instead, one can substitute (10) and (29) into the action (9a) and then vary it with respect to relevant variables to derive field equations.
In doing so, one should choose N = 1 after the variation, as the equation of motion for N cannot be reproduced from the other
components of the field equations [82].
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from (28). Note that the equations of motion for the anisotropies are the same as those in mimetic gravity, which
results in the solutions (31).

We find that both models have the limiting curvature feature with respect to the Hubble parameter if we choose
an appropriate function for the potential. The only difference between these two gravity theories is the existence of
a matter-like contribution coming from the integration constant of one of the equations of motion in the mimetic
theory, but no such contribution exists in cuscuton gravity. It is obvious that such a difference is coming from the
definition of the normal vector; the normal vector nµ is chosen to be the derivative of a scalar field in the mimetic
case, which is not the case in cuscuton gravity. These models are successful in limiting the Hubble parameter, but it
should be noted that the anisotropies blow up as a→ 0 as one can see from (31).

IV. LIMITING ANISOTROPY MODELS

We showed that the two models that limit the trace of the extrinsic curvature have the property of limiting
the Hubble parameter. In addition, we explicitly saw that, at the background level, the homogeneous anisotropic
universe in mimetic gravity behaves completely in the same way as in cuscuton gravity when the mimetic dust
contribution, coming from an integration constant, is turned off. Now, we attempt to cure the divergent behavior of
the anisotropies in the early universe by introducing a potential limiting anisotropies. In what follows, we restrict
ourselves to the cuscuton-type limiting anisotropy model (13b) since the mimetic-type model (13a) is in general
plagued by instabilities [54, 62–65]. Indeed, this instability originates from a scalar degree of freedom, which is
expected to be absent in the cuscuton-type theory on a cosmological background (e.g., [55, 58–60]). As an example, a
non-singular homogeneous and isotropic bouncing background in mimetic gravity was shown to have instabilities [62],
while non-singular bouncing backgrounds in cuscuton gravity have shown no instability [50, 51], at the level of linear
inhomogeneous perturbations.

A. Covariant equations of motion for cuscuton-type limiting anisotropy model

We recall the cuscuton-type limiting anisotropy model (13b), which we discuss from now on,

SA,Σ = M2
Pl

∫
d4x
√
−g
[
R

2
+ λ(AµA

µ + 1) + χ1(∇µAµ)2 + χ2

(
∇µAν∇νAµ −

1

3
(∇µAµ)2

)
− µ2V (χ1, χ2)

]
,

where we rescaled the fields and the potential as λ→M2
Plλ, χk →M2

Plχk (k = 1, 2), and V →M2
Plµ

2V . The equations
of motion derived from this action are

AµA
µ + 1 = 0 , (36a)

λAµ = ∇µ
[(
χ1 −

1

3
χ2

)
∇νAν

]
+∇ν(χ2∇µAν) , (36b)

(∇µAµ)2 = µ2Vχ1
, (36c)

∇µAν∇νAµ −
1

3
(∇µAµ)2 = µ2Vχ2 , (36d)

where we recall the shorthand notation Vχk
:= ∂V/∂χk (k = 1, 2), and

M2
PlGµν = Tµν + T (lim)

µν , (37)

where Tµν is the energy-momentum tensor of additional, minimally-coupled matter fields, and T
(lim)
µν is the effective

energy-momentum tensor coming from the limiting-curvature part,

T
(lim)
µν

M2
Pl

= gµν

{(
χ1 −

1

3
χ2

)
(∇αAα)2 + χ2(∇αAβ∇βAα)− µ2V − 2∇α

[(
χ1 −

1

3
χ2

)
Aα∇βAβ

]}
+ 2A(µ∇ν)

[(
χ1 −

1

3
χ2

)
∇αAα

]
+ 2∇α

[
χ2∇αA(µ

]
Aν) − 2∇α

[
χ2Aα∇(µAν)

]
+ 2χ2∇αA(µ

[
∇αAν) −∇ν)A

α
]
. (38)

Here, we used (36b) to eliminate λ.
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B. Evolution of Bianchi I spacetime

By substituting the Bianchi I spacetime ansatz (10) into the action (13b), we obtain a Lagrangian written in terms
of N, a, β±, λ, Aµ, χ1, χ2, from which the equations of motion are derived. We choose the N = 1 gauge and find
A0 = ±1 from the variation with respect to λ. We take the minus branch from here on as in the previous section.
Then, the gravitational equations of motion are

(1− 3χ1)H2 − (1 + 2χ2)Σ2 =
ρ

3M2
Pl

+
µ2V

3
, (39a)

1

a3

d

dt

[
a3(1 + 2χ2)σ±

]
=

p±
3M2

Pl

, (39b)

d

dt
[(1− 3χ1)H] + 3(1 + 2χ2)Σ2 = − 1

2M2
Pl

(ρ+ p) , (39c)

where we decomposed the matter energy-momentum tensor as

Tµν =


−ρ

p+ p+
3 + p−√

3

p+ p+
3 −

p−√
3

p− 2p+
3

 . (40)

Note that we used the equation determining λ,

λ = 3χ2(H2 + 2Σ2) +
d

dt
[(χ2 − 3χ1)H] . (41)

Also, equations (36c) and (36d) become

H2 =
µ2Vχ1

9
, Σ2 =

µ2Vχ2

6
. (42)

We can thus see that if the first derivatives of the potential are bounded, the Hubble parameter and the anisotropy
parameter are also bounded. By substituting (42) into the Friedmann equation (39a), we obtain a constraint equation
for χ1 and χ2,

1

3
(1− 3χ1)Vχ1

− 1

2
(1 + 2χ2)Vχ2

= V +
ρ

µ2M2
Pl

. (43)

We consider the vacuum case ρ = p = p± = 0 from now on. The equations of motion for the anisotropies become

d

dt

[
a3(1 + 2χ2)σ±

]
= 0 , (44)

which can be integrated to yield

σ± =
σ

(0)
±

(1 + 2χ2)a3
. (45)

Consequently, we obtain

Σ2 =
Σ2

0

(1 + 2χ2)2a6
. (46)

As an example, let us choose the following function as the limiting potential,

V (χ1, χ2) = χ1 − tanhχ1 + χ2 − tanhχ2 . (47)

This function satisfies all the following requirements: (1) guaranteeing the finiteness of the Hubble parameter and
finiteness of the anisotropy parameter at all energy scales; and (2) recovering Einstein gravity at low energies. We
explain the explicit conditions put on the limiting potential in the Appendix. Explicitly, the first derivatives of the
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FIG. 1. Left: Phase diagram of the first-order differential equations (49a) and (49b). Only the black curves correspond to
solutions of the constraint equation (43) with ρ = 0. The filled and open circles represent stable and unstable fixed points,
respectively. The thicker black curve in the upper left quadrant represents the solution that is numerically solved in the
right panel. Right: Numerical background solutions corresponding to the thick black curve in the left panel. The Hubble
parameter H and the anisotropy parameter Σ each reach their limiting value in the regime µt < 0.

potential can be evaluated as Vχ1
= tanh2 χ1, Vχ2

= tanh2 χ2, and therefore, they satisfy 0 ≤ Vχ1
< 1, 0 ≤ Vχ2

< 1.
Thus, for this choice of potential, H2 and Σ2 are bounded as

0 ≤ H2 <
µ2

9
, 0 ≤ Σ2 <

µ2

6
. (48)

In the left panel of Fig. 1, we show the possible evolution of the spacetime, constrained by the relation (43), on the
(χ1, χ2)-plane. Since (χ1, χ2) = (0, 0) is where the contribution of the limiting potential vanishes and Einstein gravity
is recovered, the path starting from the upper left and terminating at the origin is the most desirable one. Provided
that H > 0, the time evolution is determined by

dχ1

d(µt)
=

3(1 + 2χ2)Vχ2

√
Vχ1

6Vχ1
− (1− 3χ1)Vχ1χ1

= ( sgnχ1)
3(1 + 2χ2) cosh2 χ1 tanh2 χ2

−2 + 6χ1 + 3 sinh 2χ1
, (49a)

dχ2

d(µt)
= −

2(1 + 2χ2)Vχ2

√
Vχ1

4Vχ2
+ (1 + 2χ2)Vχ2χ2

= − (1 + 2χ2) coshχ2 sinhχ2| tanhχ1|
1 + 2χ2 + sinh 2χ2

, (49b)

where we used Vχ1χ2 = 0 in the first equality of each equation. These equations are obtained from the time derivative
of the limiting relations (42). Along this path, we solved the dynamics as shown in the right panel of Fig. 1, where t = 0
is characterized by χ1(t = 0) = −1. From the figure, we see that H2 and Σ2 are almost constant and asymptotically
reach their upper bound values for µt < 0. Assuming β− ≡ 0 for concreteness, we can approximate the evolution of
the scale factor and the anisotropy for µt→ −∞ as

a(t) ' e 1
3µt , β+(t) ' ± 1√

6
µt . (50)

The sign of β+ is determined by its initial condition. Thus, the very early stage of the universe in this model is
effectively described by the metric,

gµνdxµdxν = −dt2 + e2Hxtdx2 + e2Hytdy2 + e2Hztdz2 , (51)

with

Hx = Hy =

(
1

3
± 1√

6

)
µ , Hz =

(
1

3
∓ 2√

6

)
µ . (52)
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Since the cosmological time t (i.e., the proper time for comoving observers) is defined all the way to t → −∞, the
comoving time-like geodesics are past complete. Although null geodesics are expected to be past incomplete as in the
case of the flat de Sitter universe (see Refs. [4, 5]), our formulation ensures that the past boundary is not a scalar
curvature singularity at least up to O(∂2g) because the curvature invariants R, RµνR

µν , and RµνρσR
µνρσ approach

constant values.

C. Stability of the anisotropic background

We examine the stability of the Bianchi I solution that we found in the previous subsection against perturbations.
We note that because of the cuscuton-type construction of the theory, we have only two physical degrees of freedom
corresponding to gravitational waves on an FLRW spacetime. For simplicity, we keep the rotational symmetry in the
xy-plane for the background metric by setting β− ≡ 0, namely,

gµνdxµdxν = −dt2 + a(t)2
[
e2β(t)(dx2 + dy2) + e−4β(t)dz2

]
. (53)

From here on, we write β := β+ and σ := β̇+. In this case, the perturbations can be categorized into vector
perturbations and scalar perturbations, and they evolve independently at linear order. Thus, we investigate each type
of perturbation separately.

1. Vector perturbations

Thanks to the rotational symmetry in the xy-plane, for a given Fourier mode of perturbation with wavevector k
we can always choose the x- and y-axes so that kidx

i = kydy + kzdz. The easiest way to derive the second-order
perturbed action for this mode is to assume that all the perturbation variables depend only on (t, y, z) in position
space. On this type of anisotropic background, there are three independent vector-type perturbations for the metric
and one for the vector field. Because of the gauge degree of freedom, ξµ = (0, ξx, 0, 0), where ξx = ξx(t, y, z), we
can eliminate one of the variables, resulting in three independent variables. We use this gauge degree of freedom to
express the vector-type perturbations as

δgµν =

0 δE 0 0
∗ 0 −a2e2β∂zh× a2e−4β∂yh×
0 ∗ 0 0
0 ∗ 0 0

 , (54)

where the symbols ∗ represent symmetric components, and

δAµ = (0, δAx, 0, 0) . (55)

This choice of perturbation variables allows us to easily take the isotropic limit. Indeed, h× corresponds to the cross-
mode tensor perturbation in the isotropic case [34]. By using the equations of motion for δE and δAx to eliminate
themselves, we obtain the second-order perturbed Lagrangian in Fourier space,

δ2LV =
M2

Pl

2
k2a3e−4β(1 + 2χ2)

[
ḣ×,−kḣ×,k −

(
k2

(1 + 2χ2)a2
+ 36

e2βk2
yk

2
z

k4
σ2

)
h×,−kh×,k

]
, (56)

where k2(t) := e−2βk2
y + e4βk2

z . We can see that any ghost instability is avoided if

1 + 2χ2 > 0 , (57)

and the same condition guarantees the absence of any gradient instability.
We note that, in the isotropic limit (i.e., for an FLRW background), the quadratic Lagrangian takes the form

δ2LV

∣∣
FLRW

=
M2

Pl

2
k2a3(1 + 2χ2)

[
ḣ×,−kḣ×,k −

k2

(1 + 2χ2)a2
h×,−kh×,k

]
, (58)

which is free of instabilities under the condition (57). In the isotropic limit where Σ2 ∝ Vχ2
vanishes, χ2 vanishes

as well for our choice of potential (47). Therefore, the above quadratic Lagrangian coincides with that of Einstein
gravity as expected. This is also true for any limiting potential recovering Einstein gravity at low energies since we
require V2 ∼ χm2

2 with m2 > 1 around χ2 = 0 (see the Appendix). On the other hand, if we have some potential
minima at χ2 6= 0, the overall coefficient is different for the different minima.
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2. Scalar perturbations

Again, to derive the action for the mode with kidx
i = kydy+kzdz, we assume all the perturbation variables depend

only on (t, y, z). We have seven independent scalar-type perturbations for the metric and three for the vector field.
Moreover, one should take into account the perturbations of the three scalar fields, δλ, δχ1, and δχ2. Because of the
gauge degrees of freedom, ξµ = (ξ0, 0, ∂yξ, ξz), we can eliminate 3 out of 13 scalar perturbations. These gauge degrees
of freedom enable us to express the scalar-type perturbations associated with the metric as

δgµν =


−2Φ 0 a(∂yB + e2β∂zs) a(∂zB − e−4β∂ys)

0 −a2(∂2
y + e6β∂2

z )h+ 0 0
∗ 0 a2e6β∂2

zh+ −a2∂y∂zh+

∗ 0 ∗ a2e−6β∂2
yh+

 (59)

and those associated with the vector field as

δAµ = (δA0, 0, ∂yδA, δAz) . (60)

Note that h+ amounts to the plus-mode tensor perturbation in the isotropic case [34]. From the variation with
respect to δλ, we obtain δA0 − Φ = 0. After eliminating all appearances of δA0 in the action with this equation and
performing an integration by parts, we can eliminate all the derivatives on the variables other than h+. With the
definition ψa = (Φ, B, s, δA, δAz, δχ1, δχ2), we have

δ2LS = Aḣ+,kḣ+,−k + Caḣ+,kψ
a
−k + C∗aḣ+,−kψ

a
k + Eah+,kψ

a
−k + E∗ah+,−kψ

a
k −Mh+,kh+,−k + Jabψakψb−k , (61)

where A, Ca, Ea, M, and Jab are functions described by the background quantities, with Jab = J ∗ba and detJab 6= 0.
We do not write down the explicit expressions for all these functions for now. Rather, we emphasize the methodology,
and the final expressions will be shown below. After substituting the equations of motion for ψak and ψa−k, we obtain

δ2LS = Aḣ+,kḣ+,−k −
[
M+ (J−1)abEaE∗b − Ḋ

]
h+,kh+,−k , (62)

where A = A−(J−1)abCaC∗b and D = (J−1)abCaE∗b . Note that here we used the fact that D is real, found by evaluating
the explicit form of D.

At large k, the second-order perturbed Lagrangian takes the following form:

δ2LS =
M2

Pl

2
a3k4(1 + 2χ2)

[
Gḣ+,kḣ+,−k −Kh+,kh+,−k

]
. (63)

The k-dependent coefficients G and K are written as

G =
Gn

Gd
, K =

k2

(1 + 2χ2)a2
, (64)

where

Gn = 6(1 + κ2)2(1 + 2χ2)χ2
2H
[
(3χ1 + 2χ2)σ2 −Hχ̇1

]
+
{[

3κ2(3χ1 + 2χ2) + (−2 + κ2)2(−1 + 3χ1)χ2
2

]
σ2 − 3κ2Hχ̇1

}
χ̇2 , (65)

Gd = Gn + 3κ4
[
(3χ1 + 2χ2)σ2 −Hχ̇1

]
χ2

2χ̇2 . (66)

Here, we defined

κ(t) :=

∣∣∣∣kykz
∣∣∣∣ e−3β(t) , (67)

which is nothing but the ratio between the y- and z-components of the physical wavevector, i.e., κ(t) = k̂y(t)/k̂z(t).
The physical wavenumbers are defined in terms of the components of k with respect to the tetrad basis:

kidx
i = kydy + kzdz =: k̂y(t)

(
a(t)eβ(t)dy

)
+ k̂z(t)

(
a(t)e−2β(t)dz

)
. (68)

We see that there is no gradient instability as long as the condition (57) is satisfied, though the condition for the
absence of ghost instabilities is not obvious at this point.
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FIG. 2. Left: Time evolution of G for σ > 0. The behavior drastically changes near κ0 ∼ 5.5. G is always positive for small-κ0

modes with κ0 . 5.5. Right: Time evolution of G for σ < 0. The behavior drastically changes near κ0 ∼ 0.15. G is always
positive for large-κ0 modes with κ0 & 0.15.

On an FLRW background, the quadratic Lagrangian for the perturbations corresponding to the plus-mode gravi-
tational waves is reduced to the following form,

δ2LS

∣∣
FLRW

=
M2

Pl

2
a3k4(1 + 2χ2)

[
ḣ+,kḣ+,−k −

k2

(1 + 2χ2)a2
h+,kh+,−k

]
, (69)

without taking the large-k limit. This expression coincides with the one for the cross mode (58). Thus, as long as the
condition (57) is satisfied, the FLRW background is stable against both the plus- and cross-mode tensor perturbations
up to the linear order. Once again, χ2 vanishes in the isotropic limit for our choice of potential (47), and the quadratic
perturbed action reduces to that of Einstein gravity.

Let us go back to the anisotropic case and discuss under which situation ghost instabilities can be avoided. For
simplicity, we focus on large-k modes. The stability is guaranteed if G in (64) is positive. The quantity G can be
expressed in terms of κ, χ1, and χ2 by making use of the background equations and the explicit potential form, i.e.,
G = G(κ, χ1, χ2). Since the functional structure of G is quite involved and its sign may change time to time, we study
the time evolution of G numerically. We choose the origin of time by the condition χ1(t = 0) = −1. In addition, we
vary the value of κ at t = 0, κ0 := κ(t = 0). The numerical results under this setup are shown in the left and right

panels of Fig. 2 for σ > 0 and σ < 0, respectively (recall σ = β̇ here). Let us first discuss the case with σ > 0. From
the left panel of Fig. 2, we can see that ghost instabilities are avoidable when

κ0 . 5.5 (for σ > 0) . (70)

We emphasize that this condition is automatically satisfied if we assume the initial conditions for perturbations are
provided sufficiently far in the past. This is because the value of κ(t) is exponentially damped as time progresses:

κ(t) = e−3β(t)κ0 ∼ e−
3√
6
µt
κ0 . (71)

Hence, if we set every initial condition at a sufficiently early time t = ti < 0 (i.e., µ|ti| � 1), the ghost-free condition
for the wavenumber at t = ti can be understood as

κ(ti) . e
3√
6
µ|ti| × 5.5→∞ (µti → −∞) , (72)

and thus essentially all modes can satisfy the stability condition. A similar argument holds also for σ < 0. From the
right panel of Fig. 2, ghost instabilities are avoidable when

κ0 & 0.15 (for σ < 0) . (73)

This condition is also naturally satisfied because now κ(t) grows exponentially as time progresses. Thus, the stability
condition is satisfied for essentially all modes if we set their initial conditions at a sufficiently early time:

κ(ti) > e
− 3√

6
µ|ti| × 0.15→ 0 (µti → −∞) . (74)
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V. SUMMARY AND DISCUSSION

In this work, we proposed limiting extrinsic curvature theory as a new class of limiting curvature theories. The
general actions of two specific models are given by (6). We showed that mimetic gravity and cuscuton gravity are
both contained in this category, and they are actually equipped with a mechanism limiting the Hubble parameter on
a homogeneous spacetime. However, limiting the Hubble parameter is not enough to obtain a non-singular universe
when the spacetime is not isotropic. In the context of the framework developed in this work, we constructed a minimal
model limiting anisotropies by introducing an additional limiting potential for the anisotropies. For this model, we
found a non-singular Bianchi I solution in the sense that there is no scalar curvature singularity. It starts from a
phase of constant Hubble parameter and constant anisotropy parameter, and in vacuum, it ends up with Minkowski
spacetime in the asymptotic future. We derived the stability conditions under the SO(2) symmetry of the spacetime.
Note that, as in cuscuton gravity, the theory in vacuum has only two dynamical degrees of freedom, h× and h+, i.e.,
counterparts of the cross- and plus-mode tensor perturbations on an isotropic spacetime, respectively. As far as the
condition 1 + 2χ2 > 0 is satisfied, where χ2 is the auxiliary scalar field ensuring the boundedness of anisotropies, both
modes are free of gradient instabilities. Moreover, ghost instabilities are absent for h×. For the h+ mode, one can
circumvent the ghost instabilities for essentially all wavenumbers if the limiting phase lasts long enough, i.e., if we
put the initial conditions for the perturbations much before the end of the limiting phase.

Though we analyzed the vacuum case where the spacetime approaches Minkowski space, it is straightforward to
introduce a cosmological constant and/or matter fields to the theory. In this case, our framework can be under-
stood as the early-time completion of the inflationary scenario without causing any inconsistency with experimental
results in the low-energy regime. Yet, it would be interesting to see how adding matter might affect the stability
of the cosmological perturbations. Another caveat is that we studied the case where the limiting potential has the
form V (χ1, χ2) = V1(χ1)+V2(χ2) and V1(χ) = V2(χ). If we introduce a hierarchy between V1 and V2, we can keep the
anisotropy parameter smaller than the Hubble parameter at all times. However, in that case, we expect instabilities
to appear in a much broader region of wavenumbers for the h+ mode, which cannot be overcome by setting the initial
conditions early.

Another limitation of the current model is that the auxiliary fields still grow without bound in the asymptotic past.
Consequently, one must interpret the theory as an effective field theory whose regime of validity cannot fully include
the limit χk →∞. Determining the strong coupling scale would thus be an interesting follow-up (in the spirit of, e.g.,
Refs. [83, 84]). This may also have implications for how and when one may set the initial conditions for perturbations
in the asymptotic past. This is certainly an issue that deserves a closer investigation, especially in the context of an
anisotropic universe since an anisotropic spacetime is not conformally flat and the initial state would be different from
the standard ‘Minkowski limit’ Bunch-Davies state.

It is interesting to mention that our formalism can be extended to include the acceleration aµ := nν∇νnµ of the
spatial hypersurface. That is,

S =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(AµA

µ + 1) + χ1(∇µAµ)2 + χ2∇µAν∇νAµ + χ3A
ν∇νAµAλ∇λAµ − V (χ1, χ2, χ3)

]
.

(75)
We can interpret this action as a non-linear extension of Einstein-aether theory.8 Indeed, by integrating out the
auxiliary fields, we obtain

S =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(AµA

µ + 1)− f((∇µAµ)2,∇µAν∇νAµ, Aν∇νAµAλ∇λAµ)

]
, (76)

where f is a scalar function determined by the potential V . A more direct relation can be seen with a potential of
the form V = (µ2/2M2

Pl)
∑3
k=1(χk−ckM2

Pl)
2, where µ is a mass scale and the ck’s are dimensionless parameters, though

this is not a limiting potential. Expanded about E/µ� 1, where E2 ∼ max{(∇µAµ)2,∇µAν∇νAµ, Aν∇νAµAλ∇λAµ},
this action is actually reduced to Einstein-aether theory with higher-order corrections (see Eq. (1) in Ref. [78] for a
comparison). On the other hand, by identifying Aµ as the unit normal vector nµ, the extrinsic curvature is written
as Kµν = ∇µAν +Aµaν , which allows us to rewrite the above action as

S =

∫
d4x
√
−g
[
M2

Pl

2
R+ λ(AµA

µ + 1) + χ1K
2 + χ2K

µ
νK

ν
µ + χ3a

µaµ − V (χ1, χ2, χ3)

]
. (77)

8 A subclass of Einstein-aether theory, precisely corresponding to the original cuscuton theory, was considered in Ref. [26] to study a
non-singular bouncing background, reproducing the dynamics of Loop Quantum Cosmology.
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This gives us the picture that the non-linear extension of Einstein-aether theory includes a theory limiting the
extrinsic curvature and the acceleration. Note that the number of dynamical degrees of freedom is five in general in
the Einstein-aether theory, three of which disappearing when restricting ourselves to theories without the acceleration,
corresponding to the kinetic term of the vector field [77].

Another interesting link can be made with Ref. [85], where a Kaluza-Klein scenario was proposed within cuscuton
gravity. In this scenario, a higher-dimensional spacetime can dynamically reduce to a four-dimensional inflationary
spacetime with stable extra dimensions. It can thus be understood as a kind of anisotropic inflation in higher-
dimensional spacetime. As such, the limiting anisotropy mechanism that was introduced in the present paper may be
applied to obtain non-singular spacetimes in higher-dimensional theories. The theory presented in the present paper
could also potentially be used to construct general anisotropic inflationary models by having the limiting anisotropy
scale comparable to the inflationary energy scale. In such a context, the anisotropies present during inflation could
leave specific imprints in the observable cosmological perturbations, and it would be interesting to see how these
signals differ from those of ‘standard’ anisotropic inflation models (see, e.g., Refs. [86–92]).

Another context in which the present work may be interesting to apply is with regard to the initial conditions of the
universe. It was found in Ref. [93] that spacetimes dominated by anisotropies in the approach to the big bang in the
very early universe tend to have a divergent action, indicating ill-defined path integrals and quantum amplitudes in the
context of quantum cosmology. Accordingly, it was found that essentially only isotropic and accelerating spacetimes
could originate from the big bang. In the present work, the ‘big bang’ (the moment the spatial hypersurface reaches
zero volume) is pushed to t = −∞, and the presence of anisotropies would still allow for a convergent action since
they are bounded (as is the Hubble parameter). Thus, within the model developed in the present paper, a constant-
anisotropy and constant-Hubble parameter initial phase for the universe could be allowed under the principle of a
finite action in the past. However, if the spacetime is extendible beyond the point where a → 0 (as t → −∞) as
explored in Ref. [5] for homogeneous and isotropic (quasi-)de Sitter spacetimes, then the full spacetime might have
a previous contracting phase or have a cyclic past extension, in which case the past action could potentially diverge
again. The conditions for extendibility of a spacetime with past null boundary are not known though when the
assumption of isotropy is dropped.

Finally, an immediate follow-up to this work pertains to non-singular bouncing cosmology. As already mentioned,
a homogeneous and isotropic bounce is straightforward to achieve within mimetic gravity or cuscuton gravity, and in
the latter case, linear inhomogeneities have been shown to present no instability. Thus, the inclusion of anisotropies
in the context of the cuscuton-type models developed in the present paper and studying their evolution through a
bounce (in a similar fashion to Ref. [94], which did the analysis for mimetic gravity) would be very interesting. If
anisotropies are bounded in the same way as the Hubble parameter is, then it would imply that the BKL instability
in the contracting phase (the rapid, chaotic blow up of the anisotropies) is evaded. There would remain to also study
the evolution of perturbations to check whether or not the linear stability about an isotropic background, shown to
hold in a cuscuton bounce, is spoiled when introducing anisotropies in addition to inhomogeneities.
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Appendix: Appropriate choice of limiting potential for recovering Einstein gravity at low energies

Here, we mention how to choose the potential function in limiting extrinsic curvature theories of the form

S(lim) = M2
Pl

∫
d4x
√
−g

[
n∑
k=1

χkIk(Kµν , hµν , Dµ)− µ2V ({χk})

]
, (A.1)
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such that the total action is the sum of the Einstein-Hilbert action, the matter action, and the above limiting
curvature action. In the above, the Ik’s are functions having mass dimension two and µ is a mass parameter
characterizing the potential. For simplicity, we assume the potential term can be separated into n functions as
V ({χk}) := V (χ1, . . . , χn) =

∑n
k=1 Vk(χk). We also assume that the χk’s have large absolute values at high energies

and small ones at low energies, namely, the χk’s are expressed in terms of positive powers of the energy scale asymp-
totically. To limit the extrinsic curvature, we require the potential at high energies to behave at most linearly, i.e.,
for each k, we want

Vk(χk) ∼ O(χk) as χk →∞ . (A.2)

Of course, we require that the first derivatives of the potentials, ∂Vk/∂χk, are finite for any field values of χk as well.
On the other hand, as far as one thinks of the limiting curvature mechanism as coming from quantum corrections at
high energies, we need to recover Einstein gravity when the curvature is small. This means the corrections should
have a higher mass dimension than that of Einstein gravity. If the potentials behave as power laws for small χk, i.e.,

Vk(χk) ∼ χmk

k as χk → 0 , (A.3)

where the mk’s are real numbers, the curvature invariants scale as Ik = ∂Vk/∂χk ∼ µ2χmk−1
k . The correction terms

in the action then scale as

χkIk ∼ µ2Vk ∼ µ2

(
Ik
µ2

)mk/(mk−1)

. (A.4)

Since Ik has mass dimension two, R and Ik should be of the same order. Correspondingly, the ratio of the quantum
corrections to the Ricci scalar is evaluated as

χkIk
R
∼ µ2Vk

R
∼
(
Ik
µ2

)1/(mk−1)

∼
(
ρmatter

µ2M2
Pl

)1/(mk−1)

, (A.5)

where we used Ik ∼ R ∼ ρmatter/M
2
Pl. Therefore, if we require

mk > 1 (A.6)

for each k, we can recover Einstein gravity at low energies with ρmatter/(µ
2M2

Pl)� 1.
In summary, provided that the potential function V is separable into n functions of χk, one should fix the potential

such that Vk(χk) ∼ O(χk) as χk →∞ and Vk(χk) ∼ χmk

k as χk → 0, with mk > 1. As a concrete example, we chose a
potential function satisfying these two requirements in (47). Indeed, for Vk(χk) ∝ χk− tanhχk, we have Vk(χk) ∼ χk
as χk →∞ and Vk(χk) ∼ χ3

k as χk → 0.
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