Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The impact of bedform migration on benthic oxygen fluxes

MPG-Autoren
/persons/resource/persons210219

Ahmerkamp,  Soeren
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210481

Janssen,  Felix
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210556

Kuypers,  Marcel M. M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210462

Holtappels,  Moritz
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Ahmerkamp_15.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ahmerkamp, S., Winter, C., Janssen, F., Kuypers, M. M. M., & Holtappels, M. (2015). The impact of bedform migration on benthic oxygen fluxes. Journal of Geophysical Research: Biogeosciences, 120: 1, pp. 2229-2242.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-C3AD-0
Zusammenfassung
Permeable sediments are found wide spread in river beds and on continental shelves. The transport of these sediments is forced by bottom water currents and leads to the formation of bedforms such as ripples and dunes. The bottom water flow across the bedforms results in pressure gradients that drive pore water flow within the permeable sediment and enhance the supply of reactive substrates for biogeochemical processes. This transport-reaction system has been extensively studied for the case of stationary bedforms, whereas bedform migration—the most ubiquitous form of sediment transport—has been often ignored. To study the impact of sediment transport on pore water flow, we incorporated an empirical model of bedform migration into a numerical transport-reaction model for porous media, using oxygen as reactive solute. The modeled oxygen flux changes significantly as soon as the sediment divides into an upper mobile layer (migrating bedform) and a stationary layer underneath. The bedform is increasingly flushed with oxic bottom water, whereas pressure gradients and pore water flow reverse at increasing rate underneath the bedform. This suppresses net pore water displacement and reduces the oxygen penetration depth up to 90%. In effect, the overall oxygen uptake decreases significantly with bedform migration although bottom water velocities increase. This counterintuitive effect is systematically described for a range of different sediment types, current velocities, and respiration rates and should be considered in future studies.