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72076 Tübingen, Germany.
3These authors contributed equally to this work.

∗Correspondence authors: xian@fhi-berlin.mpg.de,
stefan.bauer@tue.mpg.de, ernstorfer@fhi-berlin.mpg.de.

The electronic band structure (BS) of solid state materials imprints the multidimensional

and multi-valued functional relations between energy and momenta of periodically con-

fined electrons [1]. Photoemission spectroscopy is a powerful tool for its comprehensive

characterization. A common task in photoemission band mapping is to recover the un-

derlying quasiparticle dispersion [2], which we call band structure reconstruction. Tra-

ditional methods often focus on specific regions of interests [3, 4] yet require extensive

human oversight. To cope with the growing size and scale of photoemission data [5, 6],

we develop a generic machine-learning approach leveraging the information within elec-

tronic structure calculations for this task. We demonstrate its capability by reconstruct-

ing all fourteen valence bands of tungsten diselenide and validate the accuracy on vari-

ous synthetic data. The reconstruction uncovers previously inaccessible momentum-space

structural information on both global and local scales in conjunction with theory, while

realizing a path towards integrating band mapping data into materials science databases.
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The modelling and characterization of the electronic band structure of materials play an es-

sential role in materials design [7] and device simulation [8]. The BS lives in the momen-

tum space, Ω(kx, ky, kz, E), spanned by momentum (kx, ky, kz) and energy (E) coordinates of

the electrons. Photoemission band mapping [2] (see Fig. 1a) using momentum- and energy-

resolved photoemission spectroscopy (PES), including angle-resolved PES (ARPES) [9] and

multidimensional PES [5, 6] measures the BS as an intensity-valued multivariate probability

distribution directly in Ω. The proliferation of band mapping datasets and their public availabil-

ity brought about by recent hardware upgrades [5, 6, 10, 11] have ushered in the possibilities

of comprehensive benchmarking between theories and experiments. Interpreting the photoe-

mission spectra often requires least-squares fitting of the 1D energy distribution curves (EDCs)

to the single-particle spectral function [9] at selected momentum locations through heuristics

derived from physical knowledge of the materials and the experimental settings. Although,

in principle, such a physics-informed data model guarantees the highest accuracy and inter-

pretability, upscaling the pointwise fitting (or estimation) to large, densely sampled regions in

the momentum space (e.g. including 104 or more momentum locations) presents challenges

due to limited numerical stability, nor does it form a constructive mathematical framework for

progressive refinement. The situation becomes especially challenging for multidimensional and

multiband materials with complex band dispersions [12, 13, 14].

To navigate and comprehend band mapping data globally, we propose an analytical frame-

work (see Fig. 1b) for reconstructing the photoemission (or quasiparticle) BS as a set of energy

(or electronic) bands, formed by energy values (i.e. band loci) connected along momentum

coordinates. Because the local maxima of photoemission intensities are not always good indi-

cators of band loci, we exploit the connection between theory and experiment in our framework,

based on a probabilistic machine learning [15, 16] model to approximate the intensity data from

band mapping experiments. The gist of the model is rooted in the Bayes rule,

p(Θ|D) ∝ p(D|Θ)p(Θ), (1)

where the model parameters Θ = {θi} and the data D are mapped directly onto unknowns and

experimental observables. We assign the energy values of the photoemission BS as the model

parameters to extract from data, and a nearest-neighbor (NN) Gaussian distribution as prior,

p(Θ), to describe the proximity of energy values at nearby momenta. The EDC at every mo-

mentum grid point relates to the likelihood, p(D|Θ), when we interpret the photoemission in-
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tensity probabilistically. The optimal parameters are obtained via maximum a posteriori (MAP)

estimation, or maximizing the posterior, p(Θ|D), in statistical inference [15] (see Methods and

Supplementary Figs. 2-3). The posterior in the current setting forms a Markov random field

(MRF) [15, 17], which encapsulates the energy band continuity assumption and the measured

intensities distribution of photoemission in a probabilistic graphical model. For one benefit,

the probabilistic formulation can incorporate imperfect physical knowledge algebraically in the

model or numerically as initialization (i.e. warm start, see Methods) of the MAP estimation,

without requiring de facto ground truth and training as in supervised machine learning [18].

For another, the graphical model representation allows convenient optimization and extension

to other dimensions (see Supplementary Fig. 1 and section S1).

To demonstrate the effectiveness of the algorithm, we have reconstructed the entire 3D dis-

persion surfaces, E(kx, ky), of all 14 valence bands within the projected first Brillouin zone,

in (kx, ky, E) coordinates, of the semiconductor tungsten diselenide (WSe2), spanning ∼ 7 eV

in energy and ∼ 3 Å−1 along each momentum direction. We adapt informatics tools to BS

data to sample and compare the reconstructed and theoretical BSs globally. The accuracy of

the reconstruction is validated using synthetic data and the extracted local structural parameters

in comparison with pointwise fitting. The available data and BS informatics enable detailed

comparison of energy dispersion at a resolution of < 0.02 Å−1.

Valence band mapping. The 2D layered semiconductor WSe2 with 2H interlayer stacking

(2H-WSe2) is a model system for band mapping experiments [20, 21, 12]. Its valence BS con-

tains 14 strongly dispersive energy bands, formed by a mixture of the 5d4 and 6s2 orbitals of the

W atoms and the 4p4 orbitals of the Se atoms in its hexagonal unit cell. The strong spin-orbit

coupling due to heavy elements produces large momentum- and spin-dependent energy splitting

and modifications to the BS [12, 22]. The photoemission band mapping experiment captures

the photoelectrons directly in their 3D coordinates, (kx, ky, E), by a commercial electron mo-

mentum microscope (METIS 1000, SPECS GmbH, see Methods) [5, 6]. Earlier valence band

mapping and reconstruction in ARPES experiments on WSe2 have demonstrated a high degree

of similarity between theory and experiments [20, 21, 12], but a quantitative assessment within

the entire (projected) Brillouin zone is still lacking. Effects of sample degradation has also been

reported [21] during the course of long-duration angular scanning in ARPES measurements.
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Figure 1: From band mapping to band structure. a, Schematic of a photoemission band map-
ping experiment. The electrons from a crystalline sample’s surface are liberated by extreme UV
(XUV) or X-ray pulses and collected by a detector through either angular scanning or time-
of-flight detection schemes. b, Overview of the data-analytical framework for reconstruction
of the photoemission (or quasiparticle) band structure: (1) The volumetric data obtained from
a band mapping experiment first (2) go through preprocessing steps, then are (3) fed into the
probabilistic machine learning algorithm along with electronic structure calculations as initial-
ization of the optimization. The reconstruction algorithm for volumetric band mapping data is
represented as a 2D probabilistic graphical model with the band energies as parameters at each
node and tens of thousands of nodes in practice. (4) The outcome of the reconstruction is post-
processed (e.g. symmetrization) to (5) yield the dispersion surfaces (i.e. energy bands) of the
photoemission band structure ordered by band indices. c-f, Effects of the intensity transforms
in preprocessing viewed in both 3D and along high-symmetry lines of the projected Brillouin
zone (see b(1)), from the original data (c) through intensity symmetrization (d), contrast en-
hancement [19] (e) and Gaussian smoothing of intensities (f). The intensity data in c-f are
normalized individually for visual comparison.
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With our high-repetition-rate photon source [11] and the fast electronics of the momentum

microscope, band mapping of WSe2 achieves sufficient signal-to-noise ratio for valence band

reconstruction within only tens of minutes of data acquisition, without the need for angular

scanning and subsequent reconstruction from momentum-space slices.

Band structure reconstruction and digitization. We use a 2D MRF to model the loci of

an energy band within the intensity-valued 3D band mapping data, regarded as a collection of

momentum-ordered EDCs. It is graphically represented by a rectangular grid overlaid on the

momentum axes with the indices (i, j) (i, j are nonnegative integers), as shown in step (3)

of Fig. 1b. The undetermined band energy of the EDC at (i, j), with the associated momen-

tum coordinates (kx,i, ky,j), is considered a random variable (or model parameter), Ẽi,j , of the

MRF. Together, the probabilistic model is characterized by a joint distribution, expressed as

the product of the likelihood and the Gaussian prior, in Eq. (1). To maintain its simplicity, we

don’t explicitly account for the intensity modulations of various origins (such as imbalanced

transition matrix elements [23]) in the original band mapping data, which cannot be remedi-

ated by upgrading the photon source or detector. Instead, we preprocess the data to minimize

their effects on the reconstruction (see Fig. 1c-f). The preprocessing steps include (1) inten-

sity symmetrization, (2) contrast enhancement [19], followed by (3) Gaussian smoothing (see

Methods), whereafter the continuity of band-like features is restored. The EDCs from the pre-

processed data, Ĩ , are used effectively as the likelihood to calculate the MRF joint distribution,

p({Ẽi,j}) =
1

Z

∏
ij

Ĩ(kx,i, ky,j, Ẽi,j) ·
∏

(i,j)(l,m)|NN

exp

[
−(Ẽi,j − Ẽl,m)2

2η2

]
. (2)

Here, Z is a normalization constant, η is a hyperparameter defining the width of the Gaussian

prior,
∏

ij denotes the product over all discrete momentum values sampled in the experiment

and
∏

(i,j)(l,m)|NN the product over all the NN terms. Detailed derivation of Eq. (2) is given

in Supplementary Information section S1. Reconstruction of the bands in the photoemission

BS is carried out sequentially and relies on local optimization of the MRF model parameters,

{Ẽi,j}, and operates efficiently on scalable hardware (see Methods). We further inject relevant

physical knowledge to correctly resolve band crossings and nearly degenerate energies by using

density functional theory (DFT) band structure calculation with semi-local approximation [24]

as a starting point for the reconstruction. The calculation qualitatively entails such physical
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symmetry information for WSe2, albeit not quantitatively reproducing the experimental quasi-

particle BSs [24] at all momentum coordinates. As shown with four DFT calculations with

different exchange-correlation functionals [24] to initiate the reconstruction for WSe2 and in

various cases using synthetic data with known ground truth (see Methods, Supplementary Table

1 and Supplementary Figs. 4-8), the reconstruction algorithm is not particularly sensitive to the

initialization as long as the information about band crossings is present.

The reconstructed 14 valence bands of WSe2 initialized by LDA-level DFT are shown in

Fig. 2b-d and Supplementary Videos. To globally compare the computed and reconstructed

bands at a consistent resolution, we expand the BS in shape descriptors, such as orthonormal

polynomial bases [25], which forms a unified representation of BS data unbiased by the un-

derlying electronic detail. The geometric featurization of band dispersion allows multiscale

sampling and comparison using the coefficient (or feature) vectors [26]. Although the choice

of basis is not unique, Zernike polynomials (ZPs) are used to decompose the 3D dispersion

surfaces (see Fig. 3 and Methods) because of their existing adaptations to various boundary

conditions [27]. In Fig. 3a-b, the band dispersions show generally decreasing dependence (seen

from the magnitude of coefficients) on basis terms with increasing complexities (see Fig. 3a),

and the majority of dispersion is encoded into a subset of the terms (see Fig. 3b). The example

in Fig. 3b and more numerical evidence in Supplementary Fig. 10 illustrate the approximation

capability of the hexagonal ZPs. Concisely, the coefficient amplitudes and their distribution

function as geometric fingerprints of the energy bands to describe their dispersions on a global

scale. We can then use similarity or distance metrics (see Methods) for their classification and

comparison [26], an approach inspired by content-based image retrieval from databases [28].

For example, in Fig. 3c, the positive cosine similarity confirms the strong shape (or dispersion)

resemblance of the 7 pairs of spin-split energy bands in the reconstructed BS of WSe2, while the

low negative values, such as those between bands 1-2 and 13-14, reflect the opposite directions

of their respective dispersion (see Fig. 2d). These observations are consistent with the outcome

obtained from DFT calculations (see Supplementary Fig. 9).

Moreover, we introduce a BS distance metric (see Methods), invariant to the global energy

shift frequently used to adjust the energy zero, to quantify the differences in band dispersion

and the relative spacing between bands. The distance is calculated using the geometric fea-

ture vectors to bypass interpolation errors while reconciling the coordinate spacing difference
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Figure 2: Reconstructed band structure from WSe2 photoemission data. a, Comparison
between the preprocessed WSe2 valence band photoemission data along Γ-M direction, DFT
band structure calculated with different exchange-correlation functionals (solid red lines), and
their final positions after band-wise rigid-shift alignment (dashed yellow lines) as part of hy-
perparameter tuning. The energy zero of each DFT calculation is set at the K point (see also
Supplementary Fig. 4). b, Exploded view (with enlarged spacing between bands for better visi-
bility) of reconstructed energy bands of WSe2. c, Overlay of reconstructed band dispersion (red
lines) on preprocessed photoemission band mapping data cut along the high-symmetry lines in
the hexagonal Brillouin zone of WSe2. The residual intensities on the low-energy end are from
contrast-amplified background signals unrelated to the band structure. d, Band-wise compari-
son between LDA-level DFT (LDA-DFT) calculation used to initialize the optimization and the
reconstructed 14 valence bands of WSe2 (symmetrized in postprocessing). The boundaries of
the first Brillouin zone are traced out by the dashed hexagons. The band indices on the upper
right corners in d follow the ordering of the electronic orbitals in this material obtained from
LDA-DFT. The color scale of band energies in b and d are normalized within each band to
improve visibility.
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Figure 3: Digitization and comparison of WSe2 band structures. a, Decomposition of the
14 energy bands of WSe2 into hexagonal Zernike polynomials (ZPs) with selected major terms
displayed on the left. The zero spatial frequency term in the decomposition is subtracted for
each band. The counts of large (> 10−2 by absolute value) coefficients of all 14 bands are
accumulated at the bottom row of the decomposition to illustrate their distribution, which de-
crease in value towards higher-order terms. b, Approximation of the shape (or dispersion) of the
fourth energy band using different numbers of hexagonal ZPs. Both of the average and relative
approximation errors (see Methods) shown on the far right drop as more terms are included,
while summation in the coefficient-ranked order (used to generate the intermediate results in
b) achieves faster convergence than in the default polynomial order. c, Cosine similarity ma-
trix for pairwise comparison of the reconstructed band dispersion in Fig. 2. The band indices
follow those in Fig. 2d. d, Two-part similarity matrix showing band structure distances (in
the upper triangle) and their corresponding standard errors (in the lower triangle) between the
computed and reconstructed band structures of WSe2. The abbreviation “LDA recon.” denotes
reconstruction with LDA-level DFT band structure as the initialization.
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between reconstructed and theoretical BSs, essential for differentiating BS data from heteroge-

neous sources in databases. The results in Fig. 3d refer to the valence BS of WSe2 discussed

in this work, where the distances and their spread (i.e. standard errors) are displayed in the

upper and lower triangles, respectively. A high degree of consistency exists among the recon-

structions (pairwise distance no larger than 60±8 meV/band) regardless of the level of DFT

calculation used for initialization, indicating the robustness of the probabilistic reconstruction

algorithm, whereas the distances between the DFT calculations are much larger, both in energy

shifts and their spread. The current framework can also support the initialization from more ad-

vanced electronic structure methods, such as GW [29] or that including electronic self-energies

renormalized by electron-phonon coupling [30], when semi-local approximation yields not only

quantitatively, but also qualitatively wrong quasiparticle BSs compared with experiment. How-

ever, a systematic benchmark of theory and experiment goes beyond the scope of this work. As

shown in Fig. 3d and Supplementary Fig. 4, the learning algorithm can bridge the epistemic

gap between theories to obtain a consistent reconstruction.

Besides providing global structural information, the reconstruction improves the robustness

of traditional region-of-interest lineshape fitting in extended regions of the momentum space

(see Supplementary Fig. 11), when used as initial guess. Pointwise fitting in turn acts as re-

finement of local details not explicitly included in the probabilistic reconstruction model, which

prioritizes efficiency. A compendium of local parameters are retrieved using this approach (see

Supplementary Table 2). We obtain the trigonal warping parameter of the first two valence

bands around K-point, 5.8 eV·Å3 and 3.9 eV·Å3, respectively, confirming the magnitude differ-

ence between these spin-split bands predicted by theory [22]. Fitting around M′ (and M) reveals

that the gap opened by spin-orbit interaction extends beyond the saddle point in the dispersion

surface with the minimum gap at 338 meV, markedly larger than DFT results. Overall, the

reconstruction yields local structural information consistent with the more laborious pointwise

fitting. Finally, our approach reduces the data size by over 5000 times from 3D band mapping

data to geometric features vectors (see Methods), facilitating database integration.

Conclusion and outlook. We have formulated band structure reconstruction ubiquitous in pho-

toemission band mapping in an inference perspective and described an efficient reconstruction

procedure by combining probabilistic machine learning with the physical knowledge embedded
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in electronic structure calculations, as demonstrated for the energy-dispersive, multiband mate-

rial of WSe2. The reconstruction reveals global and local structural information challenging to

access by pointwise fitting. Our approaches lend valuable insights to automating data analysis in

materials characterization and future upgrade into an end-to-end framework balancing physical

constraints and computational efficiency to achieve desired accuracy. The reconstruction out-

come should assist interpretation of deep-lying bands, parametrizing multiband Hamiltonian

models [31], simulation of realistic devices [8], and complement theoretical data in materi-

als science databases. Implementation of the reconstruction across multiple materials and to

higher-dimensional data [5], including temperature, photon energy, dynamical time delay and

spin as resolved quantities, will generate comprehensive knowledge about the (non)equilibrium

electronic structure of materials to benchmark theories. Likewise, the method is transferable to

extract the band structure of other quasiparticles (e.g. phonons [32] or polaritons) in periodic

systems, given the availability of these alternative band mapping data. The multidisciplinary

methodology provides an example for building next-generation high-throughput materials char-

acterization toolkits combining learning algorithms with physical knowledge [33] to arrive at a

comprehensive understanding of materials properties unattainable before.

Methods

Band mapping measurements. Photoemission band mapping of WSe2 using multidimen-

sional photoemission spectroscopy were conducted using a laser-driven, high harmonic generation-

based extreme UV light source [11] operating at 21.7 eV and 500 kHz and a METIS 1000

(SPECS GmbH) momentum microscope featuring a delay-line detector coupled to a time-of-

flight drift tube [6, 34]. Single crystal samples of WSe2 (> 99.995% pure) were purchased

from HQ graphene and were used directly for measurements without further purification. Be-

fore measurements, the WSe2 samples were attached to the Cu substrate by conductive epoxy

resin (EPO-TEK H20E). The samples were cleaved by cleaving pins attached to the sample

surface upon transfer into the measurement chamber, which operates at an ambient pressure

of 10−11 mbar during photoemission experiments. No effect of surface termination has been

observed in the measured WSe2 photoemission spectra, similar to previous experimental ob-

servations [20, 12]. For the valence band mapping experiments, the energy focal plane of the

photoelectrons within the time-of-flight drift tube was set close to the top valence band.
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Data processing and reconstruction. The raw data, in the form of single-electron events

recorded by the delay-line detector, were preprocessed using home-developed software pack-

ages [35]. The events were first binned to the (kx, ky, E) grid with a size of 256×256×470 to

cover the full valence band range in WSe2 within the projected Brillouin zone, which amounts

to a pixel size of ∼ 0.015 Å
−1

along the momentum axes and ∼ 18 meV along the energy

axis. The bin sizes are within the limits of the momentum resolution (< 0.01 Å
−1

) and energy

resolution (< 15 meV) of the photoelectron spectrometer [36].

Data binning is carried out in conjunction with the necessary lens distortion correction [37]

and calibrations as described in [35]. The outcome provides a sufficient level of granularity

in the momentum space to resolve the fine features in band dispersion while achieving higher

signal-to-noise ratio than using single-event data directly. Afterwards, we applied intensity

symmetrization to the data along the sixfold rotation symmetry and mirror symmetry axes [12]

of the photoemission intensity pattern in the (kx, ky) coordinates, followed by contrast enhance-

ment using the multidimensional extension of the contrast limited adaptive histogram equaliza-

tion (MCLAHE) algorithm, where the intensities in the image are transformed by a look-up

table built from the normalized cumulative distribution function of local image patches [19].

Finally, we applied Gaussian smoothing to the data along the kx, ky and E axes with a standard

deviation of 0.8, 0.8 and 1 pixels (or about 0.012 Å
−1, 0.012 Å

−1, and 18 meV), respectively.

After data preprocessing, we sequentially reconstructed every energy band of WSe2 from

the photoemission data using the maximum a posteriori (MAP) approach described in the main

text. The reconstruction requires tuning of three hyperparameters: (1) the momentum scaling

and (2) the rigid energy shift to coarse-align the computed energy band, e.g. from density

functional theory (DFT), to the photoemission data, and (3) the width of the nearest-neighbor

Gaussian prior (η in Eq. (2)). The hyperparameter tuning is also carried out individually for

each band to adapt to their specific environment. An example of hyperparameter tuning is given

in Supplementary Fig. 3. The MAP reconstruction method involves optimization of the model

parameters (i.e. band energy random variables), {Ẽi,j} to maximize the posterior probability

p = p({Ẽi,j}) or to minimize the negative log-probability loss function, L := − log p, obtained

from Eq. (2) as is used in our actual implementation.

L({Ẽi,j}) = −
∑
i,j

log I(kx,i, ky,j, Ẽi,j) +
∑

(i,j),(l,m)|NN

(Ẽi,j − Ẽl,m)2

2η2
+ const. (3)
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We implemented the optimization using a parallelized version of the iterated conditional mode

(ICM) [38] method in Tensorflow [39] in order to run on multicore computing clusters and

GPUs. The parallelization involves a checkerboard coloring scheme (or coding method) of

the graph nodes [40] and subsequent hierarchical grouping of colored nodes, which allows

alternating updates on different subgraphs (i.e. subsets of the nodes) of the Markov random

field during optimization. Typically, the optimization process in the reconstruction of one band

converges within and therefore is terminated after 100 epochs, which takes ∼ 7 seconds on a

single NVIDIA GTX980 GPU for the above-mentioned data size. Details on the parallelized

implementation are provided in section S1 of the Supplementary Information. In addition,

because symmetry information is not explicitly included in the MRF model, the reconstructed

bands generally requires further symmetrization as refinement or post-processing to be ready

for database integration.

We described our approach of using band structure calculations to initialize the MAP op-

timization as a warm start. The term ”warm start” in the context of numerical optimization

generally refers to the initialization of an optimization using the outcome of an associated and

yet more solvable problem (e.g. surrogate model) obtained beforehand that yields an approx-

imate answer, instead of starting from scratch (i.e. cold start). Warm-starting an optimization

improves the effective use of prior knowledge and its convergence rate [41]. In the current

context, we regard the band structure reconstruction from photoemission band mapping data as

the optimization problem to warm start, and the outcome from an electronic structure calcula-

tion can produce a sufficiently good approximate to the solution of the optimization problem.

For WSe2, straightforward DFT calculations with semi-local approximation (which in itself

involves explicit optimizations such as geometric optimization of the crystal structures) are

sufficient, but our approach is not limited to DFT. Therefore, the use of ”warm start” in our

application is conceptually well-aligned with the origin of the term.

To validate the MAP reconstruction algorithm in a variety of scenarios, we used synthetic

photoemission data where the nominal ground-truth band structures are available. The band

structures are constructed using analytic functions, model Hamiltonians or DFT calculations.

The initializations are generated by tuning the numerical parameters used to generate the ground-

truth band structures. The procedures and results are presented in section S2 of the Supplemen-

tary Information. In simple cases, such as single or well-isolated bands, the reconstruction
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yields a close solution to the ground truth even with a flat band initialization. In the more

general multiband scenario with congested bands and band crossings (or anti-crossings), an

approximate dispersion (or shape) of the band and the crossing information is required in the

initialization (i.e. warm start) in order to converge to a realistic solution. We further tested the

robustness of the initializations by (1) scaling the energies of the ground truth and by (2) us-

ing DFT calculations with different exchange-correlation (XC) functionals, in order to capture

sufficient variability of available band structure calculations in the real world. We quantify the

variations in the initializations and the performance of the reconstruction using the average error

(Eq. (8), or Fig. 3b), calculated with respect to the ground truth. Among the different numerical

experiments, we find that the optimization converges consistently to a set of bands that better

matches the experimental data than the initialization. This is manifest in that the average errors

of the initializations are reduced to a similar level in the corresponding reconstruction outcomes,

a trend seen over all bands regardless of their dispersion. In the synthetic data with an energy

spacing of ∼ 18 meV, the average error in the reconstruction is on the order of 40-50 meV for

each band, which amounts to an average inaccuracy of < 3 bins along the energy dimension

at a momentum location. The inaccuracy is, however, dependent on the bin sizes used in the

preprocessing and the fundamental resolution in the experiment. We have made the code for

the MAP reconstruction algorithm and the synthetic data generation publicly accessible from

the online repository fuller [42] for broader applications.

Band structure calculations. Electronic band structures were calculated within (generalized)

DFT using the local density approximation (LDA) [43, 44], the generalized-gradient approxi-

mation (GGA-PBE) [45] and GGA-PBEsol [46]), and the hybrid XC functional HSE06 [47],

which incorporates a fraction of the exact exchange. All calculations were performed with

the all-electron, full-potential numeric-atomic orbital code, FHI-aims [48]. They were con-

ducted for the geometries obtained by fully relaxing the atomic structure with the respective

XC-functional to keep the electronic and atomic structures consistent. Spin-orbit coupling was

included in a perturbational fashion [49]. The momentum grid used for the calculation was

equally sampled with a spacing of 0.012 Å
−1

in both kx and ky directions that covers the irre-

ducible part of the first Brillouin zone at kz = 0.35 Å
−1, estimated using the inner potential of

WSE2 from a previous measurement [12]. The calculated band structure is symmetrized to fill

the entire hexagonal Brillouin zone to be used to initialize the band structure reconstruction and
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synthetic data generation. We note here that for the MAP reconstruction, the momentum grid

size used in theoretical calculations (such as DFT at various levels used here) need not be iden-

tical to that of the data (or instrument resolution) and in those cases an appropriate upsampling

(or downsampling) should be applied to the calculation to match their momentum resolution.

Further details are presented in section S3 of the Supplementary Information.

Band structure informatics. The shape feature space representation of each electronic band is

derived from the decomposition,

Eb(k) =
∑
l

alφl(k) = a · Φ (4)

Here, k = (kx, ky) represents the momentum coordinate, Eb(k) is the single-band dispersion

relation (e.g. dispersion surface in 3D), al and φl(k) are the coefficient and its associated basis

term, respectively. They are grouped separately into the feature vector, a = (a1, a2, ...), and

the basis vector, Φ = (φ1, φ2, ...). The orthonormality of the basis is guaranteed within the

projected Brillouin zone (PBZ) of the material.∫
k∈ΩPBZ

φm(k)φn(k) dk = δmn (5)

For the hexagonal PBZ of WSe2, the basis terms are hexagonal Zernike polynomials (ZPs) con-

structed using a linear combination of the circular ZPs via Gram-Schmidt orthonormalization

within a regular (i.e. equilateral and equiangular) hexagon [27]. A similar method can be used

to generate ZP-derived orthonormal basis adapted to other boundary conditions [27]. The repre-

sentation in feature space [26] provides a way to quantify the difference (or distance) d between

energy bands or band structures at different resolutions or scales without additional interpola-

tion. To quantify the shape similarity between energy bands Eb and Eb′ , we calculate the cosine

similarity using the feature vectors,

dcos(Eb, Eb′) =
a · a′

|a| · |a′|
, (6)

The cosine similarity is bounded within [−1, 1], with a value of 0 describing orthogonality of

the feature vectors and a value of 1 and -1 describing parallel and anti-parallel relations between

them, respectively, both indicating high similarity. The use of cosine similarity in feature space

allows comparison of dispersion while being unaffected by their magnitudes. In comparing the
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dispersion between single energy bands using Eq. (6), the first term in the polynomial expan-

sion, or the hexagonal equivalent of the Zernike piston [50], is discarded as it only represents a

constant energy offset (with zero spatial frequency) instead of dispersion, which is characterized

by a combination of finite and nonzero spatial frequencies.

The electronic band structure is a collection of energy bands EB = {Ebi} (i = 1, 2, ...).

To quantify the distance between two band structures, EB1 = {Eb1,i} and EB2 = {Eb2,i},
containing the same number of energy bands while ignoring their global energy difference, we

first subtract the energy grand mean (i.e. mean of the energy means of all bands within the

region of the band structure for comparison). Then, we compute the Euclidean distance, or the

`2-norm, for the ith pair of bands, db,i.

db,i(Eb1,i , Eb2,i) = ‖ã1,i − ã2,i‖2 =

√∑
l

(ã1,il − ã2,il)2. (7)

Here, ã denotes the feature vector after subtracting the energy grand mean so that any global

energy shift is removed. We define the band structure distance as the average distance over all

Nb pairs of bands, or dB(EB1 , EB2) =
∑Nb

i db,i(Eb1,i, Eb2,i)/Nb. The values of dB(EB1 , EB2)

are shown in the upper triangle of Fig. 3d and their corresponding standard errors (over the 14

valence bands of WSe2) in the lower triangle. The distance in Eq. (7) is independent of basis

and allows energy bands calculated on different resolutions or from different materials with the

same symmetry (e.g. differing only by Brillouin zone size) to be compared.

We use same-resolution error metrics to evaluate the approximation quality of the expansion

basis and to quantify the reconstruction outcome with a known ground-truth band structure.

Specifically, we define the average approximation error (with energy unit), ηavg, for each energy

band using the energy difference at every momentum location,

ηavg(Eapprox, Erecon) =

√
1

Nk

∑
k∈ΩPBZ

(Eapprox,k − Erecon,k)2, (8)

where Nk is the number of momentum grid points and the summation runs over the projected

Brillouin zone. In addition, we construct the relative approximation error, ηrel, following the

definition of the normwise error [51] in matrix computation,

ηrel(Eapprox, Erecon) =
‖Eapprox − Erecon‖2

‖Erecon‖2

. (9)
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Eq. (8)-(9) are used to compute the curves in Fig. 3b as a function of the number of basis terms

included in the approximation. The relevant code for the representation using hexagonal ZPs

and the computation of the metrics is also accessible in the public repository fuller [42].

Data reduction. The raw data and intermediate results are stored in the HDF5 format [35].

The file sizes quoted here for reference are calculated from storage as double-precision floats

or integers (for indices). The photoemission band mapping data of WSe2 (256×256×470 bins)

have a size of about 235 MB (240646 kB) after binning from single-event data (7.8 GB or

8176788 kB). The reconstructed valence bands at the same resolution occupy about 3 MB (3352

kB) in storage, and the size further decreases to 46 kB when we store the shape feature vector

associated with each band. If only the top-100 coefficient (ranked by the absolute values of their

amplitudes) and their indices in the feature vectors are stored, the data amounts to 24 kB. For

the case of WSe2, the top-100 coefficients can approximate the band dispersion with a relative

error (see Eq. (9)) of < 0.8% for every energy band, as shown in Supplementary Fig. 10.
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Supplementary Information

A machine learning route between band
mapping and band structure

S1 Band structure reconstruction

Physical foundations. The three quantities of common interest for the interpretation of photoe-

mission spectra are (1) the bare band energy, εk, (2) the complex-valued electron self-energy,

Σ(k, E) = ReΣ(k, E) + iImΣ(k, E), and (3) the transition matrix elements connecting the

final (f ) and initial (i) electronic states, Mf,i(k, E). An established interface between theory

and experiment for quantitating and interpreting the photoemission signal is the formalism of

an experimental observable—the single-particle spectral function [52, 9], A(k, E). For a single

energy band of a many-body electronic system,

A(k, E) =
1

π

ImΣ(k, E)

[E − εk − ReΣ(k, E)]2 + [ImΣ(k, E)]2
. (10)

Within this framework, the band loci of the photoemission (or quasiparticle) band structure

(BS), b(k, E) = εk + ReΣ(k, E), correspond to the bare band dispersion modulated by the

real part of the electron self-energy, and they occupy the local maxima of the spectral function

evaluated at different momenta. However, in the photoemission process, the intensity counts

registered by the detector are modulated by the transition matrix elements [23], the Fermi-Dirac

occupation function, fFD(E), and the resolution of the measuring instrument, G(E, σE, σk),

typically a multidimensional Gaussian function. This leads to the expression of the photoemis-

sion intensity, I(k, E), registered on an energy- and momentum-resolved detector,

I(k, E) ∝ |Mf,i(k, E)|2fFD(E)A(k, E)⊗G(E, σE, σk). (11)

For a multiband electronic structure, band mapping measurements, in principle, have access to

the spectral functions of at least all valence bands. The photoemission intensities are combined
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in summation to form the multiband (MB) counterpart of the single-band formula.

IMB(k, E) =
∑
j

Ij(k, E) ∝
∑
j

|Mfj ,ij(k, E)|2fFD(E)Aj(k, E)⊗G(E, σE, σk) (12)

∼
∑
j

Aj(k, E)⊗G(E, σE, σk), (when|Mfj ,ij(k, E)| → 1, fFD(E)→ 1). (13)

The condition fFD(E)→ 1 applies to valence bands, while |Mfj ,ij(k, E)| → 1 may be achieved

through nonlinear intensity normalization or contrast enhancement in data processing. The

expression of the multiband photoemission intensity in Eqs. (12)-(13) provides the physical

foundation and inspiration for the approximate generation of band mapping data (see Section

S2) that we employ to validate the reconstruction algorithm introduced in this work.

Markov random field modeling. The Markov random field (MRF) model for the photoemis-

sion band structure in photoemission band mapping data can be constructed similarly for data

in multiple dimensions. In traditional angle-resolved photoemission spectroscopy (ARPES),

photoemission intensities are measured in the (k,E) coordinates, the proximity of the momen-

tum positions in the band structure can be modeled using an MRF composed of a 1D chain

of random variables as shown in Supplementary Fig. 1a. Band mapping data in (kx, ky, E)

coordinates, as described in the main text, can be modelled using a 2D MRF. In addition, the

algorithm can be extended to higher dimensions involving coordinates beyond energy and mo-

menta. For example, time-resolved photoemission data recorded in (kx, ky, E, t) coordinates

can be modelled using a 3D MRF as shown in Supplementary Fig. 1c. In the following, we

provide a brief introduction to the theory underlying MRF and provide a simplified derivation

of the 2D MRF model introduced in the main text.

Deriving the MRF amounts to determining the joint distribution of the random variables as-

sociated with its graphical representation. In graphical model theory [53], a graph is constructed

from the fundamental components called cliques. Each clique C of a graph is a subset of nodes

that shares an edge with another node in C, with the total number of nodes in C defined as

its size. The MRFs in Supplementary Fig. 1a-c that model the photoemission data are built

out of cliques of sizes 1–2 shown in Supplementary Fig. 1d. Although larger cliques can be

constructed similarly [53], their parent graphical models are described by more complex joint

distributions with drastically higher computational costs in optimization, therefore are not used

in our MRFs. Mathematically, each clique is represented by a so-called potential function, ψC ,
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which is used to derive the joint distribution that characterizes the MRF. The potential function

only depends on the node configuration in the cliques, XC , and satisfies ψC(XC) > 0. Ac-

cording to the Hammersley-Clifford theorem [54, 55, 53], the joint distribution of a vector of

random variables, X, can be written in the factorized form,

p(X) =
1

Z

∏
C∈C

ψC(XC). (14)

Here, C is the set of all cliques in the graph, and the partition function Z is a normalization

constant given by

Z =
∑
X

∏
C∈C

ψC(XC).

The graphical representation of the MRFs relevant to this work are rectangular grids shown in
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Ẽ N

kN

a

···
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Supplementary Figure 1: Examples of the MRF models for photoemission spectroscopy
data. a, 1D MRF model for data in (k,E) coordinates, represented as a chain of random vari-
ables Ẽi. N is the number of measured momentum values. b, 2D MRF model of photoemission
data in (kx, ky, E) coordinates as introduced and demonstrated for use in the main text, with
the random variables Ẽi,j connected on two dimensions kx and ky. c, 3D MRF model for time-
and momentum-resolved photoemission spectroscopy data in (kx, ky, E, t) coordinates. The
random variables Ẽi,j,m are first connected in the graph to the neighboring momentum positions
as in b, then subsequently along the neighboring time points. The time variable in c may also
be replaced with other variables without changes in the structure of the graphical model. In a-c,
the MRFs are constructed using components (cliques) with sizes 1 (left) and 2 (right) in d, with
their respective potential functions written below the illustrations.

Supplementary Fig. 1. The respective potential functions of the size-1 and size-2 cliques are
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interpreted as the likelihood and prior of the probabilistic graphical model, respectively. To cast

the band structure reconstruction problem into this framework, we assign the band energies as

the random variables (or model parameters) in the model, and the potential function of each

node (size-1 clique) as the (preprocessed) photoemission intensity at the respective grid posi-

tion. For simplicity and computational efficiency, this formulation doesn’t explicitly account

for the intensity modulations described in Eq. (11) and preprocessing steps are required to neu-

tralize their effects. The continuity assumption (i.e. no sharp jump) of the band energies along

momentum directions means that the potential function of size-2 cliques can be represented by

a Gaussian on adjacent momentum grid positions. Intuitively, this means that the closer the two

adjacent energies is, the more probable they are the actual band loci, and vice versa.

In the 1D case (see Supplementary Fig. 1a), the potential function of each node (containing

one band energy random variable Ẽi) is given by

ψi(Ẽi) = Ĩ(ki, Ẽi), (15)

where Ĩ is the photoemission intensity after preprocessing. The potential function of two con-

nected nodes (describing the similarity between two neighboring band energy random variables)

is given by

ψj,j+1(Ẽj, Ẽj+1) = exp

[
−(Ẽj − Ẽj+1)2

2η2

]
. (16)

Plugging Eqs. (15)-(16) into Eq. (14) yields

p(Ẽ1, ..., ẼN) =
1

Z

N∏
i=1

ψi(Ẽi) ·
N−1∏
j=1

ψj,j+1(Ẽj, Ẽj+1)

=
1

Z

N∏
i=1

Ĩ(ki, Ẽi) ·
N−1∏
j=1

exp

−
(
Ẽj − Ẽj+1

)2

2η2

 (17)

as the joint distribution of the 1D MRF, with N being the total number of momentum grid

points. Analogously, we can derive the joint distribution of the 2D MRF as given in the main

text, and that for the 3D MRF in the (kx, ky, E, t) coordinates is

p({Ẽi,j,m}) =
1

Z

∏
i,j,m

Ĩ(kx,i, ky,j, tm, Ẽi,j,m) ·
∏

(i,j,m),(l,o,q)|NN

exp

[
−(Ẽi,j,m − Ẽl,o,q)

2

2η2

]
.

The MRF models in different dimensions discussed here follow the same Bayesian interpreta-

tion as the 2D MRF (Eq. (1) in the main text).
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Optimization procedure. Optimization of the MRF model is a local minima-finding process

[53]. The following procedures are described using the 2D MRF in the main text as an example,

but the approach can be extended to arbitrary dimensions. Due to the large number of random

variables (∼ 104 for the 2D MRF in the main text) and their complex dependence structure

in the MRF, we solved it numerically using iterated conditional mode (ICM) [38] procedure

and implemented with efficient parallelization schemes, including the coding method and the

hierarchical grouping of random variables. Next, we discuss the motivations and clarify the

details of these three aspects. We provide the associated pseudocode in Algorithm 1.

(1) ICM: Originally developed for similar optimization problems arising in image denoising

[56, 57, 53], ICM is applicable to optimizing MRF at any dimension. The ICM procedure

includes (i) initialization of the random variables (e.g. {Ẽi,j} in 2D MRF) and (ii) selection of

a single random variable to optimize in the loss function L while keeping all the other random

variables fixed. Each round in (ii) requires to compute at most five terms in the loss (Eq. (3)

in the main text Methods section) which depend on the selected random variable Ẽi,j . We can

simply evaluate these terms at the energy axis values measured in the experiment to determine

the energy associated with the lowest loss. (iii) iterate over all other random variables using the

same procedure in (ii).

(2) Coding method: The ICM procedure described above operates sequentially over every Ẽi,j ,

which is inefficient for the MAP optimization involving a large number of parameters. To im-

prove the optimization performance, we implement the ICM with a checkerboard paralleliza-

tion scheme (or coding method) [40] that scales favorably on multicore computing clusters.

The scheme assigns the nodes of the MRF alternately with white and black colors, as shown

in Supplementary Fig. 2a. If the white nodes are blocked, the black nodes are no longer con-

nected through paths (i.e. sequences of connected edges and nodes). This property is called d-

separation [58, 53]. Analogously, blocking the black nodes d-separates the white nodes. Since

the MRF models satisfy the Hammersley-Clifford theorem [54], d-separation is equivalent to

conditional independence, meaning that the random variables represented by the black nodes

are independent if we condition on those represented by the white nodes. Therefore, condition-

ing on the nodes of one color allows us to compute the terms in the log-probability loss (Eq. (3)

in main text Methods) that depends on the nodes of another color in parallel, which means that

the nodes associated with different colors can be updated alternately. Further details and proofs
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a b

Supplementary Figure 2: Numerical optimization of the MRF model. a, Schematic of the
checkerboard parallelization (or coding method) and hierarchical grouping schemes for speed-
ing up the ICM. The nodes of the MRF are alternately colored white and black (checkerboard
parallelization) and each set of four neighboring nodes are group into a unit as colored in grey
(hierarchical grouping). The updates in optimization are carried out first at the four-node unit
level, then alternately on the white or black nodes within the units. b, An example loss curve
for reconstructing the second valence band of WSe2 using the 2D MRF model and parallelized
ICM implementation. L0 is the initial value of the loss at the start of the optimization. Within
an epoch in the parallelized scheme, the white nodes and subsequently the black nodes are sep-
arately updated, therefore each band energy random variable is effectively updated once. The
loss decreases rapidly in the beginning and reaches a minimum after about 90 epochs.

related to the coding method have been elaborated in [59, 55].

(3) Hierarchical grouping: The introduction of the checkerboard parallelization scheme re-

duces the translation symmetry of the original graph (originally symmetric by translation of an

arbitrary number of nodes, now only symmetric by a translation of two nodes in each direction),

which complicates the matrix operations needed to update the loss. However, we can restore

the translation symmetry and carry out the computation on a higher level by grouping a set of

four neighboring nodes into a unit, as illustrated in Supplementary Fig. 2a. In this way, updat-

ing the loss requires only standard matrix operations at the unit level followed by consecutive

updates of the nodes within the units. During the optimization, the loss is updated by two sets

of operations concerning (i) the nearest neighbor nodes within the unit (line 18-19 in Algorithm

1) and (ii) the nearest neighbor nodes of the neighboring unit (line 20-21 in Algorithm 1). The

latter operations are carried out by shifting the higher-level rectangular grid formed by the units

by one step vertically or horizontally, followed by an operation on nodes of the respective units
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Algorithm 1 Optimization procedure for reconstructing a single energy band.
Input: I (3D momentum-resolved photoemission data), E0 (2D initialization from density func-
tional theory calculation), E (1D energy axis)
Parameter: η (hyperparameter of the Markov random field), N (number of epochs)
Output: Erec (Reconstructed 2D energy band)

# Initialize the momentum index grid for an energy band
1: size kx, size ky, size E = size(I)
2: ind x, ind y = meshgrid(range(size kx, step=2), range(size ky, step=2))

# Divide data into four-node units. Eu(i,j,...), Iu(i,j,...) are the band energies and
# photoemission intensities for the node (i,j) in a unit (u) in Supplementary Fig. 2,
respectively

3: for i in [0, 1] do
4: for j in [0, 1] do
5: Eu[i, j, :, :] = E0[ind x + i, ind y + j]
6: log Iu[i, j, :, :, :] = log(I[ind x + i, ind y + j, :])

# Iterative optimization of energy values
7: for n in range(N) do

# Update white nodes
8: Eu[0, 0, :, :] = update E(0, 0, log Iu, Eu, E)
9: Eu[1, 1, :, :] = update E(1, 1, log Iu, Eu, E)

# Update black nodes
10: Eu[0, 1, :, :] = update E(0, 1, log Iu, Eu, E)
11: Eu[1, 0, :, :] = update E(1, 0, log Iu, Eu, E)

# Assemble reconstruction from all nodes in the units
12: for i in [0, 1] do
13: for j in [0, 1] do
14: Erec[ind x + i, ind y + j] = Eu[i, j, :, :]

# Function to update the energy of the element (i, j) within a four-node unit
15: function UPDATE E(i, j, log Iu, Eu, E)

# Calculate the difference between current and all possible energies
16: squ diff = (Eu - E) ** 2 / (2 * η ** 2)

# Calculate all possible log p values, start with log-likelihood
17: log p = log Iu[i, j, :, :, :]

# Substract by energy differences from nearest neighbor nodes within unit
18: log p -= squ diff[(i + 1) % 2, j, :, :, :]
19: log p -= squ diff[i, (j + 1) % 2, :, :, :]

# Substract by energy differences from nearest neighbor nodes of the neighbor-
ing unit

20: log p -= shift(squ diff[(i + 1) % 2, j, :, :, :], 2 * i - 1, axis=2)
21: log p -= shift(squ diff[i, (j + 1) % 2, :, :, :], 2 * j - 1, axis=3)

# Return optimal energy values
22: return E[argmax(log p)]
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of the original and the shifted grid. The procedure is implemented in the open-source fuller

package [42] using Tensorflow [39]. Supplementary Fig. 2b shows an example loss curve (i.e.

loss as a function of iteration) in reconstruction of an energy band, where the optimization is

essentially complete within ∼ 90 iterations.

(4) Robust initialization: Since the current MRF model doesn’t include any explicit regulariza-

tion on the outcome with respect to the initialization, the optimizer is free to explore a large

range of values. In other words, the initial band dispersion is able to freely deform to fit to

the band loci embedded in the data. This design improves the robustness of the algorithm to

initialization. As a result, in scenarios with only non-crossing energy bands, the MAP optimiza-

tion can simply be initialized with constant energy values to yield consistent results. In general

situations involving band crossings, the optimization procedure requires an initialization with

approximate energy values that preserves the band-crossing information, such as those provided

by electronic structure calculations. In this scenario, the robustness of the algorithm is mani-

fest in the fact that it can tolerate a certain amount of deviation in the initialization and still

converges to a satisfactory reconstruction, which, in realistic settings, is closer to the real band

structure contained in photoemission data than the initialization (e.g. from electronic structure

calculations). Quantitative examples demonstrating the robustness of initialization are provided

using synthetic data in Supplementary Figs. 5-6 (see Section S2).

Hyperparameter tuning. The optimization process in the band structure reconstruction in-

volves the tuning of three kinds of hyperparameters, which are the momentum scaling parame-

ter, the rigid energy shift and the width of the nearest-neighbor Gaussian prior.

(1) Momentum scaling: applied to equalize the momentum scale and resolution between the

BS calculation (e.g. conducted on relaxed unit cells, see Supplementary Table 1) and the exper-

imental data (measured on real materials). In our reconstruction procedure, the scaling factor

is fixed in the reconstruction of all energy bands using a particular level of density functional

theory (DFT) calculation as initialization.

(2) Rigid energy shift (∆E): separately applied to each energy band in the calculated BS to

coarse-align to the band mapping data. In our case, the shift is chosen manually by visual

inspection of the theoretical band energies overplotted on photoemission data (usually in the

energy-momentum slices). In practice, the necessary energy shifts vary between bands and also
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Supplementary Figure 3: Demonstration of hyperparameter tuning. An example of tuning
the hyperparameters, the rigid shift (∆E) and the width of the nearest-neighbor Gaussian prior
(η), for reconstructing the second valence band of WSe2. a, Evolution of reconstructed energy
band during hyperparameter tuning. b, Evolution of the initialization and reconstructed band
along high-symmetry directions of the hexagonal lattice of WSe2. The energy bands are overlaid
on top of preprocessed data from photoemission band mapping of WSe2 (Fig. 1f in the main
text). In a,b, the images showing the optimal region for the hyperparameters identified by the
scientists are emphasized with orange-colored frames.
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depend on level of approximation in the BS calculation used as initialization, as illustrated in

Fig. 2a of the main text.

(3) Width of the nearest-neighbor Gaussian prior (η): The value of the parameter η is chosen

manually from an initial estimate and subsequently optimized by visual inspection of the re-

construction outcome. In the case of WSe2, the momentum grid of the experimental data has a

spacing of ∆kx = ∆ky ≈ 0.015 Å
−1, we used η ∈ [0.05, 0.2] eV. Generally speaking, the initial

estimate of η has the order of magnitude proportional to the momentum grid spacing times the

dispersion due to the following argument: To obtain a consistent reconstruction, we expect the

posterior to stay relatively constant and be independent of the momentum grid spacing, which

should be sufficiently fine to ensure band continuity. Since after preprocessing the data, the

intensity (i.e. the likelihood) is normalized and stays constant with respect to the momentum

grid spacing, the nearest-neighbor Gaussian prior term should stay constant correspondingly.

For example, for two nearest-neighbor energy variables along the kx axis, the reasoning above

requires,

const ≈ (Ẽi+1,j − Ẽi,j)
2

η2
≈
(
∂E

∂kx

)2
∆k2

x

η2
. (18)

Thereby, we obtain η ∝ ∂E
∂kx

∆kx, which provide an order-of-magnitude estimate of η. The same

lines of reasoning apply to the ky axis, for detector systems with relatively constant momentum

resolution. As the grid spacing is the same in both kx and ky directions, a single η is used for

reconstructing each band in the case of WSe2, but the best η differs somewhat between energy

bands due to their various amounts of dispersion and how they are connected to the neighboring

bands (i.e. their environment), hence the range of η as specified earlier.

To demonstrate the process of hyperparameter tuning, we provide an example showing the

reconstruction of the second valence band of WSe2 (see Supplementary Fig. 3), visualized in

the top view of the reconstruction outcome and in the momentum path along high-symmetry

lines of the projected Brillouin zone. The orange-framed subfigures represent the range of

hyperparameter settings that yield a good reconstruction. In practice, the rule-of-thumb is that

the choice of hyperparameters is more flexible for reconstructing more isolated bands or those

with less number of crossings, and vice versa.

Reconstructions using different theories as initializations. Comparison between reconstructed

and theoretical band structures for 2H-WSe2 are presented as a similarity matrix in the main
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a b

c d

Supplementary Figure 4: Band structure reconstructions with different theory initializa-
tions. Comparisons between reconstructed photoemission band structures (abbreviated as re-
con.) and calculated band structures (abbreviated as calc.) from density functional theory
(DFT) with different exchange-correlation functionals, including a, local density approxima-
tion (LDA); b, PBE generalized gradient approximation (GGA); c, PBEsol GGA; d, HSE06
hybrid functional. For each set of DFT band structure, the same energy shift (as in Supplemen-
tary Fig. 8) is applied globally to all bands to align the energy zero at the K point with the
reconstruction.

text. To provide more intuitive visual guidance in interpreting the BS distance metric used in

constructing the similarity matrix, we compare these band structures along the high-symmetry

lines of the Brillouin zone in Supplementary Fig. 4.

S2 Generation of and validation on synthetic data

The advantage of using synthetic data is that the underlying band structure (i.e. ground truth)

is exactly known such that they can be used for benchmarking the performance of the MAP re-

construction algorithm described in this work. Benchmarking includes numerical experiments

on two interrelated aspects: (1) testing the robustness of the reconstruction algorithm using dif-

ferent initializations and comparing the deviations of the outcome from the ground-truth; (2)
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testing the accuracy of reconstruction by determining the closest-possible reconstruction out-

come from a given initialization. In the following, we first describe the workflow of generating

the band structure, the photoemission data and the initializations, which provide all essential

components to carry out the tests. Then we present the benchmarking results on various cases.

Generation of band structure data. We have adopted two approaches to generate band struc-

ture data to meet the needs for testing the reconstruction algorithm. Firstly, we used analytic

functions to describe the band dispersion (see Supplementary Fig. 5). They are computationally

efficient, contain tunable parameters, can be produced at any resolution, and are easily extend-

able to higher dimensions. In 2D momentum space, we constructed a multi-sinusoidal band

and two double-crossing parabolic bands. In 3D momentum space, we constructed a scaled

version of the strongly oscillating second-order Griewank function [60] and the tight-binding

formulation of the two-band graphene band structure [61] as model band dispersion surfaces.

The modified Griewank function takes the form,

Egriewank(kx, ky) =
1

16000
(k2

x + k2
y)− cos(2kx) cos(

√
2ky). (19)

The two-band tight-binding model of graphene has the energy dispersion relations,

E±(kx, ky) = ±

√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
. (20)

Here, E+ and E− refer to the conduction band and the valence band, respectively. Secondly,

we used numerical band structures from DFT calculations with different exchange-correlation

functionals (see section S3). They are more physically realistic, but also require more compu-

tation to obtain than generating bands from analytic functions.

Tuning the initialization. For simple bands constructed using analytic functions, tuning can

be achieved by modifying the parameters in the functions. In the complex multiband situation

such as that of WSe2, we tuned the initialization of the reconstruction algorithm by scaling

or perturbing the coefficient amplitudes of the constituent bases of the band structure. In our

case, the bases are the terms of the hexagonal Zernike polynomials (ZPs) [62, 27]. Although

unconstrained basis tuning is prone to unrealistic results, it achieves a level of ad hoc control for

efficient generation of a large amount of distinct initializations. For more physically realistic
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Supplementary Figure 5: Validations on 2D and 3D synthetic data. Test results for the re-
construction algorithm on band structures generated with analytic functions. a, Reconstruction
of a multi-sinusoidal band. b, Reconstruction of two double-crossing parabolic bands. c,d,
Reconstruction of a multi-extrema band with dispersion following the second-order Griewank
function (see Eq. (19)) [60]. e,f, Reconstruction of the two bands of graphene nearby its Fermi
level (e,f) formulated in the tight-binding model (see Eq. (20)) [61]. The volumetric renderings
in c,e, display the synthetic data. The initialization for the reconstruction in a is a flat line, while
2D flat bands are used to initialize the cases in d,f. In b, two double-crossing curves are needed
as initialization to preserve the crossing in the reconstruction. The values in the difference plots
in d,f are calculated by subtracting the ground-truth band energies from the reconstructed ones.

tuning, we used DFT calculations with different exchange-correlation functionals (see section

S3).

Approximate generation of photoemission data. We approximately synthesized momentum-

resolved photoemission data for each energy band by plugging the band energy and linewidth

parameter at each momentum position into the Voigt profile [63] (with Gaussian and Lorentzian
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Supplementary Figure 6: Validation on 3D synthetic multiband photoemission data. a,
Synthetic photoemission data with b, the underlying band structure obtained from LDA-level
DFT calculation of WSe2 (only the first 8 valence bands are used here). c, Comparison of two
sets of differently scaled (by 0.8 and 1.2 times, respectively) initial conditions with respect to
the ground-truth band structure calculation (LDA calc.), shown for a kx-E (left) and a ky-E
(right) slice. d,e, Comparison of the average error ηavg for energy bands used as initializations
(solid dots) and reconstructions (hollow dots). The initializations are constructed by scaling
the ground-truth band energies (d) or by using other DFT calculations (e). The reconstructions
all have reduced ηavg compared with the initialization and ηavg is consistent across all energy
bands. f,g, Reconstruction, ground truth (LDA), and initialization overlaid on the synthetic data
along high-symmetry lines of the hexagonal Brillouin zone, corresponding to two of the cases
in d and e, respectively. The energy zeros of the initialization in d-e are aligned with the ground
truth via a global shift. h, Comparisons of ground truth (LDA), reconstructed bands, and the
differences between initialization (PBE), reconstruction and ground truth (g.t.) for each energy
band. 31



parameters σ and γ, and amplitude B) computed using the Faddeeva function W [64]. The

Voigt profile approximates the convolution of a single-particle spectral function (see Section

S1), describing the photoemission observable, with a Gaussian energy resolution function. The

synthetic photoemission intensity, Isynth, for a band structure composed of a set of energy bands,

EB = {Ebi}, is generated by combining multiple Voigt profiles in summation, similar to Eqs.

(12)-(13).

Isynth(kx, ky, E) =
∑
j

Bj(kx, ky)

σj
√

2π
Re

[
W

(
E − Ebj(kx, ky) + iγj(kx, ky)

σj
√

2

)]
(21)

Without loss of generality, we assume the energy resolution in detection for all bands to be the

same (σj = σ). For the cases shown in Supplementary Figs. 5-6, the linewidth parameter γ

are set to a constant throughout the band. In all synthetic data, we omitted the inhomogeneous

intensity modifications in realistic photoemission data due to experimental factors such as the

experimental geometry, sample condition, matrix element effect, photon energy, etc. This omit-

tance relies on the assumption that the essential preprocessing step, such as symmetrization and

contrast enhancement [19] in our workflow (see main text Methods), can sufficiently restore

the intensity continuity along the energy bands. The momentum resolution effect is also not

accounted for because the instrument (such as METIS 1000 [6, 36]) has a higher momentum

resolution than the momentum spacing used in data binning or generation.

Validation of the reconstruction algorithm. Using synthetic data generated from analytic

functions of varying complexities as the band structure, we test out the accuracy of reconstruc-

tion algorithm (see Supplementary Fig. 5); Using synthetic multiband data generated from the

LDA-level DFT (LDA-DFT) band structures of WSe2 (see section S3), we tested out the sensi-

tivity of reconstruction to the initialization (see Supplementary Fig. 6). In this case, to capture

sufficient physical realism similar to the photoemission band mapping of WSe2 presented in the

main text, we set the energy resolution parameter of σ = 100 meV, the lineshape parameter γ =

50 meV [65], and the energy spacing of data to ∼ 18 meV, identical to the energy bin size for

the experimental data. The tests include four sets of numerical experiments summarized below:

(1) Reconstructing non-crossing bands: For isolated bands, we tested synthetic data constructed

from a multi-sinusoidal band (Supplementary Fig. 5a), the band generated by the Griewank

function (Supplementary Fig. 5c-d), and the two-band tight-binding model of graphene (Sup-
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plementary Fig. 5e-f). In these cases, initialization with a flat band without any initial knowl-

edge of the band dispersion (i.e. cold start) is sufficient to recover its shape, regardless of the

complexity of the dispersion.

(2) Reconstructing crossing bands: We tested the simplest case of crossing bands with two

parabolas of opposite directions of opening (Supplementary Fig. 5b). To recover the dispersion

without band index scrambling, the knowledge of crossing needs to be included numerically

in the initialization. This means, operationally, that the initialization requires crossing bands

at nearby energy values, or that the reconstruction needs a warm-start optimization. For the

intercrossing parabolas, the initializations that yield feasible outcomes are generated by slight

tuning of the parabola parameters in the range that retains the crossing.

(3) Sensitivity of reconstruction to scaled energies as initialization: We scaled the energies

of the LDA-DFT band structure of WSe2 (using the first 8 valence bands) around the mean

energy of each band (see Supplementary Fig. 6c) to for use as the initialization. The accuracy

of the reconstruction outcome is evaluated by its average error ηavg (Eq. (8) in the main text

Methods), calculated with respect to the ground-truth band energies. The results displayed

in Supplementary Fig. 6d,f show that the average error and its spread in the reconstruction are

reduced from the corresponding values in the initialization. Quantitatively, in the reconstruction,

ηavg is within the range 20-65 meV, while in the initialization, ηavg varies within 45-100 meV

for all 8 valence bands.

(4) Sensitivity of reconstruction to differently calculated band structures as initialization: We

used DFT band structure calculations of WSe2 with PBE, PBEsol and HSE06 exchange-correlation

functionals (see section S3) to initialize the reconstruction. The accuracy of the reconstruction

is quantified similarly as in the previous numerical experiment using ηavg. The results displayed

in Supplementary Fig. 6e,g,h show that, despite the huge spread in the average error for the dif-

ferent levels of DFT calculations (used as initialization without global shift alignment of energy

zero), the corresponding reconstructions all have average errors at around or below 40 meV for

every band. The value of ηavg varies by up to ∼ 30 meV (i.e. between band #1 and #6) in each

set of reconstructed bands, much lower than those in the initialization.

The results of the numerical experiments demonstrate that the reconstruction by MAP opti-

mization converges to a consistent range in the tested scenarios and initializations. It should be
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noted here that the fundamental accuracy in reconstruction reported here is still limited by the

coordinate spacings of the data along all dimensions and the discrete nature of the MRF model

(the output is centered only at the bin locations). The former can be improved by casting the ex-

perimental data into finer bins in the preprocessing stage (single-electron events can be binned

into various sizes) or interpolating between existing bins, while the latter can be improved by

using a continuous probabilistic model [53] to formulate the reconstruction problem, albeit at

the cost of much increased computational demand.

S3 Band structure calculations

DFT calculations. The crystal structure of bulk WSe2 with 2H stacking (2H-WSe2) belongs

to the P63/mmc space group and consists of two Se-W-Se triatomic layers as shown in Supple-

mentary Fig. 7. The stacking order of the two hexagonal layers is -BAB-ABA- and the long

c-axis is oriented perpendicular to the layers. Electronic structure calculations were performed

within DFT using the local density approximation (LDA), the generalized-gradient approxima-

tion (GGA-PBE and GGA-PBEsol), and hybrid (HSE06) exchange-correlation functionals as

implemented in FHI-aims [48]. The atomic orbitals basis sets, the integration grids and Hartree

potential employed for all calculations are according to the default “tight” numerical settings of

FHI-aims. A 16×16×4 uniform k-gird was used to sample the Brillouin zone. The Broyden-

Fletcher-Goldfarb-Shanno optimization algorithm was used to relax the atomic positions until

the residual force component per atom was less than 10−2 eV/Å. Supplementary Table 1 shows

the optimized lattice constants, a and c, as obtained by the evaluation of the analytical stress

tensor [66] using different exchange-correlation functionals. In all BS calculations, we included

the effect of spin-orbit coupling, which is known to introduce a large splitting of the outermost

valence states of bulk 2H-WSe2 [67].

The calculated BSs of bulk 2H-WSe2 using different levels of approximation for the exchange-

correlation (XC) functional are shown in Supplementary Fig. 8. For each XC functional, the

calculations were performed on (1) fully optimized structures (black lines), and on (2) opti-

mized structures by fixing the lattice parameters of the unit cell to the experimental values

(colored lines). All calculations using different XC functionals reveal an indirect band gap with

the conduction band minimum located along the Γ-K path (Γ and K being the bulk equivalents
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a b

Supplementary Figure 7: Crystal structure of bulk 2H-WSe2. a, Side view and b, top view of
the crystal structure of 2H-WSe2. The space group of the hexagonal structure is P63/mmc with
the c-axis oriented perpendicular to the stacking layers. In each case, the real-space unit cell is
labelled by dashed black lines.

Supplementary Table 1: Parameters from density functional theory calculations. Op-
timized lattice constants, spin-orbit splitting of the topmost valence states at the K high-
symmetry point, and the band gap of bulk 2H-WSe2 calculated within density functional
theory using the LDA, PBE, PBEsol and HSE06 exchange-correlation functionals. For com-
parison, we also report the corresponding experimental values at room temperature.

xc-functional LDA PBE PBEsol HSE06 Experiment
a (Å) 3.250 3.317 3.269 3.295 3.28
c (Å) 12.827 14.921 13.211 13.863 12.98

Spin-orbit splitting at K (eV)
0.485 1

0.490 2
0.473 1

0.481 2
0.476 1

0.484 2
0.467 1

0.480 2 0.5 3

Band gap (eV)
1.022 1

1.052 2
1.186 1

1.074 2
1.105 1

1.060 2
1.679 1

1.582 2 1.219 4

1 Fully optimized structure.
2 Optimized structure by fixing the lattice parameters to experimental values.
3 Ref. [12].
4 Ref. [68].

of the Γ and K high-symmetry points). For both sets of optimized structures, the LDA results

reveal a valence band maximum at the Γ point, compatible with experimental measurements,

while the PBE, PBEsol, and HSE06 band structures obtained for fully optimized structures ex-

hibit a valence band maximum at the K point. Nevertheless, fixing the unit cell dimensions at

the experimental lattice constants reproduces the experimental behavior that the valence band
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a b

c d

Supplementary Figure 8: Bulk electronic band structure of 2H-WSe2. a-d, Band structure
of bulk 2H-WSe2 along the Γ-K-M-Γ momentum path of its Brillouin zone including the effect
of spin-orbit coupling. Calculations were performed using the LDA (green, a), PBE (orange,
b), PBEsol (yellow, c), and HSE06 (blue, d) exchange-correlation functionals and optimized
structures (see Supplementary Table 1) with the unit cell dimensions kept fixed at the experi-
mental lattice constants. Black lines in a-d represent the corresponding calculations using fully
optimized geometries. For comparison, the two band structures in each plot are rigidly shifted
to align their uppermost valence state at the K high-symmetry point, where we also define as
the energy zero. All band structure calculations used kz = 0.35 Å

−1
.
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maximum resides at the Γ point. The difference between the two sets of calculations obtained

using PBE, PBEsol, and HSE06 functionals is attributed to the overestimation of the lattice pa-

rameter c and the residual strain along the c-axis [69]. The calculated indirect band gaps and the

spin-orbit splitting of the two topmost valence states at the K point using both sets of optimized

structures are shown in Supplementary Table 1.

Brillouin zone tiling. Generation of a large and densely sampled patch of energy bands cov-

ering the first Brillouin zone and beyond is crucial for initialization of the MRF model. To

balance the computational cost using different XC functionals with the dense sampling similar

to the experimental data grid, we used the symmetry properties of the Brillouin zone to tile the

calculated momentum-space rectangular patch that covers the Γ, K and M points of the Bril-

louin zone. The hexagonal Brillouin zone of WSe2 has a sixfold rotation symmetry axis and

two independent mirror planes in the (kx, ky) coordinates. The initial rectangular patch is first

symmetrized about the two mirror planes in the Γ-K and Γ-M directions to form a larger patch,

which is then rotated by 60◦ and 120◦, respectively, and combined with the original mirror-

symmetrized patch. The composite patch is then shifted along all six Γ-M directions by one

unit cell distance and the result is cut to the required shape compatible with photoemission data.

S4 Band structure informatics

Global scale structure. Unbiased approximators allow us to use informatics tools for data

retrieval, representation and comparison for entire bands. We extend the examples given in Fig.

3 of the main text to other bands and band structures used in the present work. Supplementary

Fig. 9 displays the band-wise comparison of dispersion surfaces within other DFT calculations.

These results contain similar features as Fig. 3a and 3c in the main text, reaffirming that the

geometric featurization provides a sparse representation of the band dispersions and that the

dispersion similarities are largely preserved despite the use of different exchange-correlation

functionals in the DFT calculations. They may, therefore, be regarded as general features of the

band structure of WSe2.

In Supplementary Fig. 10, we demonstrate numerically the approximation capability of

the hexagonal ZP basis set to all 14 valence bands of WSe2. Despite the stark differences in

energy dispersion, the approximation to reconstructed bands (Supplementary Fig. 10a-d) and
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Supplementary Figure 9: Geometric featurization of the energy bands of WSe2. a-d, De-
composition of the 14 valence energy bands of WSe2 into hexagonal Zernike polynomials for
the DFT band structure calculations carried out at the levels of LDA (a), PBE (b), PBEsol (c),
and HSE06 (d), respectively. Similar characteristics are seen compared with the reconstructed
band structure shown in Fig. 3a in the main text, including the sparse distribution of significant
basis terms and the decreasing dependence on higher-order basis terms. e-h, Cosine similarity
matrices between the 14 energy bands of WSe2 for the DFT band structure calculations carried
out at the levels of LDA (e), PBE (f), PBEsol (g), and HSE06 (h), respectively. The character-
istics of these matrices resemble that calculated for the reconstructed band structure as shown
in Fig. 3c in the main text.
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Supplementary Figure 10: Approximation to the band structure of WSe2 by a polynomial
basis. a-j, Demonstration of the convergence properties of the polynomial approximation using
reconstructed photoemission band structure (a-d) and DFT band structure calculated at the LDA
level (e-h). When summing the hexagonal Zernike polynomial in the default order, the average
and relative approximation errors for the reconstructed (a,b) and theoretical (e,f) energy bands
converge much slower than summing the polynomials in an ordering ranked by the magnitude
of their coefficients (coefficient order). This observation is similar for reconstructed (c,d) and
theoretical (g,h) energy bands. i-j, Visualization of the difference in convergence rates using the
reconstructed band structure along the high-symmetry lines. The naturally-ordered polynomial
basis has not yet converged with 150 terms (i), while the coefficient-ranked polynomials (j)
produces an accurate approximation well within that limit.
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theoretical band structure at the level of LDA-DFT (Supplementary Fig. 10e-h) show compa-

rable convergence rates. Quantitatively, the approximation using hexagonal ZPs ordered by the

magnitude of the corresponding coefficients (i.e. coefficient order) converges to within 10-30

meV/band within 50 polynomial basis terms, significantly faster than using the default order

(see also Fig. 3b for reference). The remaining errors are on par with the finite step size along

Supplementary Figure 11: Local band structure parameters. a, The first valence band of
WSe2 with constant-energy contours. The patches around high-symmetry points K and M′ from
reconstruction (with LDA-DFT as the initialization) are overlaid in color. b,c, Patch around the
M′-point, a saddle point in the dispersion surface, visualized in 3D (b) and 2D (c), respec-
tively. The energy gap at M′ due to spin-orbit coupling (SOC) results in the energy difference
∆EM′,1−2. d,e, Patch around the K-point, the energy maximum of the valence band, visualized
in 3D (d) and 2D (e), respectively. The SOC results in the energy gap ∆EK,1−2. The outcome
of fitting to a trigonal warping (TW) model around K from k·p theory [22] is shown in e.

the energy axis in the data (∼ 18 meV) that results in the imperfect smoothness of the recon-
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structed bands. This further proves that the hexagonal ZPs can provide an accurate and sparse

approximation for the band structure data. The trend of convergence between these two types

of polynomial ordering is further illustrated in Supplementary Fig. 10i-j in the momentum path

along high-symmetry lines of the reconstructed band structure.

Local scale structure. Local structural information includes energy gaps, effective masses,

warpings, (avoided) crossings, etc. We extracted some of their associated parameters at and

around three high-symmetry points (K, M′, and Γ, see Supplementary Fig. 11a) and compiled

the results in Supplementary Table 2. The dispersions and band structure parameters from the

MAP reconstruction are compared with those extracted by line-by-line fitting of the EDCs,

which used the band energies from the reconstruction as initialization to improve robustness.

Around K, two spectral peaks corresponding to two spin-split bands were fit simultaneously,

while around M′ and Γ, four were fit simultaneously due to the spectral proximity of the first

four valence bands (see Supplementary Fig. 4). The fitting is carried out using a linear su-

perposition of Voigt lineshapes and the lmfit package [70] with the reconstructed band energy

as initialization (but not fixed). The fitting procedure iterates over the EDCs (e.g. a total of

50×50 EDCs for the patch around M′). Unstable fits yielding erratic results (e.g. if differing

significantly from neighboring values) are re-fit with either algorithmically or manually ad-

justed initialization. Supplementary Table 2 shows that the local structural information from

reconstruction is generally consistent with those obtained by iterative pointwise fitting, while

differing from DFT calculations. The deviations in the size of energy gaps at K and M′ between

reconstruction and pointwise fitting lie in the same range as the momentum-averaged recon-

struction errors (see section S2), which are due to the finite coordinate spacing in the data (∼
18 meV in energy).

The region extracted around K (see Supplementary Fig. 11d-e) contains about 10% of the

distance of Γ − K. Due to the strong trigonal warping (TW) effect in this class of materials,

the effective masses and the TW parameters around K were fit simultaneously in 2D using the

momentum-space model derived from k·p theory [22].

E(q) =
~2q2

2mK
+ C|q|3 cos(3ϕq + θ) + E0. (22)

Here, q is the momentum vector k recentered on a particular K (or K′) point by translation,

mK is the effective mass of the hole at K point, C is the magnitude of the TW (named C3w
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Supplementary Table 2: Band structure parameters from experiment and theory.
Effective masses of holes (mK), trigonal warping parameters (C) are extract at K point
in the first two valence bands. Two directional effective masses at M′ (mM′), and one
at Γ (mΓ), are obtained for the first valence band. The energy gaps (∆E) between the
first two valence bands are obtained at both K and M′ points. The number (1 or 2) in
the subscript of the parameter symbols denotes the valence band index, me is the mass
of an isolated electron.

Symmetry point Parameter LDA recon. 1 Line fitting 2 LDA 3 HSE06 3

K mK,1/me −0.62 −0.60 −0.49 −0.42
K mK,2/me −0.74 −0.78 −0.64 −0.54
K CK,1 (eV·Å3

) 5.3 5.8 6.2 4.5
K CK,2 (eV·Å3) 4.0 3.9 3.9 3.2
K ∆EK,1−2 (meV) 419 446 485 467
M′ mM′−Γ,1/me 0.71 0.72 0.25 0.17
M′ mM′−K′,1/me −1.6 −1.5 −1.1 −0.90
M′ ∆EM′,1−2 (meV) 352 338 127 48
Γ mΓ,1/me −0.82 −1.1 −0.81 −1.0

1 Using band dispersion reconstructed globally by the proposed probabilistic machine learning algo-
rithm with DFT calculation at the LDA level as the initialization.

2 Using band dispersion from iterative lineshape fitting of the energy distribution curves (in an region
around the corresponding high-symmetry points).

3 With fully optimized structure, see Supplementary Table 1.

in [22]), ϕq is the polar angle in the coordinate system centered on a K (or K′) point, θ is an

auxiliary fitting parameter used to accommodate the orientation of the TW with respect to the

pixel coordinates defined by the rectangular region of interest,E0 accounts for the energy offset.

The energy gaps at K (∆EK,1−2) and M′ (∆EM′,1−2) are illustrated in Supplementary Fig. 11

(b and d), respectively. The M′ (or M) point situates at a saddle point of the dispersion surface

(first valence band), as shown in Supplementary Fig. 11b-c. Its lower symmetry (compared

with K, K′ and Γ) means that the effective masses exhibits anisotropy, with opposite signs and

magnitude along the M′−Γ and M′−K′ directions. We fit the dispersion locally using a model

that also accounts for the spin-orbit interaction involving a linear momentum-dependent shift

(Eq. 14 in [22]). The second valence band is not fitted at M′ due to the pronounced dispersion

modulation by interband coupling unaccounted for in the existing saddle-shaped model. At

around Γ, a single effective mass is extracted by fitting a paraboloid to a local patch of the

dispersion surface.
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