Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Vibrational coherent control of localized d–d electronic excitation

MPG-Autoren
/persons/resource/persons133847

Nova,  T. F.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133839

Cartella,  A.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons226549

Latini,  S.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2003.13447.pdf
(Preprint), 5MB

Ergänzendes Material (frei zugänglich)

suppl.zip
(Ergänzendes Material), 5MB

Zitation

Marciniak, A., Marcantoni, S., Giusti, F., Glerean, F., Sparapassi, G., Nova, T. F., et al. (2021). Vibrational coherent control of localized d–d electronic excitation. Nature Physics, 17(3), 368-373. doi:10.1038/s41567-020-01098-8.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-D622-2
Zusammenfassung
Addressing the role of quantum coherence in the interplay between the different matter constituents (electrons, phonons and spin) is a critical step towards understanding transition metal oxides and design complex materials with new functionalities. Here we use coherent vibrational control of onsite d-d electronic transitions in a model edge-sharing insulating transition metal oxide (CuGeO3) to single-out the effects of vibrational coherence in electron-phonon coupling. By comparing time domain experiments based on high and low frequency ultrashort pumps with a fully quantum description of phonon assisted absorption, we could distinguish the processes associated to incoherent thermal lattice fluctuations from those driven by the coherent motion of the atoms. In particular, while thermal fluctuation of the phonon bath uniformly increases the electronic absorption, the resonant excitation of phonon modes results also in light-induced transparency which is coherently controlled by the vibrational motion.