Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Light-Induced Renormalization of the Dirac Quasiparticles in the Nodal-Line Semimetal ZrSiSe

MPG-Autoren
/persons/resource/persons194586

Tancogne-Dejean,  N.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons221904

Xian,  L. D.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons221949

de Giovannini,  U.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco;
Center for Computational Quantum Physics, Flatiron Institute, New York;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevLett.125.076401.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

suppl.zip
(Ergänzendes Material), 4MB

Zitation

Gatti, G., Crepaldi, A., Puppin, M., Tancogne-Dejean, N., Xian, L. D., de Giovannini, U., et al. (2020). Light-Induced Renormalization of the Dirac Quasiparticles in the Nodal-Line Semimetal ZrSiSe. Physical Review Letters, 125(7): 076401. doi:10.1103/PhysRevLett.125.076401.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-DAC0-B
Zusammenfassung
In nodal-line semimetals, linearly dispersing states form Dirac loops in the reciprocal space with a high degree of electron-hole symmetry and a reduced density of states near the Fermi level. The result is reduced electronic screening and enhanced correlations between Dirac quasiparticles. Here we investigate the electronic structure of ZrSiSe, by combining time- and angle-resolved photoelectron spectroscopy with ab initio density functional theory (DFT) complemented by an extended Hubbard model (DFT+U+V) and by time-dependent DFT+U+V. We show that electronic correlations are reduced on an ultrashort timescale by optical excitation of high-energy electrons-hole pairs, which transiently screen the Coulomb interaction. Our findings demonstrate an all-optical method for engineering the band structure of a quantum material.