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We establish the multiparameter quantum Cramér-Rao bound for simultaneously estimating the centroid, the

separation, and the relative intensities of two incoherent optical point sources using a linear imaging system.

For equally bright sources, the Cramér-Rao bound is independent of the source separation, which confirms that

the Rayleigh resolution limit is just an artifact of the conventional direct imaging and can be overcome with an

adequate strategy. For the general case of unequally bright sources, the amount of information one can gain

about the separation falls to zero, but we show that there is always a quadratic improvement in an optimal

detection in comparison with the intensity measurements. This advantage can be of utmost important in realistic

scenarios, such as observational astronomy.

The time-honored Rayleigh criterion [1] specifies the mini-

mum separation between two incoherent optical sources using

a linear imaging system. As a matter of fact, it is the size of the

point spread function [2] that determines the resolution: two

points closer than the PSF width will be difficult to resolve

due to the substantial overlap of their images.

Thus far, this Rayleigh criterion has been considered as a

fundamental limit. Resolution can only be improved either

by reducing the wavelength or by building higher numerical-

aperture optics, thereby making the PSF narrower. Nonethe-

less, outstanding methods have been developed lately that can

break the Rayleigh limit under special circumstances [3–12].

Though promising, these techniques are involved and require

careful control of the source, which is not always possible,

especially in astronomical applications.

Despite being very intuitive, the common derivation of the

Rayleigh limit is heuristic and it is deeply rooted in classical

optical technology [13]. Recently, inspired by ideas of quan-

tum information, Tsang and coworkers [14–17] have revisited

this problem using the Fisher information and the associated

Cramér-Rao lower bound (CRLB) to quantify how well the

separation between two point sources can be estimated. When

only the intensity at the image is measured (the basis of all the

conventional techniques), the Fisher information falls to zero

as the separation between the sources decreases and the CRLB

diverges accordingly; this is known as the Rayleigh curse [14].

However, when the Fisher information of the complete field is

calculated, it stays constant and so does the CRLB, revealing

that the Rayleigh limit is not essential to the problem.

These remarkable predictions prompted a series of ex-

perimental implementations [18–20] and further generaliza-

tions [21–25], including the related question of source local-

ization [26–28]. All this previous work has focused on the

estimation of the separation, taking for granted a highly sym-

metric configuration with identical sources. In this Letter, we

approach the issue in a more realistic scenario, where both

sources may have unequal intensities. This involves the si-

multaneous estimation of separation, centroid, and intensi-

ties. Typically, when estimating multiple parameters, there

is a trade-off in how well different parameters may be esti-

mated: when the estimation protocol is optimized from the

point of view of one parameter, the precision with which the

remaining ones can be estimated deteriorates.

Here, we show that including intensity in the estimation

problem does lead to a reduction in the information for unbal-

anced sources. However the information available in an opti-

mal measurement still surpasses that of a conventional direct

imaging scheme by a significant margin at small separations.

This suggests possible applications, for example, in observa-

tional astronomy, where sources typically have small angular

separations and can have large differences in brightness.

Let us first set the stage for our simple model. We assume

quasimonochromatic paraxial waves with one specified polar-

ization and one spatial dimension, x denoting the image-plane

coordinate. The corresponding object-plane coordinates can

be obtained via the lateral magnification of the system, which

we take to be linear spatially invariant [2].

To facilitate possible generalizations, we phrase what fol-

lows in a quantum parlance. A wave of complex amplitude

U(x) can thus be assigned to a ket |U〉, such that U(x)= 〈x|U〉,
where |x〉 is a vector describing a point-like source at x.

The system is characterized by its PSF, which represents its

normalized intensity response to a point source. We denote

this PSF by I(x) = |〈x|Ψ〉|2 = |Ψ(x)|2, so that Ψ(x) can be

interpreted as the amplitude PSF.

Two incoherent point sources, of different intensities and

separated by a distance s, are imaged by that system. The

signal can be represented as a density operator

ρθ = qρ++(1− q)ρ− , (1)

where q and 1− q are the intensities of the sources, with the

proviso that the total intensity is normalized to unity. In ad-

dition, we have defined ρ± = |Ψ±〉〈Ψ±| and the x-displaced

PSF states are

〈x|Ψ±〉= 〈x− s0 ∓ s/2|Ψ〉= Ψ(x− s0 ∓ s/2), (2)
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so that they are symmetrically located around the geometric

centroid s0 =
1
2
(x++ x−). Note that

|Ψ±〉= exp[−i(s0 ± s/2)P]|Ψ〉 , (3)

where P is the momentum operator, which generates displace-

ments in the x variable. As in quantum mechanics, it acts as a

derivative P = −i∂x. These spatial modes are not orthogonal

(〈Ψ−|Ψ+〉 6= 0), so they cannot be separated by independent

measurements.

The density matrix ρθ gives the normalized mean intensity:

ρθ(x) = q |Ψ(x− s0 − s/2)|2+(1−q) |Ψ(x−s0+s/2)|2, and

depends on the centroid s0, the separation s, and the relative

intensities of the sources q. This is indicated by the vector

θ = (s0,s,q)
t . The task is to estimate the values of θ through

the measurement of some observables on ρθ. In turn, a quan-

tum estimator θ̂ for θ is a selfadjoint operator representing a

proper measurement followed by data processing performed

on the outcomes. Such a parameter estimation implies an ad-

ditional uncertainty for the measured value, which cannot be

avoided.

In this multiparameter estimation scenario, the cen-

tral quantity is the quantum Fisher information matrix

(QFIM) [29]. This is a natural generalization of the classi-

cal Fisher information, which is a mathematical measure of

the sensitivity of an observable quantity (the PSF, in our case)

to changes in its underlying parameters. However, the QFIM

it is optimized over all the possible quantum measurements. It

is define reads

Qαβ (θ) =
1
2

Tr(ρθ{Lα ,Lβ}) , (4)

where the Greek indices run over the components of the vec-

tor θ and {·, ·} denotes the anticommutator. Here, Lα stands

for the symmetric logarithmic derivative [30] with respect the

parameter θα , defined implicitly by 1
2
(Lα ρθ+ρθLα ) = ∂α ρθ ,

with ∂α = ∂/∂θα .

Upon writing ρθ in its eigenbasis ρθ = ∑n λn|λn〉〈λn|, the

QFIM per detection event can be concisely expressed as [31]

Qαβ (θ) = 2 ∑
m,n

1

λm +λn

〈λm|∂α ρθ|λn〉〈λn|∂β ρθ|λm〉 , (5)

and the summation extends over m,n with λm+λn 6= 0. In ad-

dition, the constraints of unity trace ∑m λm = 1 and the com-

pleteness relation ∑m |λm〉〈λm|= 11 have to be imposed.

The QFIM is a distinguishability metric on the space of

quantum states and leads to the multiparameter quantum

CRLB [32, 33]:

Cov(θ̂)≥ Q−1(θ) , (6)

where Cov(θ̂) = E[(θ̂α − θα)(θ̂β − θβ )] refers to the covari-

ance matrix for a locally unbiased estimator θ̂ of the quantity

θ and E[Y ] is the expectation value of the random variable

Y . In particular, the individual parameter θα can be estimated

with a variance satisfying Var(θ̂α)≥ (Q−1)αα(θ), and a pos-

itive operator-valued measurement (POVM) attaining this ac-

curacy is given by the eigenvectors of Lα . Unlike for a single

parameter, the collective bound is not always saturable: the

intuitive reason for this is incompatibility of the optimal mea-

surements for different parameters [34].

If the operators Lα corresponding to the different param-

eters commute, there is no additional difficulty in extracting

maximal information from a state on all parameters simul-

taneously. If they do not commute, however, this does not

immediately imply that it is impossible to simultaneously ex-

tract information on all parameters with precision matching

that of the separate scenario for each. As discussed in a num-

ber of papers [35–37] the multiparameter quantum CRLB can

be saturated provided

Tr(ρθ[Lα ,Lβ ]) = 0 . (7)

Then, optimal measurements can be found by optimizing over

the classical Fisher information, as the QFIM is an upper

bound for the former quantity. This can be efficiently ac-

complished by global optimization algorithms [38]. For our

particular case, it is easy to see that the condition (7) is ful-

filled whenever the PSF is real, Ψ(x)∗ = Ψ(x), which will be

assumed henceforth.

To proceed further, we note that the density matrix ρθ is, by

definition, of rank 2. The QFIM reduces then to the simpler

form

Qαβ =−
3

λ1

〈λ1|∂α ρθ|λ1〉〈λ1|∂β ρθ|λ1〉

−
3

λ2

〈λ2|∂α ρθ|λ2〉〈λ2|∂β ρθ|λ2〉

+4

(
1−

1

λ1

−
1

λ2

)
〈λ1|∂α ρθ|λ2〉〈λ2|∂β ρθ|λ1〉

+
4

λ1

〈λ1|∂α ρθ∂β ρθ|λ1〉+
4

λ2

〈λ2|∂α ρθ∂β ρθ|λ2〉 . (8)

The derivatives involved in this equation can be easily evalu-

ated; the result reads

∂s0
ρθ = i[ρθ,P] ,

∂sρθ = i
2
(q[ρ+,P]− (1− q)[ρ−,P]) ,

∂qρθ = ρ+−ρ− .

(9)

To complete the calculation it proves convenient to write the

two nontrivial eigenstates of ρθ in terms of non-orthogonal

component states |Ψ±〉: |λ1,2〉 = a1,2|Ψ+〉+ b1,2|Ψ−〉, where

a1,2 and b1,2 are easy-to-find yet complex functions of the sep-

aration and the intensities and whose explicit form is of no

relevance for our purposes here. Substituting this and Eq. (9)

into Eq. (8), and after a lengthy calculation, we obtain a com-

pact expression for the QFIM

Q = 4




p2 + 4q(1− q)℘2 (q− 1/2)p2 −iw℘
(q− 1/2)p2 p2/4 0

−iw℘ 0
1−w2

4q(1− q)


 .

(10)
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FIG. 1. Precision Hs in the separation s as inferred by optimal (red

solid lines) and direct (blue broken lines) detections for different rel-

ative intensities of the two sources. The values of q, from top to bot-

tom, are 0.5, 0.45, 0.3, and 0.1. Notice that the performance of the

optimal detection is rather sensitive to small deviations from equal

brightness over a wide range of separations.

This is our central result. The QFIM depends only on the

following quantities

w ≡ 〈Ψ±|Ψ∓〉= 〈Ψ|exp(isP)|Ψ〉 ,

p2 ≡ 〈Ψ±|P
2|Ψ±〉= 〈Ψ|P2|Ψ〉 , (11)

℘≡±〈Ψ±|P|Ψ∓〉= 〈Ψ|exp(isP)P|Ψ〉 .

Interestingly, p2 is fully determined by the shape of the PSF,

whereas both w and ℘ depend on the separation s. Further-

more, ℘ is purely imaginary.

In what follows, rather than the variances themselves, we

will use the inverses Hα = 1/Var(θα ), usually called the pre-

cisions [39]. In this way, we avoid potential divergences at

s= 0.

The QFIM (10) nicely shows the interplay between vari-

ous signal parameters. First, notice that Q is independent

of the centroid, as might be expected. Second, for equally

bright sources, q = 1/2, the measurement of separation s is

uncorrelated with the measurements of the remaining param-

eters and we have Hs(q = 1/2) = p2, a well known result,

and the Rayleigh curse is lifted [20]. This happy coincidence

does not hold for unequal intensities q 6= 1/2; now, the sep-

aration is correlated with the centroid (via the intensity term

q− 1/2) and the centroid is correlated with the intensity (via

p2). This can be intuitively understood: unequal intensities

result in asymmetrical images and finding the centroid is no

longer a trivial task. This asymmetry, in turn, depends on

the relative brightness of the two components. Hence, all the

three parameters become entangled and, as we shall see, hav-

ing separation-independent information about s is no longer

possible.

By inverting the QFIM we immediately get

Hs = p2 Q2℘2 +Q2 p2(1−w2)

Q2℘2 + p2(1−w2)
, (12)
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FIG. 2. Precisions as in Fig. 1, but visualized on a logarithmic scale.

Slopes of straight lines translate to the powers of s. The values of q

are, from top to bottom, 0.5, 0.4, and 0.1.

where 0 ≤ Q2 ≡ 4q(1− q)≤ 1. Obviously, Hs(q) ≤ Hs(q =
1/2) = p2 and lim

q→0,1
Hs(q) = 0, which demonstrates that re-

solving two highly unequal sources is difficult, even at the

quantum limit.

The instance of large brightness differences and small sepa-

rations is probably the most interesting regime encountered, e.

g., in exoplanet observations. We first expand the s-dependent

quantities:

w(s) = 〈Ψ|eisP|Ψ〉 ≃ 1− 1
2

p2
s

2 + 1
24

p4
s

4,

p(s) = 〈Ψ|PeisP|Ψ〉 ≃ ip2
s− i 1

6
p4
s

3 ,
(13)

where p4 = 〈Ψ|P4|Ψ〉 is the fourth moment of the PSF mo-

mentum. Then, as s≪ 1, we get (for 0 < Q < 1)

Hs0
≃ Q

2 Var(P̂2)s2 ,

Hs ≃
Q2

4(1−Q2)
Var(P̂2)s2,

Hq ≃
1

Q2
Var(P̂2)s4 .

(14)

The PSF enters these expressions through the variance of P2:

Var(P̂2) = p4 − p2. This leaves room for optimization, pro-

vided the PSF can be controlled. For a fixed PSF, the infor-

mation about all three parameters apparently vanishes with

s → 0 unless q = 1/2. And since exactly balanced sources

never happen, the information about very small separations al-

ways drops to near zero and the Rayleigh curse is unavoidable.

However, significant improvements of the optimal measure-

ment schemes over the standard intensity detection are still

possible.

To illustrate this point let us consider a Gaussian response

〈x|Ψ〉= (2π)(1/4) exp(−x2/4) of unit width, which will serve

from now on as our basic unit length. We shall compare the

quantum limit given by (10) with that given by the classical

Fisher information for the direct intensity measurement. We

assume no prior knowledge about any of the three parameters.
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FIG. 3. Precision about relative intensity q as inferred by the optimal

detection (red solid lines) and the direct detection (blue broken lines)

for different relative intensities of the two sources. The values of q,

from bottom to top are 0.5, 0.2, 0.1, and 0.01.

Figure 1 plots information about separation Hs for different

relative intensities q. Unbalanced intensities make both opti-

mal and intensity detection go to zero for small separations,

however the former at a much slower rate. Hence, optimal in-

formation to intensity information increases with decreasing

separations, regardless of whether the sources are balanced.

The reason becomes obvious with the same data visualized

on the logarithmic scales, as shown in Fig. 2. In the region

of s ≪ σ , we can discern two regimes of importance. For

balanced sources, H
opt
s ∝ 1 and H int

s ∝ s
2. For unbalanced

sources, H
opt
s ∝ s

2, as we have seen, and H int
s ∝ s

4. In con-

sequence, there is always a factor of s−2 improvement of the

optimal detection over the standard one, irrespective of the

true values of the signal parameters. In practice, this means

that when we already are well below the Rayleigh limit, if we

decrease the separation 10 times, about 10,000 times more

photons must be detected with a CCD camera to keep the ac-

curacy of the measurement, while only 100 times more would

suffice for optimal measurement. This amounts to saving 99%

of detection time with the optimal detection scheme.

Finally, Fig. 3 presents a similar comparison now concern-

ing the information about the relative intensity Hq. Here, op-

timal information and intensity information always scale as s4

and s
6, respectively, and the same s

−2 gain in performance

appears. Notice the reversed ordering of curves with q, mean-

ing that now, the information increases rather than decreases

with increasing intensity difference, which reveals the com-

plementarity between these magnitudes. Also notice that the

broken lines converge as we approach s= 0. It can be shown

that the leading term for intensity detection for small sepa-

rations is p-independent in contrast to the optimal detection,

which displays a strong H
opt
q ∝ q

−1 dependence for q≪ 1/2.

This highlights the advantage of an optimal detection scheme

for astronomical observations. For example more than a quar-

ter of catalogued binary systems consist of stars that differ in

brightness by more than an order of magnitude [40], and the

darkest known exoplanet is three orders of magnitude dimmer

than its host star in the infrared [41].

In summary, we have presented a comprehensive analysis

of the ultimate precision bounds for estimating the centroid,

the separation, and the relative intensities of two pointlike in-

coherent sources. For equally bright sources, the quantum

Fisher information remains constant, which translates into the

fact that the Rayleigh limit is not essential and can be lifted.

On the other hand, for unequally bright sources, the informa-

tion about very small separations always drops to near zero

and the Rayleigh curse is unavoidable. Nonetheless, signifi-

cant improvements can still be expected with optimal detec-

tion schemes.
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