English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Al2Pt für die Sauerstoffentwicklungsreaktion bei der Wasserspaltung: eine Strategie zur Erzeugung von Multifunktionalität in der Elektrokatalyse

MPS-Authors
/persons/resource/persons32715

Tarasov,  Andrey
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22163

Teschner,  Detre
Max-Planck-Institut ffr Chemische Energiekonversion;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons144491

Algara-Siller,  Gerardo
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Max-Planck-Institut ffr Chemische Energiekonversion;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

ange.202005445.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Antonyshyn, I., Barrios Jiménez, A. M., Sichevych, O., Burkhardt, U., Veremchuk, I., Schmidt, M., et al. (2020). Al2Pt für die Sauerstoffentwicklungsreaktion bei der Wasserspaltung: eine Strategie zur Erzeugung von Multifunktionalität in der Elektrokatalyse. Angewandte Chemie, 132(38), 16913-16919. doi:10.1002/ange.202005445.


Cite as: https://hdl.handle.net/21.11116/0000-0006-EC31-9
Abstract
Die Herstellung von Wasserstoff durch Wasserelektrolyse ist nur möglich, wenn wirksame und stabile Katalysatoren für die Sauerstoffentwicklungsreaktion (Oxygen Evolution Reaction, OER) verfügbar sind. Intermetallische Verbindungen mit genau definierter Kristallstruktur und elektronischen Eigenschaften sowie besonderer chemischer Bindung werden als Vorstufe für neue Werkstoffe vorgeschlagen, die interessante katalytische Eigenschaften aufweisen. Al2Pt kristallisiert im Anti‐Fluorit‐Kristallstrukturtyp und zeigt eine stark polare chemische Bindung. Platin ist hierbei katalytisch aktiv und wird auch unter den Bedingungen der Sauerstoffentwicklungsreaktion vergleichsweise wenig aus der Katalysatoroberfläche herausgelöst. Im Folgenden wird die unerwartete Leistungsfähigkeit einer Oberflächen‐Nanokomposit‐Architektur beschrieben, die aus der selbstorganisierten Umwandlung der intermetallischen Vorstufe Al2Pt resultiert. Hierbei wird insbesondere das Langzeitverhalten der katalytischen Aktivität und Stabilität unter den Bedingungen der Sauerstoffentwicklungsreaktion untersucht.