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ABSTRACT
By analogy with single-molecule pulling experiments, we present a computational framework to obtain free energy differences between com-
plex solvation states. To illustrate our approach, we focus on the calculation of solvation free energies (SFEs). However, the method can be
readily extended to cases involving more complex solutes and solvation conditions as well as to the calculation of binding free energies. The
main idea is to drag the solute across the simulation box where atomistic and ideal gas representations of the solvent coexist at constant tem-
perature and chemical potential. At finite pulling speeds, the resulting work allows one to extract SFEs via nonequilibrium relations, whereas
at infinitely slow pulling speeds, this process becomes equivalent to the thermodynamic integration method. Results for small molecules well
agree with literature data and pave the way to systematic studies of arbitrarily large and complex molecules.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5117780., s

Solvation free energies (SFEs), the difference in free energy
resulting from considering the solute molecule in a solvent and in
the gas phase at a given temperature and pressure, are fundamental
to understand various processes in biology, chemistry, and phar-
maceutical sciences in view of computer-aided drug design. SFEs
are often calculated using free energy methods that join solvated
and gas phase states via a careful modulation of physical inter-
actions.1–13 This procedure is rather involved and strongly system
dependent.

Here, we compute SFEs in terms of the work necessary to pull
the molecule from a region within the simulation box containing
the solvent (solvated state) to another region containing an ideal gas
representation of the solvent (gas phase). A uniform solvent number
density is enforced throughout the simulation box. Hence, molecules
can freely diffuse while changing their resolution, from interacting to
ideal gas, on the fly which consequently guarantees a constant solvent
chemical potential.

In particular, let us consider a system of N atoms, where a
single solute molecule σ is solvated in Ns solvent molecules of
type α. To concurrently simulate the fully atomistic and ideal gas
representation of the solvent, we apply the adaptive resolution
framework,14–16 particularly the Hamiltonian adaptive resolution
H-AdResS method.17–20 There, a Hamiltonian of the system includes
a switching field λ(r) that defines regions within the simulation box
where intermolecular interactions are either fully atomistic [λ(r) = 1]
or nonexistent [λ(r) = 0]. A smooth interpolation between the val-
ues 0 and 1, and thus a change in molecular resolution, takes place
in between these two regions. The Hamiltonian of the system has the
form21

H[λ](r, p) = K + V[λ](r), (1)

with (r, p) being positions and momenta and K = ∑N
i=1 p

2
i /2mi the

total kinetic energy of the system. In this particular case, we write the
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potential energy as

V[λ](r) =
Ns

∑

I=1
I∈α

[V intra
I (r) + λ(RI)V inter

I (r) − ΔHα(λ(RI))]

+ V intra
σ (r) + λ(Rσ)V inter

σ (r) − ΔHσ(λ(Rσ)), (2)

where the labels intra and inter refer to intra- and intermolecular
interactions, respectively. The vector R is the position of the cen-
ter of mass of a given molecule, and the switching field λ(R), which
determines the molecule’s identity, takes the value 1 if the molecule
is in the atomistic region (AT), 0 is in the ideal gas region (IG), and
a smooth interpolation between these values is defined in the hybrid
(HY) region (see Fig. 1). It is apparent that the potential given by
Eq. (2) can be generalized to cases where multiple solute molecules
are present or the solvent corresponds to a molecular mixture. More-
over, the choice of reference state, in this case the gas phase, is
rather arbitrary and can be calibrated depending on the problem at
hand.

The ΔH terms are free energy compensations (FECs) intro-
duced in the Hamiltonian to eliminate nonphysical contributions to
the forces due to the gradients of λ(r) and to guarantee a flat den-
sity profile across the simulation box. For all cases considered, there
are only two FEC contributions, one for all the solvent molecules,
ΔHα, and the other for the solute molecule, ΔHσ . The FEC of the
solvent has been identified with the excess (or residual in the case
of mixtures) chemical potential19 and can be easily computed using
an iterative on-the-fly procedure22 (see Sec. I of the supplementary
material). In this formalism, we write the following time-dependent
Hamiltonian:

H[λ](r, p; t) = H[λ](r, p) + Vi∈σ(x, t), (3)

with

Vi∈σ(x, t) = κ/2(xi∈σ(t) − x0
i∈σ − vt)2 (4)

a time-dependent harmonic restraint, with constant κ, applied on
the x-coordinate of the atom i that belongs to the solute molecule σ,
xi∈σ(t), whose initial position is denoted by x0

i∈σ . This potential drives
the solute molecule across the simulation box to sample different sol-
vation conditions between two extreme cases: a fully solvated solute

and its gas phase (see Fig. 1). From the Hamiltonian (3), we can
compute the thermodynamic work that corresponds to the change
in energy of the system,23

W(τ) = ∫
τ

0
dt
∂H[λ](r, p; t)

∂t
= −κv∫

τ

0
dt′[xi∈σ(t′) − x0

i∈σ − vt′],

(5)

with v being the pulling rate. Finally, the relation between the work
defined in Eq. (5) and the free energy difference between two equi-
librium solvation states can be established by the Jarzynski equality
(JE),24–26

⟨e−βW
⟩ = e−βΔF , (6)

with β = 1/kBT. Shortly after its formulation, the JE found immedi-
ate application in various single-molecule pulling experiments.27–30

One interesting limiting case of the JE corresponds to the infinitely
slow pulling limit where the system equilibrates for every value of the
switching field λ(r). In this case, from the JE (6) and the definition
of work (5), we obtain an expression for ΔF completely analogous to
the thermodynamic integration method,25,31

ΔF = ∫
Rb

Ra

dr∇rλ(r) ⟨
δH[λ]
δλ(r)

⟩

[λ]
, (7)

where the brackets ⟨⋯⟩λ indicate the ensemble average for a given
value of the field λ(r) and the δ indicates a functional derivative. The
terms Ra = rAT + dHY and Rb = rAT with rAT and dHY being the lin-
ear dimensions of the AT and HY regions, respectively. From the
Hamiltonian (3), one obtains

⟨

δH[λ]
δλ(RI/σ)

⟩

[λ]
= ⟨V inter

I/σ (r)⟩[λ] −
δΔHα/σ(λ(RI/σ))

δλ(RI/σ)
.

This quantity vanishes upon integration.21 For the solvent molecules
α, this result verifies that the excess chemical potential is zero. For
the solute σ, we have two possibilities. ΔHσ(λ(Rσ)) ≠ 0 implies ΔF
= 0 and ΔHσ(λ(Rσ)) ≡ 0 implies that, in the infinitely slow pulling
limit, the SFE can be obtained as

ΔF = ∫
Rb

Ra

dr∇rλ(r) ⟨V inter
σ (r)⟩[λ]. (8)

FIG. 1. Snapshot of the simulation setup
showing the atomistic (AT), hybrid (HY),
and ideal gas (IG) regions. The blue
curve represents the switching field that
smoothly interpolates the intermolecular
interactions from fully atomistic to non-
interacting along the x-coordinate. The
molecules of interest, water and urea,
are initially equilibrated in the AT (IG)
region and then pulled across the sim-
ulation box until they reach the IG (AT)
region.

J. Chem. Phys. 151, 144105 (2019); doi: 10.1063/1.5117780 151, 144105-2

© Author(s) 2019

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5117780#suppl
https://doi.org/10.1063/1.5117780#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Free energy profile of a water molecule transferred between AT and IG
regions. The blue flat profile corresponds to the case when FECs are applied to all
molecules in the system and indicates that there is no energy barrier for solvent
molecules to freely diffuse between regions, i.e., the chemical potential is constant.
The red curve corresponds to the case when there are no FECs applied on the
solute water molecule. The barrier in the HY region is related to the particular
choice of λ(r). The uncertainty in the calculations is indicated by the error bars.

To investigate this, we consider a single component system. The
solute is defined as one of the system’s molecules such that ΔHα
= ΔHσ . We calculate ΔF by using Eq. (7) when ΔHσ ≠ 0 and Eq. (8)
when ΔHσ = 0. With this aim, we perform umbrella sampling32,33

simulations of pure SPC/E34 water (see Secs. I and II of the sup-
plementary material). In practice, we select a water molecule inside
the AT region (schematically indicated in Fig. 1) and restrain the
x-coordinate of its oxygen atom using the harmonic potential
in Eq. (4) with zero pulling rate and spring constant κ = 209.2
kJ/mol/Å2. First, we apply the FEC to all the molecules in the sys-
tem including the selected water molecule [ΔHσ ≠ 0 in Eq. (2)].
This solute molecule is moved sequentially by Δx0

oxygen = 0.2 Å and
sampled for 20 ps to construct the biased probability distribution of
xoxygen. We perform 20 uncorrelated simulation runs to calculate the
solvation free energy profile and shift it with respect to the IG region.
Averages and standard deviations (error bars) are reported in Fig. 2
(blue symbols) which show, as expected and within error bars, a flat
free energy profile across the simulation box (ΔF = 0).

Second, we repeat the same umbrella calculation as described
before but without applying the FEC to the solute water molecule
[ΔHσ = 0 in Eq. (2)]. Results are also reported in Fig. 2 (red sym-
bols), where a flat energy profile is apparent in both the AT and
IG regions and the gap between the two amounts for the difference
in free energy of −29.45 ± 2.63 kJ/mol.35 This result agrees within
error bars (which are comparable to the ones obtained with state-
of-the-art free energy methods) with the excess chemical potential
as reported in the literature (−29.52 ± 0.03 kJ/mol36 and −29.18
± 0.16 kJ/mol19), and it validates our approach since the solvation
free energy of a water molecule in water is the excess chemical
potential.

For the second part of this study, we focus on the calculation of
the SFE of one urea molecule in water (in the following, we assume
ΔHσ = ΔHurea = 0). In this case, we apply JE for different pulling
rates, including the infinitely slow pulling case given by Eq. (8). We
simulate urea and water molecules using the OPLS37 and SPC/E34

force fields, respectively (see the computational details in Sec. I of the
supplementary material). In this case, the carbon atom of the urea
molecule is restrained and pulled across the simulation box using
the harmonic potential in Eq. (4) with zero pulling rate and spring
constant κ = 209.2 kJ/mol/Å2. The resulting free energy profile is
shown in Fig. 3 (blue symbols), and we use it as the benchmark for
the next part of the investigation.

We now proceed to perform the steered molecular dynamics of
the solute molecule to bring it from the AT to the IG region, and we
use the JE to compute the SFE. The initial conditions for all pulling
experiments, slow and fast, are extracted from different equilibrated
configurations at constant temperature. Thus, the initial positions
of the restrained molecule are distributed with Boltzmann weight
exp(−κ(x − x0

)
2
/2kBT) whose width (standard deviation of the dis-

tribution) is given by the inverse of the restraining stiffness, κ−1.
We apply the time-dependent restraining potential in Eq. (4) with
κ = 209.2 kJ/mol/Å2 which is high enough to neglect, within error
bars, the contribution of such a potential in the calculation of the free
energy. Thus, we effectively calculate the difference in free energy
for the unconstrained system.38 In practice, to make use of the JE
(6), it is possible, on the one hand, to express ⟨e−βW

⟩ in terms of a
cumulant expansion,39

FIG. 3. Free energy profile of one urea molecule transferred between AT and IG regions with pulling rate (a) v = 10 Å/ns and (b) v = 50 Å/ns. The blue curve in each panel is
obtained by using the umbrella sampling method described in the text. The free energy profiles calculated by JE using the first, first and second, and exponential averages
of work are represented by black, red, and green curves, respectively. The averages and error bars are calculated over (a) six sets of ten and (b) 20 sets of ten independent
simulation runs.
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ΔF = ⟨W⟩ − (β/2)(⟨W2
⟩ − ⟨W⟩2) +⋯, (9)

with ⟨W2
⟩ − ⟨W⟩2 being the mean-squared variation of W. On the

other hand, it is also possible to directly use the exponential average,
i.e.,

ΔF = −β−1 ln(⟨e−βW
⟩). (10)

In both cases, we use Eq. (5) to compute the applied work W on
the system. The initial position of the solute is set at x0

i∈σ = 20 Å,
and the simulation total time τ is set such that the final equilibrium
position x0

i∈σ + vτ is 60 Å. We pull the restrained atom in the solute
molecule at two constant speeds: v = 10 Å/ns and v = 50 Å/ns (the
latter being comparable to the thermal velocity of urea at room tem-
perature, see Sec. IV of the supplementary material). We generate
60 (200 in the case of v = 50 Å/ns) uncorrelated trajectories, and
we group them into six (20) blocks of ten trajectories. The statis-
tical analysis (first and second orders of the cumulants as well as
the exponential average) is carried out for each block. In Fig. 3(a),
the result of computing ⟨W⟩ for a pulling rate of v = 10 Å/ns is,
as expected, larger than ΔF [4 kJ/mol (black symbols)]. Neverthe-
less, we use the JE by either adding the contribution of higher order
cumulants as in Eq. (9) (red symbols) or evaluating the exponential
average as in Eq. (10) (green symbols). Both estimates increase the
accuracy with respect to the benchmark free energy curve. Taking
this into account, we report the solvation free energy of one urea
molecule as obtained from the exponential average as −52.9 ± 3.6
kJ/mol in good agreement with the result reported in Ref. 40 of the
excess chemical potential of aqueous urea (−55.13 kJ/mol) at a mole
fraction of 7.657 × 10−4. We show that v = 10 Å/ns [Fig. 3(a)] is
an optimum pulling rate (see Sec. V of the supplementary material)
and use this value to comment on the efficiency of the method. Since
error bars are systematically smaller for the JE than for umbrella
sampling results, we report in Sec. VI of the supplementary material,
free energy profiles with reduced size of the statistical sample. These
results indicate that to obtain comparable uncertainty, it is required
to run approximately the same number of molecular dynamics steps
in both cases. When calculating free energies, optimized equilib-
rium methods usually outperform nonequilibrium methods.31,41,42

However, our particular result might be due to the simplicity of the
system under consideration and/or the choice of equilibrium calcu-
lation which, in this context, serves only an illustrative purpose and
could be further optimized.

The amount of nonreversible work increases upon increas-
ing the pulling rate to 50 Å/ns, as presented in Fig. 3(b). The first
order cumulant ⟨W⟩ (black symbols) shows a difference of approx-
imately 30 kJ/mol with respect to the benchmark free energy (blue
symbols). In this case, the second order cumulant (red symbols)
is more accurate with respect to the umbrella sampling calculation
than the logarithmic estimator in Eq. (10) (green symbols). How-
ever, the uncertainty in the second order cumulant calculation is
larger because of the limited sampling.38,39 The error in the expo-
nential average is lower, i.e., with smaller fluctuations, but still with
a considerable mean deviation of approximately 20 kJ/mol from
the reference value, that evidences the well-documented bias of this
particular estimator.38,39

Previously, we have only considered the process to bring the
molecule from the AT to the IG region, but it is also possible to

compute ΔF by performing the reverse process. In this case, Crooks
fluctuation theorem (CFT) combines the information obtained from
examining forward (F) and reverse (R) pulling events,43

PF(+βW)
PR(−βW)

= e−ΔF+βW , (11)

where W is the work performed on the system resulting from F and
R pulling and β = 1/kBT. Similarly to the JE, the CFT has also been
investigated in various experimental studies.44–46 In this case, the
difference in free energy ΔF is obtained by evaluating the ratio of
the F and R work distributions PF(+βW)/PR(−βW). We identify F
with pulling the solute from the AT to the IG region and R with the
inverse process. To use the CFT, we perform a number of R pro-
cesses equal to the number of F processes at a pulling rate of v = 50
Å/ns. Free energy profiles for R events are shown in Fig. 4 where a
consistent behavior with respect to the F processes is apparent and
rules out the presence of hysteresis in the system. For this case as
well, the best estimate with respect to the umbrella sampling pro-
file is given by the second order cumulant expansion (red symbols).
Finally, we compute the work distributions P(±βW)F/R for both R
and F processes (Fig. 5). We identify the intersection of the distribu-
tions, i.e., the point at which W = ΔF [Fig. 5 (inset)], and report
ΔF = 49.67 kJ/mol. The results obtained by using the JE and the
CFT agree reasonably well. However, more statistics and data from
different pulling rates need to be collected in order to convincingly
calculate ΔF from the CFT.

We have introduced a framework to compute SFEs via the work
resulting from dragging the solute between solvation states where
nonequilibrium work relations allow one to compute free energy
differences. The method can be extended to cases including more
complex solutes, multiple solvation conditions, calculation of abso-
lute binding affinities, and relative binding free energies. Moreover,
large solute molecules can be studied because (i) pulling from the
AT region depletes the solvent; however, this can be compensated
by defining a sufficiently large IG region at minimal computational
expenses and (ii) pulling from the IG region gives results in line with
the JE. Finally, when equilibrating intermediate states or finding an
optimal path between solvation conditions become unfeasible, this

FIG. 4. Free energy profile of a single urea molecule being transferred from the IG
to the AT region with pulling rate v = 50 Å/ns. The free energy profiles calculated
by the first, first and second, and exponential averages of work are represented by
black, red, and green curves, respectively.
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FIG. 5. Work distributions for urea molecules being pulled from the AT to the IG
region (F) and from the IG to the AT region (R) represented by blue and red bars,
respectively. The distributions are obtained from 200 trajectories at a pulling rate
of v = 50 Å/ns. Inset shows the values of log(PF (W )/PR(−W )) of the overlapping
region of the histogram, and it becomes zero at 45.5 kJ/mol. Taking into account,
the correction due to electrostatics (see the supplementary material), we report
ΔF = 49.67 kJ/mol.

pulling protocol provides a sound and straightforward alternative to
current SFE methods.

The supplementary material includes the computational details
common to all simulations as well as the specifics of the umbrella
sampling calculations. In addition, there is a short discussion on the
correction needed for an appropriate comparison between results
obtained with DSF and conventional Ewald summation for electro-
statics. To estimate the pulling speed for the nonequilibrium calcu-
lations, it is convenient to compute the mean-squared displacement
of a urea molecule in aqueous solution. Moreover, to find the opti-
mal pulling rate among the values considered in this study, we also
present the standard deviation of the corresponding work distribu-
tions. Finally, we add a section where we compare the efficiency of
umbrella sampling and nonequilibrium calculations.
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