English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’s Occator crater

MPS-Authors
/persons/resource/persons104104

Nathues,  Andreas
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schmidt, B. E., Sizemore, H. G., Hughson, K. H. G., Duarte, K. D., Romero, V. N., Scully, J. E. C., et al. (2020). Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’s Occator crater. Nature Geoscience, 13(9), 605-610. doi:10.1038/s41561-020-0581-6.


Cite as: https://hdl.handle.net/21.11116/0000-0006-F978-B
Abstract
The intimate mixture of ice and silicate within the uppermost few kilometres of Ceres influences its geology and the evolution of its subsurface. Both ground ice and cryovolcanic processes have been hypothesized to form geologic terrains on Ceres, including within Occator crater, where they have been suggested to influence the post-impact surface evolution. Both types of processes involve the presence and expression of volatiles and brines, such that distinguishing between them could be difficult. Here, we use images and topography data from the NASA Dawn mission to investigate the morphology, age and distribution of mounds and hills within Occator crater, and infer their origin. The shapes and relative ages of many of these features suggest that they formed as impact-induced water-rich flows that covered the crater floor refroze in a manner similar to the formation of periglacial ice-cored mounds on Earth called pingos. We suggest that impacts on Ceres produced hydrologic conditions for surface changes in the absence of cryovolcanic processes. Our findings imply that cryo-hydrologic processes extend beyond Earth and Mars, and have been active on Ceres in the geologically recent past.