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AUTOMORPHISMS OF HILBERT SCHEMES OF POINTS

ON SURFACES

PIETER BELMANS, GEORG OBERDIECK, AND JØRGEN VOLD RENNEMO

Abstract. We show that every automorphism of the Hilbert scheme of
n points on a weak Fano or general type surface is natural, i.e. induced
by an automorphism of the surface, unless the surface is a product of
curves and n = 2. In the exceptional case there exists a unique non-
natural automorphism. More generally, we prove that any isomorphism
between Hilbert schemes of points on smooth projective surfaces, where
one of the surfaces is weak Fano or of general type and not equal to the
product of curves, is natural. We also show that every automorphism
of the Hilbert scheme of 2 points on Pn is natural.
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1. Introduction

Let X be a non-singular complex projective surface and let X [n] be the

Hilbert scheme of n points on X. Any isomorphism g : X
∼
→ Y of smooth

projective surfaces induces an isomorphism

g[n] : X [n] ∼
→ Y [n].

An isomorphism σ : X [n] ∼
→ Y [n] is called natural if σ = g[n] for some g. In

this paper we investigate which Hilbert schemes of points on surfaces have

non-natural automorphisms and isomorphisms.

Consider the case of K3 surfaces. By a result of Beauville, the Hilbert

scheme of points of a K3 surface is a hyperkähler variety [2, Théorème 3].

Isomorphisms of hyperkähler varieties can be controlled using the global
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Torelli theorem. In particular, lattice arguments [21] show that there exist

non-isomorphic K3 surfaces X1 and X2 such that X
[2]
1

∼= X
[2]
2 , see also [20,

Example 7.2]. By construction these isomorphisms are not natural. Simi-

larly, the involution of the Hilbert schemes of 2 points on a general quartic

K3 that sends a subscheme to the residual subscheme of the line passing

through it, does not preserve the diagonal and is hence not natural, see

Beauville [3, §6]. The geometric construction and classification of auto- and

isomorphisms of hyperkähler varieties of K3[n]-type is a rich and beautiful

subject in its own right.

From now on we drop the condition on X to be Calabi–Yau. We first focus

on the existence of non-natural automorphisms of X [n]. By a computation

of Boissière [9, Corollaire 1], the automorphism groups of X [n] and X have

the same dimension and hence the same identity component. The question

of whether non-natural automorphisms exist is therefore discrete in nature.

Our first result is the following. Recall that a surface X is called weak

Fano if ω−1
X is nef and big.

Theorem 1. Let X be a smooth projective surface which is weak Fano or

of general type, and let n be any integer. Except for the case (C1 × C2)[2],

where C1 and C2 are smooth curves, every automorphism of X [n] is natural.

The second result deals with the case left open in the first theorem:

Theorem 2. Let C1, C2 be smooth curves, either both rational or both of

genus g ≥ 2. Up to composing with natural automorphisms, there exists a

unique non-natural automorphism of (C1 × C2)[2].

The non-natural automorphism on (C1×C2)[2] can be described as follows.

On the complement of the diagonal it sends the cycle (x1, y1) + (x2, y2) on

C1 ×C2 to the cycle (x1, y2) + (x2, y1). Formally, it is defined by lifting the

covering involution of the natural map of symmetric products

(C1 × C2)(2) → C
(2)
1 × C

(2)
2

to the Hilbert scheme.

Boissière and Sarti proved that if X is a K3 surface then an automorphism

f ∈ Aut(X [n]) is natural if and only if it preserves the diagonal [10]. By a

result of Hayashi the same holds if X is an Enriques surface [12, Theorem

1.2]. This gives some evidence in favour of a positive answer to the following

question.

Question 3. Suppose X is a smooth projective surface and σ : X [n] ∼
→ X [n]

is an automorphism preserving the diagonal. Excluding the case X = C1×C2

and n = 2, does it follow that σ is natural?



AUTOMORPHISMS OF HILBERT SCHEMES OF POINTS ON SURFACES 3

For a smooth projective curve C of genus g the Hilbert scheme C [n] is

isomorphic to the symmetric product C(n). In [7] Biswas and Gómez show

that if g > 2 and n > 2g−2 then every automorphism of the n-th symmetric

product of C is natural. On the other hand non-natural automorphisms on

(P1)[n] ∼= Pn for n ≥ 2 are abundant.

If X is smooth of dimension ≥ 3 then the Hilbert scheme X [n] is smooth

if and only if n ≤ 3 [11, Theorem 3.0.1]. As a first step in understanding

the situation in these cases we prove the following result.

Theorem 4. Every automorphism of (Pn)[2] is natural.

The construction of the non-natural automorphism of (C1 ×C2)[2] gener-

alizes to products of higher dimensionsional varieties, but we make no claims

regarding the analogue of the uniqueness result of Theorem 2.

Bondal and Orlov [8, Theorem 2.5] proved that any derived equivalence

between smooth projective varieties with one of them having ample or anti-

ample canonical bundle is induced by an isomorphism of the underlying

varieties. We obtain the following Hilbert scheme analog.

Corollary 5. Let X,Y be smooth projective surfaces and assume that Y

is weak Fano or of general type. Moreover if Y is a product of curves as-

sume n ≥ 3. Then for every isomorphism σ : X [n] ∼
→ Y [n] there exist an

isomorphism g : X
∼
→ Y such that σ = g[n].

After a first version of this paper appeared online, Hayashi made us aware

of the preprint [13] in which he proves Theorems 1 and 2 and Corollary 5

for rational surfaces such that the Iitaka dimension of ω−1
X is at least 1.

Hayashi’s arguments do not apply to surfaces with non-trivial fundamental

group or in general type, while our arguments do not apply in Iitaka dimen-

sion 1. For simply connected surfaces with ω±1
X ample the arguments are

parallel, see Section 3 for an outline of that case.

An interesting question beyond the scope of this paper is to describe

the group of derived auto-equivalences of the Hilbert scheme of points of

a smooth projective surface. In the weak Fano or general type case our

results determine the group of standard auto-equivalences, that is the group

generated by automorphisms of the variety, tensoring with line bundles, and

shifts. But by a result of Krug [14, Theorem 1.1(ii)]1 there always exist

non-standard auto-equivalences on the Hilbert scheme. For Hilbert squares

and Hilbert cubes of surfaces with ample or anti-ample canonical bundle a

1The numbering refers to the (non yet publicly available) published version of the paper
[14]. The corresponding results in the arXiv version are Theorem 1C and Conjecture 5.14.
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proof of [14, Conjecture 7.5] combined with Theorems 1 and 2 would give a

full description of the derived auto-equivalence group.

Hilbert schemes of points of Fano surfaces admit deformations which may

be understood as Hilbert schemes of non-commutative deformations of Fano

surfaces [15]. It would be interesting to compare the automorphism groups

of these deformations with the automorphism groups of the underlying non-

commutative surfaces which were computed in [6], and see whether they are

all natural in the appropriate sense.

1.1. Acknowledgements. Chiara Camere was part of the collaboration at

an earlier stage and we are very grateful for her insights and input. We would

also like to thank Arnaud Beauville, Alberto Cattaneo, Daniel Huybrechts,

Gebhard Martin and John Christian Ottem for their interest and useful

discussions. We thank Taro Hayashi for useful comments and for sending

us the preprint [13]. The project originated at the Max Planck Institute for

Mathematics in Bonn and we thank the institute for support.

2. Preliminaries

Let X be a smooth complex projective surface. Let X(n) be the n-th

symmetric product of X obtained as the quotient of the cartesian product

Xn under the permutation action by the symmetric group Sn. Let ρ : Xn →

X(n) be the quotient map and let pi : Xn → X be the projection onto the

i-th factor. Recall also the Hilbert–Chow morphism

ǫ : X [n] → X(n)

which sends a subscheme Z ⊂ X to its support. The notation is summarized

in the following diagram:

X [n] Xn X

X(n)

ǫ

pi

ρ

For any line bundle L on X the tensor product
⊗n

i=1 p
∗
i L has a natural

Sn-invariant structure, and taking Sn-invariants defines a line bundle L(n)

on X(n). If L is (very) ample, then L(n) is (very) ample as well. We also

define the pullback to the Hilbert scheme:

L[n] := ǫ∗L(n)

By arguments parallel to [2, §6], the canonical bundle of X [n] is

ωX[n] = (ωX)[n].
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The symmetric product X(n) is singular precisely at the diagonal ∆ of

cycles supported at less than n points. By [16, Theorem 18.18] the tangent

space at nx ∈ X(n) for any x ∈ X satisfies

dim TX(n),nx =
n(n+ 3)

2
.

This shows that the small diagonal ∆small = {nx | x ∈ X} is distinguished

in the symmetric product as the locus of points in X(n) where the Zariski

tangent space is of maximal dimension.

For future use, we record the following lemma.

Lemma 6. Let f : X → Y be a morphism of projective varieties, where Y

is normal and f has connected fibres. Let L be an ample line bundle on Y .

For any automorphism σ : X → X such that σ∗f∗L ∼= f∗L there exists an

isomorphism τ : Y
∼
→ Y such that τ ◦ f = f ◦ σ.

Proof. By Stein factorization and our assumptions we have f∗(OX) = OY ,

and so H0(X, f∗L⊗m) = H0(Y,L⊗m) for all m ≥ 0. Applying the Proj

construction to the corresponding graded algebra gives the isomorphism τ ,

and by construction τ ◦ f = f ◦ σ. �

3. The basic strategy

We first explain the proof of Theorem 1 under the assumption that

• ωX or ω−1
X is ample,

• X is simply connected,

• X is not a product of curves.

Let σ : X [n] ∼
→ X [n] be an automorphism. Since the differential of σ is

everywhere invertible we have

σ∗ωX[n]
∼= ωX[n] .

Step 1. (Reduction to the symmetric product) Because ωX[n] is the pullback

of an ample or anti-ample line bundle from the symmetric product X(n), by

Lemma 6 there exists an automorphism τ : X(n) → X(n) which makes the

following diagram commute:

X [n] X [n]

X(n) X(n).

ǫ

σ

ǫ

τ

Since ǫ is birational, τ is the identity if and only if σ is the identity. We are

hence reduced to studying automorphisms of the symmetric product.
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Step 2. (Lifting) Since τ preserves the singular points the diagonal on the

symmetric product is preserved:

τ(∆) = ∆.

Let D ⊂ Xn denote the big diagonal in Xn and consider the restriction of

the quotient map

ρD : Xn \D → X(n) \ ∆.

Since X is assumed to be simply connected and D ⊂ Xn is of codimension 2

in a smooth ambient space, Xn \D is also simply connected. Hence ρD is the

universal covering space of X(n) \∆. Applying the universal lifting property

to the morphism τ ◦ρD we obtain an automorphism f ∈ Aut(Xn \D) which

makes the following diagram commute:

Xn \D Xn \D

X(n) \ ∆ X(n) \ ∆.

ρ

f

ρ

τ

Step 3. (Extension to Xn) Since D is of codimension 2 in Xn and since Xn

is smooth hence normal, every section of a line bundle on the complement

of D extends. Applying this to ωXn and its powers, the automorphism f

induces a graded ring automorphism of
⊕

m

H0(Xn, ω⊗m
Xn ).

Since ωX is ample or anti-ample, this in turn induces an automorphism of

Xn that extends f . We will denote this extension by f as well. We have

constructed an automorphism

f : Xn ∼
→ Xn

such that ρ ◦ f = τ ◦ ρ.

Step 4. (Splitting the automorphism) Let L be a very ample line bundle on

X and let

Li := p∗
i L

be its pullback to Xn along the projection to the i-th factor. The projection

pi is hence the morphism associated to the complete linear system of Li. We

following the arguments of [17, Theorem 4.1] and consider f∗Li.

Since X is simply connected, we have H1(X,Z) = 0. On the one hand

this implies that the Pic0(Xn) = Pic0(X)n = 0. On the other hand, we have

H2(Xn,Z) = H2(X,Z)⊕n and hence

Pic(Xn) ∼= H1,1(Xn,Z) ∼= H1,1(X,Z)⊕n ∼= Pic(X)⊕n.
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We conclude that there exist line bundles Mj on X such that

f∗Li
∼= p∗

1M1 ⊗ · · · ⊗ p∗
nMn.

This implies that pi ◦f = h◦ (g1 × · · · × gn) for some morphisms gj : X → Yj

and some isomorphism h :
∏

i Yi
∼
−→ X. Since X is not a product of curves,

one of the gj is an isomorphism and the others are projections to a point.

Hence pi ◦ f only depends on the corresponding j(i)-th component. After

composing f with the permutation that sends i to j(i) we therefore get

f = f1 × · · · × fn

for some fi ∈ Aut(X).

The automorphism τ ∈ Aut(X(n)) preserves the small diagonal as the

locus where the tangent space has maximal dimension. It follows that f

preserves the small diagonal in Xn, so all the fi are the same, and hence

that σ is natural.

4. The general case

We present the proof of the main theorem. We proceed as in Section 3

but at every step we need to find an argument that works for weak Fano

surfaces and for surfaces of general type. Our assumption throughout is that

X is a smooth complex projective surface.

For a weak Fano surface X we will use that ω−1
X is semiample, that is a

power of it is basepoint free. Moreover, the morphism defined by the linear

system of ω−⊗m
X is birational for appropriate m ≫ 0, see [18, Theorem 4.3].

4.1. Reduction to symmetric product. We begin by giving a criterion

for when an automorphism of the Hilbert scheme descends to the symmetric

product. Let α ∈ H2(X [n],Z) be the class of a P1-fiber of the map ǫ : X [n] →

X(n). In particular, α is the unique primitive curve class such that

ǫ∗α = 0.

Proposition 7. Let σ ∈ Aut(X [n]). If σ∗α = α then there exists an auto-

morphism τ ∈ Aut(X(n)) such that the following diagram commutes:

X [n] X [n]

X(n) X(n).

ǫ

σ

ǫ

τ

Proof. We first show that the morphism ǫ : X [n] → X(n) is the initial object

in the category of morphisms f : X [n] → Z, where Z is a projective scheme

and f contracts the P1-fibers of ǫ (or equivalently, f∗α = 0).
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Indeed, let f : X [n] → Z be such a morphism and consider the scheme

Y = (ǫ× f)(X [n]) ⊂ X(n) × Z.

We claim the projection to the first factor p : Y → X(n) is an isomorphism.

Since X(n) is normal (as the quotient of the normal space Xn by a finite

group) and p is birational and proper, by Zariski’s main theorem it suffices

to show that p is finite. If p is not finite, it contracts a curve Σ. Then

there exists a curve Σ′ ⊂ X [n] such that its image under ǫ × f is Σ (for

example, take the preimage of Σ and if that is of dimension > 1 cut it

down by sections of a relatively ample class). Since by assumption we have

(ǫ × f)∗α = 0, the class of Σ′ is linearly independent (over Q) of α and

contracted by ǫ = p ◦ (ǫ× f). But the kernel of

ǫ∗ : H2(X [n],Q) → H2(X(n),Q)

is 1-dimensional and spanned by α which gives a contradiction. We conclude

that p is an isomorphism and hence that Y is the graph of a morphism

g : X(n) → Z with g ◦ ǫ = f . Since ǫ is birational, g is unique.

Applying the above universal property of ǫ to ǫ ◦σ we obtain a morphism

τ : X(n) → X(n) such that ǫ ◦ σ = τ ◦ ǫ. On the other hand, the same

argument also implies that ǫ ◦ σ is initial, so τ is an isomorphism. �

We apply our criterion to the case at hand:

Proposition 8. Let X be a smooth projective surface which is weak Fano

or of general type. Then for every automorphism σ ∈ Aut(X [n]) we have

σ∗α = α.

Proof. We assume that X is of general type. The weak Fano case is parallel.

Let Y be the canonical model of X, which is a surface with isolated singular

points. The canonical line bundle on X [n] induces a morphism

ϕ : X [n] → Y (n)

and since σ preserves this line bundle, by Lemma 6, there exists τ ∈

Aut(Y (n)) such that

X [n] X [n]

Y (n) Y (n).

ϕ

σ

ϕ

τ

commutes.

Let y1, . . . , yr be the singular points of Y . The singular locus of Y (n) is

(1) SingY (n) = ∆ ∪Dy1 ∪ . . . ∪Dyr
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where for a point y ∈ Y the subscheme Dy ⊂ Y (n) is defined by

(2) Dy = {y + z | z ∈ Y (n−1)}.

Claim. The automorphism τ preserves the diagonal ∆ ⊂ Y (n).

Proof of the claim: The automorphism τ preserves the singular locus of

Y (n). Since (1) is the decomposition of the singular locus into irreducible

components we need to exclude the case that τ(∆) = Dyi
for some i. If

n ≥ 3 then the normalizations of Dy and ∆ are

(3) D̃y = Dy
∼= Y (n−1), ∆̃ = Y × Y (n−2).

To see this for the diagonal, we have a natural finite birational map Y ×

Y (n−2) → ∆. Since the source is normal it factors through a map to the

normalization, which is an isomorphism by Zariski’s main theorem. Since

Y (n−1) and Y ×Y (n−2) are not isomorphic for n ≥ 3 this completes the claim.

In case n = 2 both ∆ and Dyi
are isomorphic to Y . The corresponding

inclusion maps factor as

ι∆ : Y
∆
−→ D ⊂ Y × Y → Y (2)

ιDj
: Y ∼= yi × Y ⊂ Y 2 → Y (2).

From this we get

ι∗∆ωY (2) = ω⊗2
Y , ι∗Dj

ωY (2) = ωY .

Since ωY (2) is preserved under pullback by τ , this excludes τ(∆) = Dxj
. �

We return to the proof of the proposition. Let E ⊂ X [n] denote the

exceptional divisor. Let Cyi
⊂ X be the curve contracted to yi under the

canonical map X → Y and let Vi ⊂ X [n] be the preimage under ǫ of the

subscheme

{w1 + w2 | w1 ∈ (Cyi
)(2), w2 ∈ X(n−2)} ⊂ X(n).

Then

ϕ−1(∆) = E ∪
r⋃

i=1

Vi.

By the claim σ preserves ϕ−1(∆). Since every Vi is of codimension ≥ 2 while

E is a divisor, we conclude σ(E) = E. So we get a commutative diagram

E E

∆ ∆.

ϕ

σ

ϕ

τ

In particular, σ sends fibers of ϕ to fibers. Since the generic fiber of E → ∆

is precisely the P1 contracted by ǫ we are done. �
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4.2. Lifting. Let X be a smooth projective surface. We show that every

automorphism of X(n) lifts to an automorphism of Xn \D.

Proposition 9. For every τ ∈ Aut(X(n)) there exists f ∈ Aut(Xn \ D)

such that the following diagram commutes:

Xn \D Xn \D

X(n) \ ∆ X(n) \ ∆.

ρ

f

ρ

τ

Proof. The main idea is that since ρ is a normal covering space, by the

standard lifting criterion we only have to show

(τ ◦ ρ)∗(π1(X(n) \ ∆)) ⊂ ρ∗(π1(Xn \ ∆)).

We first make a simplification: Since the small diagonal is preserved by

τ and isomorphic to X the restriction τ |∆small
defines an automorphism

g ∈ Aut(X). Replacing τ by (g−1)(n) ◦ τ we may assume that

τ |∆small
= id∆small

.

Choose a point x ∈ X, a small open ball U ⊂ X with x ∈ U , and n

distinct points x1, . . . , xn ∈ U \ {x}. Let G = π1(X,x), and note that we

have canonical identifications G ∼= π1(X,xi) for every i, given by connecting

x to xi via a path in U . Then

π1(Xn \D, (xi)) = π1(Xn, (xi)) = Gn.

The map

ρ : Xn \D → X(n) \ ∆

is obtained by taking the quotient by the free action of Sn, hence it is a

normal covering space, and we have the exact sequence of groups

(4) 1 → π1(Xn \D, (xi)) → π1(X(n) \D,
∑
xi) → Sn → 1.

We define a splitting of this short exact sequence as follows. The inclusion

of U in X induces an inclusion

U (n) \ ∆ →֒ X(n) \ ∆.

By simply-connectedness of U we get Sn
∼= π1(U (n) \ ∆,

∑
xi), and the

inclusion

Sn
∼= π1(U (n) \ ∆,

∑
xi) → π1(X(n) \ ∆,

∑
xi)

splits (4). Thus we have

π1(X(n) \ ∆,
∑
xi) ∼= Gn ⋊ Sn,

and one can check that the conjugation action of Sn on Gn is the standard

permutation of factors.
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The set τ(U (n)) is an open neighbourhood of nx ∈ X(n). Picking some

sufficiently small open ball V with x ∈ V ⊂ U , we have V (n) ⊂ U (n) ∩

τ(U (n)). We may assume that xi ∈ V for all i, hence
∑
xi ∈ V (n) \ ∆. We

have the commutative diagram

π1(V (n) \ ∆,
∑
xi) π1(U (n) \ ∆,

∑
xi)

π1(τ(U (n)) \ ∆,
∑
xi) π1(X(n) \ ∆,

∑
xi),

a

b c

d

where the three upper-left groups are isomorphic to Sn and where c◦a = d◦b

is injective. It follows that a and b are isomorphisms and that the three

upper-left groups are equal as subgroups of π1(X(n) \ ∆,
∑
xi).

Picking a path in τ(U (n)) \ ∆ from τ(
∑
xi) to

∑
xi gives isomorphisms

s : π1(X(n) \ ∆, τ(
∑
xi))

∼
→ π1(X(n) \ ∆,

∑
xi)

s : π1(τ(U (n)) \ ∆, τ(
∑
xi))

∼
→ π1(τ(U (n)) \ ∆,

∑
xi)

We have the equality of subgroups of π1(X(n) \ ∆,
∑
xi)

(s ◦ τ∗)(π1(U (n) \ ∆),
∑
xi) = s(π1(τ(U (n)) \ ∆, τ(

∑
xi)))

= π1(τ(U (n)) \ ∆,
∑
xi)

= π1(U (n) \ ∆,
∑
xi).

Therefore, in the presentation π1(X(n) \∆,
∑
xi) = Gn⋊Sn and the notation

of §4.3, we have

(s ◦ τ∗)(eGn ⋊ Sn) = eGn ⋊ Sn,

and so by Lemma 11, we have

(s ◦ τ∗)(Gn ⋊ eSn) = Gn ⋊ eSn .

Since Gn ⋊ eSn = ρ∗(π1(Xn \ ∆), (xi)), this implies

τ∗(ρ∗(π1(Xn \ ∆), (xi))) = s−1(ρ∗(π1(Xn \ ∆), (xi))) = ρ∗(π1(Xn \ ∆, y)),

where y ∈ Xn satisfies ρ(y) = τ(
∑
xi), and is the parallel transport of (xi)

along the path defining s. By the lifting criterion for covering spaces, it

follows that τ ◦ ρ lifts to an automorphism f as required. �

4.3. Some group theory.

Lemma 10. Let n ≥ 3, and let σ ∈ Sn be such that σ commutes with

all its conjugates, and such that the centraliser C(σ) contains a subgroup

isomorphic to Sn−1. Then σ = eSn .
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Proof. By the first assumption on σ, the elements gσg−1, g ∈ Sn generate a

normal, abelian subgroup H of Sn. If n ≥ 5, then An is the only non-trivial

normal subgroup of Sn ([19, §10.8.8]). As H is abelian, it must therefore

be trivial, and so σ = eSn . The remaining cases n = 3, 4 are checked

directly. �

Let G be a group, and define Gn ⋊Sn by the permutation action of Sn on

the factors ofGn. We write e⋊Sn = eGn⋊Sn andGn⋊e = Gn⋊eSn ⊂ Gn⋊Sn

for the groups Sn, G
n thought of as subgroups of Gn ⋊ Sn.

Lemma 11. Let τ : Gn⋊Sn
∼
−→ Gn⋊Sn be an automorphism. If τ(e⋊Sn) =

e⋊ Sn, then τ(Gn ⋊ e) = Gn ⋊ e.

Proof. We need only show that τ(Gn ⋊ e) ⊆ Gn ⋊ e, since applying this to

τ−1 gives

τ−1(Gn ⋊ e) ⊆ Gn ⋊ e ⇒ G⋊ e ⊆ τ(Gn ⋊ e).

Let g ∈ G be any element, and let g(i) ∈ Gn be the inclusion of g in the i-th

factor. The group Gn ⋊ e is generated by elements of the form (g(i), eSn),

hence it suffices to show that τ(g(i), eSn) ∈ Gn ⋊ e.

Note first that (g(i), eSn) commutes with all its e ⋊ Sn-conjugates, hence

so does τ(g(i), eSn). Note further that (g(i), eSn) commutes with every ele-

ment (eGn , δ) where δ fixes i. Hence the centraliser of (g(i), eSn) contains a

subgroup isomorphic to Sn−1 inside e ⋊ Sn, and so likewise the centraliser

of τ(g(i), eSn) contains such a subgroup in e⋊ Sn. If now

τ(g(i), eSn) = (x, σ), x ∈ Gn, σ ∈ Sn,

we have that σ commutes with all its conjugates, and |CSn(σ)| ≥ (n − 1)!,

whence by Lemma 10 we have σ = eSn if n ≥ 3.

Assume that n = 2. Let δ ∈ S2 be the non-trivial element. By our assump-

tion, τ(eG2 , δ) = (eG2 , δ), and so the centraliser C = CG2⋊S2
(eG2 , δ) is pre-

served by τ . By a direct check we have C = {((g, g), eS2 ), ((g, g), δ) | g ∈ G}.

Next observe that elements ((g, g), eS2 ) can all be written as a product of

an element x and its (eG2 , δ)-conjugate, e.g. take x = ((g, eG), eS2). On the

other hand, elements of the form ((g, g), δ) cannot be written in such a way,

since the product of an element with its (eG2 , δ)-conjugate must have eS2

in the S2-factor. Therefore the set of elements of the form ((g, g), eS2 ) is

preserved by τ .

Since these elements form a subgroup of G2 ⋊ S2, the automorphism τ

defines by restriction an automorphism ψ of G. After post-composing τ with

the automorphism ((g, h), x) 7→ ((ψ−1(g), ψ−1(h)), x), we may assume that

τ in fact fixes each element ((g, g), eS2 ).
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Now consider the element ((g, eG), eS2). It satisfies the following equation

in x:

(5) x(eG2 , δ)x(eG2 , δ) = ((g, g), eS2 ).

The same equation must therefore be satisfied by τ((g, eG), eS2).

Assume now for a contradiction that τ((g, eG), eS2) = ((h, i), δ). Since

equation (5) is satisfied by ((h, i), δ), we must have (h2, i2) = (g, g). There-

fore g is a square, hence so is ((g, eG), eS2). But clearly ((h, i), δ) is not a

square, and so we have a contradiction. �

4.4. Extension. Let τ : X(n) → X(n) be an automorphism and assume that

there exists a commutative diagram

Xn \D Xn \D

X(n) \ ∆ X(n) \ ∆.

ρ

f

ρ

τ

for some automorphism f ∈ Aut(Xn \D).

Proposition 12. In the situation above the automorphism f extends to an

automorphism f̃ : Xn → Xn such that τ ◦ ρ = ρ ◦ f̃ .

Proof. Let U = Xn \D and V = X(n) \ ∆ and consider the diagram

U Xn

V X(n)

ρU

ι

ρ

j

where the horizontal maps ι and j are the inclusions. Because U is of

codimension 2 and Xn normal we have ι∗OU = OXn . Both ρ and ρU are

finite, therefore affine, so in particular we have

Xn = Spec ρ∗OXn , U = SpecρU∗OU .

The category of affine schemes over a base S is equivalent to the opposite

of the category of quasi-coherent OS -algebras. Hence the V -morphism

U U

V

f

ρU τ−1◦ρU

corresponds to an isomorphism of quasi-coherent OV -algebras

ψf : (τ−1)∗ρ∗OU → ρ∗OU
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By pushforward along j we obtain an isomorphism of OX(n)-algebras

j∗ψf : j∗τ
−1
∗ ρ∗OU → j∗ρ∗OU .

We have j∗ρ∗OU = ρ∗ι∗OU = ρ∗OXn . Moreover, because the automorphism

τ of U is the restriction of the automorphism τ of Xn we also have

j∗(τ−1)∗ρ∗OU = (τ−1)∗j∗ρ∗OU = (τ−1)∗ρ∗OXn .

The pushforward j∗ψf thus corresponds to an isomorphism f̃ from ρ : Xn →

X(n) to τ−1 ◦ ρ : Xn → X(n), hence to an isomorphism f̃ ∈ Aut(Xn) with

the desired properties. �

4.5. Splitting the automorphism.

Proposition 13. Assume the surface X is weak Fano or of general type,

and let f ∈ Aut(Xn) be an automorphism. Then at least one of the following

holds:

(a) f = α ◦ (f1 × · · · × fn) for some fi ∈ Aut(X) and α ∈ Sn, or

(b) X ∼= C1 × C2 for smooth curves C1, C2. Moreover, if C1
∼= C2 then

f = α ◦ (g1 × · · · × g2n)

for some gi ∈ Aut(C1) and some α ∈ S2n. If C1 ≇ C2 then under

the isomorphism Xn ∼= Cn
1 × Cn

2 we have

f ∼= (α1 × α2) ◦ (g1 × · · · × gn × h1 × · · · × hn)

for some gi ∈ Aut(C1), hi ∈ Aut(C2) and α1, α2 ∈ Sn.

For the proof we recall the general fact that the category of coherent

sheaves on a smooth proper variety over an algebraically closed field is Krull–

Schmidt, that is every object in it can be uniquely decomposed in irreducible

components [1, Theorem 3].

Moreover, for a vector bundle E on X we will write

Ei := p∗
i E

for the pullback of E to Xn along the projection to the i-th factor.

Proof. Let X be a surface of general type. We assume first that the cotan-

gent bundle ΩX is indecomposable. In this case the bundle ΩXn has the

Krull–Schmidt decomposition

ΩXn = ΩX,1 ⊕ . . .⊕ ΩX,n.

Since this decomposition is unique and ΩXn is preserved under pullback by

f , for every i we find f∗ΩX,i = ΩX,j(i) for some j(i). After composing f

with a permutation we may assume f∗ΩX,i
∼= ΩX,i and thus

(6) f∗ωX,i
∼= ωX,i.
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Let ϕ : X → Y be the map to the canonical model of X induced by a power

of ωX . From (6) we get an element gi ∈ Aut(Y ) such that the diagram

Xn Xn

Y Y

pi

f

pi

gi

commutes; here pi is the composition of the projection to the i-th factor

with ϕ. Let U ⊂ X be the open subset where ϕ is an isomorphism. Since i

was arbitrary we conclude

(p1, . . . , pn) ◦ f |Un = g1 × · · · × gn

For any fixed (x2, . . . , xn) ∈ Un−1 the composition

f1 : X →֒ Xn f
−→ Xn p1

−→ X,

where the first map is x 7→ (x, x2, . . . , xn), defines a lift of g1 ∈ Aut(Y ) to

f1 ∈ Aut(X). Since the lift is unique if it exists, it is independent of the

choice of the xi. Using a parallel argument we find lifts fi ∈ Aut(X) of gi

for any i. The equality

f = f1 × · · · × fn

then holds on an non-empty open subset of Xn and hence holds everywhere.

Assume now that the cotangent bundle of X decomposes into line bundles:

ΩX
∼= L ⊕ M.

By a result of Beauville [4, §5.1, Proposition 4.3] the canonical bundle ωX

is ample and hence W = Xn is canonically polarized. By [5, Theorem 1.3

and §4] it follows that the variety W can be decomposed into a product

of irreducible factors and the decomposition is unique up to reordering the

factors. Here a variety Z is called irreducible it does not admit a non-trivial

product decomposition Z ∼= Z1 × Z2.

If X is not the product of curves then W has the following two factoriza-

tions. The standard one, induced by the projection maps pi,

p = (p1, . . . , pn) : W
∼
−→ Xn

and the one obtained by mapping the first under the automorphism f ,

p ◦ f : W
∼
−→ Xn.

Since both must coincide up to reordering (and factorwise isomorphism) we

conclude there exist automorphisms fi ∈ Aut(X) and a permutation α ∈ Sn

such that pi ◦ f = fi ◦ pα(i) for all i. This yields the claim.

We therefore can assume that X is the product of curves

X = C1 × C2



16 P. BELMANS, G. OBERDIECK, AND J. V. RENNEMO

and hence that

L = q∗
1ΩC1 , M = q∗

2ΩC2

where we let qj denote the projection from X to the j-th factor.

If C1 ≇ C2 then the pullback by f preserves the set of Li and the set

of Mi separately (since the image of the complete linear system defined

by a power of L is precisely C1, and likewise for M). Hence there exists

gi ∈ Aut(C1) and a permutation α1 ∈ Sn such that the following diagram

commutes:

Xn Xn

C1 C1.

q1◦pi

f

q1◦pα1(i)

gi

Since the parallel statement holds for the factor C2, this yields the claim.

If C1
∼= C2 then we may determine Aut(C2n

1 ) as we determined Aut(Xn)

when ΩX is indecomposable, or again apply the result [5, Theorem 1.3].

Finally, we consider the case where X is weak Fano. If ΩX is indecom-

posable, then we can argue as for general type. If ΩX decomposes, then by

the classification of weak Fano surfaces, or using Beauville [4] and that X is

rational so simply-connected, we have that X is isomorphic to P1 ×P1. The

claim then follows as in case C1 = C2 above. �

Corollary 14. Assume the surface X is weak Fano or of general type. Let

f ∈ Aut(Xn) and τ ∈ Aut(X(n)) be automorphisms such that the diagram

Xn Xn

X(n) X(n)

ρ

f

ρ

τ

commutes. Then one of the following holds:

(a) f = α ◦ (g × · · · × g) for some g ∈ Aut(X) and α ∈ Sn, or

(b) n = 2 and X = C1 ×C2 for smooth curves C1, C2, and up to compos-

ing with an automorphism as in (a), the map f acts on X2 ∼= C2
1 ×C2

2

by idC2
1

× α where α ∈ S2 switches the factors on C2
2 .

Proof. Since the automorphism τ preserves the small diagonal in X(n) the

map f preserves the small diagonal

Dsmall = {(x, . . . , x) | x ∈ X} ⊂ Xn.

If f is as in Proposition 13 (a) this immediately implies the claim. If f is

as in part (b) we consider the two cases more closely. In case C1 = C2 then

for all (c1, c2) ∈ X there exist (d1, d2) such that

α ◦ (g1(c1), g2(c2), . . . , g2n−1(c1), g2n(c2)) = (d1, d2, . . . , d1, d2).
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By choosing c1 in the open subset of C1 such that g1(c1) is distinct from all

the g2(c2), g4(c2), . . . , g2n(c2) for some fixed c2 we find that

g1 = g3 = . . . = g2n−1.

Similarly we have g2 = g4 = . . . = g2n. Moreover, α must preserve parity.

In the case C1 6= C2 we similarly find g1 = . . . = gn and h1 = . . . = hn.

Under the identification Xn = Cn
1 ×Cn

2 we conclude that

f = (α1 × α2)(g×n × h×n)

for some α1, α2 ∈ Sn and g ∈ Aut(C1), h ∈ Aut(C2). After composing with

an automorphism as in part (a) we hence can assume

(7) f = (idCn
1
, α2).

Since the automorphism f descends to the symmetric product, for a point

z ∈ Xn the class of f(z) in X(n) depends only on the class of z ∈ X(n). Hence

for all permutations σ ∈ Sn there exists σ̃ ∈ Sn such that

f(σz) = σ̃f(z).

Using (7) and remembering that under the identification Xn ∼= Cn
1 ×Cn

2 the

symmetric group Sn acts diagonally we find

(σ̃ × σ̃)−1(idCn
1

× α2)(σ × σ) = (idCn
1
, α2).

This gives σ = σ̃ and thus

σ−1ασ = α

Since σ was arbitrary, α is in the center of Sn. Since the center of the

symmetric group is non-trivial only for n = 2 the claim follows. �

4.6. Proof of Theorem 1 and 2. Let X be weak Fano or of general

type and let σ ∈ Aut(X [n]). By Proposition 8 applied to Proposition 7 the

automorphism σ descends to the symmetric product. By Proposition 9 this

automorphism of the symmetric product lifts to an automorphism of the

complement of the big diagonal in Xn and by Proposition 12 it extends

from there to an automorphism of Xn. Theorem 1 and the uniqueness part

of Theorem 2 now follow from the classification in Corollary 14. For the

existence part of Theorem 2 the automorphism in Corollary 14 (b) descends

to X(2) and from there lifts to the Hilbert scheme by the universal property

of the blow-up X [2] → X(2). �
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4.7. Proof of Corollary 5. Theorem 1 together with the following result

immediately implies Corollary 5.

Proposition 15. Let X,Y be smooth projective surfaces and let Y be weak

Fano or of general type. If X [n] ∼= Y [n], then X ∼= Y .

Proof. We assume that Y is of general type, the case where Y is weak Fano

is parallel. Let σ : X [n] ∼
→ Y [n] be an isomorphism. Since σ∗ωY [n]

∼= ωX[n]

we have a commutative diagram

X [n] Y [n]

X
(n)
can Y

(n)
can

σ

τ

where τ is an isomorphism and we let Xcan and Ycan denote the canonical

models of X and Y respectively. Since Y
(n)

can is of dimension 2n we find that

X is also of general type. Let xi and yj be the singular points of Xcan and

Ycan respectively. Then τ induces an isomorphism of the singular loci of

X
(n)
can and Y

(n)
can :

τ :
⋃

i

Dxi
∪ ∆Xcan

∼
−→

⋃

j

Dyj
∪ ∆Ycan .

where the Dx are defined as in (2). We claim that τ(∆Xcan) = ∆Ycan . Indeed,

if n = 2 then Dxi
∼= ∆Xcan

∼= Xcan, so Xcan
∼= Ycan and the claim follows as

in the proof of Proposition 8. If n ≥ 3, we can either use that Dxi
is normal

while the diagonal is not, or argue as follows. Assume that

τ(∆Xcan) = Dyi
, τ(∆Ycan) = Dxi

.

Then from the description of their normalizations in (3) we have the equality

of Betti numbers

2bi(Xcan) = bi(Ycan) and bi(Xcan) = 2bi(Ycan)

for i = 1 so b1(Xcan) = b1(Ycan) = 0, hence the same equations hold also

for i = 2 which is impossible since b2(Xcan) > 0.

By the claim, τ preserves the diagonal, hence by an argument parallel

to the proof of Proposition 8, we find that σ preserves the class of a P1-

fiber of the Hilbert–Chow morphism X [n] → X(n). Then arguing as in

Proposition 7 we find that σ descends to an isomorphism X(n) ∼
→ Y (n).

Since this automorphism sends the small diagonal to the small diagonal and

the small diagonal is isomorphic to the underlying surface we are done. �



AUTOMORPHISMS OF HILBERT SCHEMES OF POINTS ON SURFACES 19

5. The Hilbert scheme of 2 points of Pn

The Hilbert scheme of 2 points of Pn is isomorphic to the quotient of the

blow-up of Pn × Pn along the diagonal,

(Pn)[2] = Bl∆(Pn × Pn)/S2.

Since (Pn)[2] is rational we find

Pic(Pn)[2] = H2((Pn)[2],Z) ∼= Z⊕2.

Proof of Theorem 4. Let σ : (Pn)[2] ∼
→ (Pn)[2] be an automorphism. The

Hilbert scheme admits the following two contractions: the Hilbert–Chow

morphism

f1 : (Pn)[2] → (Pn)(2)

and the morphism

f2 : (Pn)[2] → Gr(2, n + 1)

that sends a subscheme to the line passing through it. By pulling back

polarizations of the targets along f1, f2 we obtain two divisors on the Hilbert

scheme. Both maps contract curves so both divisors lie in the boundary of

the nef cone of (Pn)[2]. Since the Picard group is rank 2 these divisors form

precisely the extremal rays of the nef cone.

Since the automorphism σ preserves the nef cone, σ up to scaling either

preserves these divisors or interchanges them. However, since the contrac-

tions above are non-isomorphic (they have non-isomorphic images), σ cannot

interchange them hence must preserve them up to scaling. Since σ also pre-

serves the divisibility, we find that σ fixes the two divisors, so σ fixed the

Picard group. In particular, from

σ∗f∗
1L = f∗

1L

where L is an ample divisor on (Pn)(2) we find that σ descends to an au-

tomorphism of the symmetric product τ : (Pn)(2) → (Pn)(2). Arguing as in

Section 3 this automorphism lifts to Pn × Pn where it has to be of the form

α ◦ (f, f) for some α ∈ S2 and f ∈ Aut(Pn). Hence σ is natural. �
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