Ultrafast Transient Absorption Spectroscopy of the charge-transfer insulator NiO:
Beyond the Dynamical Franz-Keldysh Effect
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EXTRACTION OF THE OPTICAL GAP

In this section, we present how we extracted the opti-
cal gap from the calculated optical spectra.
In order to get the optical gap, we first find the values
of the imaginary part of the dielectric function at 40%
and 90% of the maximum peak value. Then we fit this
portion of the dielectric function in between these two
points by a straight line.
The value of the optical gap is taken as the point for
which this tangent crosses the y=0 axis. This is exempli-
fied in Supplementary Fig. 1 for the equilibrium spectrum
of the NiO.
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Supplementary Fig. 1. Extraction of the optical gap of NiO.
See the main text for details.

Note that small shoulder at the absorption edge is a
numerical artifact, that can be removed by a tighter con-
vergence in k-points.

COMPARISON OF THE OPTICAL GAP
DYNAMICS FOR FROZEN AND DYNAMICAL U

In this section, we compare the dynamics of the optical
gap in the case of the dynamical U (as shown in the main
text), and the one obtained for a frozen U. As shown in
Supplementary Fig. 2, while the optical gap shows a clear
decrease during the laser pulse when the U decreases,

the optical gap for the case of a frozen U (blue curve)
display mainly a modulation around an average value, as
expected from the dynamical Franz-Keldysh effect.
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Supplementary Fig. 2. Variation of the optical gap, extracted
from the calculated transient absorption, for both dynamical
and frozen U cases.

TRANSIENT ABSORPTION MAP FOR A
2100NM WAVELENGTH DRIVER

In order to verify if the that the reported effects are
general, we also performed simulation for a driver of
2100nm, for a shorter pulse of 5 fs FWHM and for
an intensity of the external field in matter of Iy =
5 x 101'W.cm™2. Due a shorter time propagation after
each kick, we used here a Gaussian broadening of 0.5eV.
The results are shown in Supplemental Fig. 3 and Fig. 4.
Qualitatively, the findings are very similar. For the dy-
namical U, (Supplemental Fig. 3), the dominant feature
is the band-gap renormalization, whereas for the frozen
U, the band-gap renormalization is closer to the DFKE,
even if for a one cycle pulse, the transient absorption map
is hard to interpret.

The change in the transient absorption map is much more
important in the dynamical U case, consistent with the
findings presented in the main text for a driver of 800 nm
driving wavelength. For the frozen U case, we observe a
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Supplementary Fig. 3. Calculated transient absorption of NiO
for a driving field of wavelength 2100 nm. The top panel shows
the time profile of the external driving electric field Fex(t).
The middle panel shows the corresponding time-evolution of
the on-site U for the 3d orbitals of Ni. A similar variation
is obtained for the 2p orbitals of oxygen atoms. The bottom
panel shows the calculated transient absorption of NiO. The
dashed line indicates the calculated ground-state gap of NiO.
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Supplementary Fig. 4. The same as Fig. 3, but keeping the
Hubbard U fixed during the time evolution.

clear increase of the absorption below the bandgap oscil-
lating at twice the laser frequency. We note that as the
photon energy is much smaller here (0.58¢eV), the area
in which the absorption decreases at the bandgap edge is
expected to be much smaller, as found here in Fig. 4.
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