English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cortical thickness lateralization and its relation to language abilities in children

MPS-Authors
/persons/resource/persons185569

Qi,  Ting
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons86916

Schaadt,  Gesa
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic of Cognitive Neurology, Medical Faculty, University Leipzig, Germany;

/persons/resource/persons19643

Friederici,  Angela D.
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Qi_Schaadt_2019.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Qi, T., Schaadt, G., & Friederici, A. D. (2019). Cortical thickness lateralization and its relation to language abilities in children. Developmental Cognitive Neuroscience, 39: 100704. doi:10.1016/j.dcn.2019.100704.


Cite as: https://hdl.handle.net/21.11116/0000-0004-8F31-4
Abstract
The humans’ brain asymmetry is observed in the early stages of life and known to change further with age. The developmental trajectory of such an asymmetry has been observed for language, as one of the most lateralized cognitive functions. However, it remains unclear how these age-related changes in structural asymmetry are related to changes in language performance. We collected longitudinal structural magnetic resonance imaging data of children from 5 to 6 years to investigate structural asymmetry development and its linkage to the improvement of language comprehension abilities. Our results showed substantial changes of language performance across time, which were associated with changes of cortical thickness asymmetry in the triangular part of the inferior frontal gyrus (IFG), constituting a portion of Broca’s area. This suggests that language improvement is influenced by larger cortical thinning in the left triangular IFG compared to the right. This asymmetry in children’s brain at age 5 and 6 years was further associated with the language performance at 7 years. To our knowledge, this is the first longitudinal study to demonstrate that children’s improvement in sentence comprehension seems to depend on structural asymmetry changes in the IFG, further highlighting its crucial role in language acquisition.