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Wave Instabilities in Excitable Media with Fast Inhibitor Diffusion
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An excitable activator-inhibitor system with relatively fast inhibitor diffusion is considered.
Numerical simulations of wave propagation inside long channels show transitions from stable flat
traveling waves to folded waves and further to spreading spiral turbulence as the inhibitor diffusivity
is increased. For sufficiently narrow channels the suppression of turbulence and the development of
regular steadily propagating patterns is observed. The curvature dependence of the wave propagatio
velocity is derived and used to interpret the observed phenomena. [S0031-9007(98)07163-4]
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Excitable media represent a wide class of noneq
librium activator-inhibitor systems that play an impo
tant role in physical, chemical, and biological applicatio
[1–3]. They show a rich potential for spatiotemporal p
tern formation and can support propagation of single
periodic traveling excitation waves, as well as more co
plex regimes, such as rotating spiral waves and turbule
Until recently, the principal attention in studies of wa
instabilities in such media has been paid to the syst
with nondiffusing or weakly diffusing inhibitor specie
[4,5]. The instabilities of propagating excitation waves
media with relatively fast inhibitor diffusion are less inve
tigated (see, however, [6]). The transverse front instab
ties due to fast diffusion of an inhibitor species have b
previously discussed for bistable activator-inhibitor mo
els, e.g., in the context of the combustion theory [7,8] a
propagating chemical fronts separating two steady st
[9]. Such instabilities can lead to the development of co
plex labyrinthine patterns and spiral wave turbulence [1
An important role in the stability analysis of propagati
fronts in the bistable media is played by the curvature
pendence of their velocity [7,8,10,11].

In this Letter we investigate transverse instabilit
of traveling excitation waves caused by fast inhibi
diffusion. The curvature dependence of the propaga
velocity for such waves is derived and its properties
used to explain the observed transitions from a stable
wave to a folded one and then to spiral turbulence.

We consider wave propagation in two-dimensio
excitable media using a general two-component react
diffusion system (cf. [12,13])

≠u
≠t

­ =2u 1 Fsu, yd ,

≠y

≠t
­ s=2y 1 eGsu, yd ,

(1)

for the activator u ­ usx, y, td and inhibitor y ­
ysx, y, td. Here the activator diffusion constant is chos
to be unity by appropriate scaling of the space coo
nates. We study the situation whens . 1, i.e., inhibitor
0031-9007y98y81(13)y2811(4)$15.00
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is diffusing faster than the activator. Our numerical ana
sis is performed for a frequently used Rinzel-Keller-ty
model with the following nonlinear functions (see [13]):

Fsu, yd ­ fsud 2 y ,

fsud ­ 2k1u, u , d ,

­ kfsu 2 ad, d , u , 1 2 d ,

­ k2s1 2 ud, 1 2 d , u ,

Gsu, yd ­ kgu 2 y ,

(2)

with kf ­ 2, kg ­ 2, a ­ 0.1, d ­ 0.01. The parameters
k1 andk2 are chosen in such a way that the functionfsud
is continuous atu ­ d andu ­ 1 2 d.

The model has a single steady state which is stable w
respect to small perturbations. Application of a sufficien
strong local perturbation gives rise to a stable travel
pulse in a one-dimensional medium or to an expand
circular wave in a two-dimensional medium. The latt
eventually approaches a steady flat wave at large ra
propagating at the velocity

Vp ­ Vpse, sd (3)

that can be computed or determined analytica
[10,12,13]. Steady propagating pulses and flat waves
possible however only in a certain portion of thes-e
parameter plane. Their existence boundarye ­ ecssd
has been computed by us for the model (1) and (2); i
shown by the solid curveG1 in Fig. 1. No steady propa-
gating waves with flat fronts exist above this bounda
although the curved waves may still propagate there.
study an example of the evolution of locally induce
waves systematically in the vicinity of such a bounda
we integrated Eqs. (1) and (2) numerically for differe
values ofe ands. In particular we chose the paramete
along the straight lineeys ­ 0.075 crossing the existence
boundary of flat waves ate ­ 0.15 ands ­ 2.0.

The computations were carried out with the consta
time stepDt ­ 0.005 and the space stepDx ­ 0.2. The
integrated medium represented a long channel with
flux boundaries for both species. As the initial conditio
© 1998 The American Physical Society 2811
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FIG. 1. The boundaries of steady propagationG1 and trans-
verse instability G2 of flat waves. The circles show th
parameter values that are used to compute the curvature
pendence of the propagation velocity.

we used the uniform steady state of this system and
stimulated the two right corners to create waves pro
gating to the left. After collision of the two expandin
waves, a single wave with a flat front was quick
established if the parameters were chosen from the re
below the existence boundary and relatively far from
(e.g., for the points on the straight line in Fig. 1 w
s ­ 1.0 or s ­ 1.5). However, for the point withs ­
1.9 the same initial condition resulted in the developm
of a traveling folded wave with characteristic rippl
[Fig. 2(a)]. We did not find that this folded wav
eventually breaks up, even when the propagation
followed by us over a long distance using the comov
integration frame. The wave shape was not stationary
the ripples randomly wandered across the channel. It
shown that initial stimulation of a whole right edge lea
asymptotically to the same regime.

In contrast to this, breakups of waves have always b
observed in our simulations in the parameter region ab
the existence boundary of flat waves (e.g., for the po
with s ­ 2.1 or s ­ 2.4 in Fig. 1). Note that in this
parameter region a flat wave induced at the right e

FIG. 2. Waves propagating down the channel with excita
medium for (a)e ­ 0.1425, s ­ 1.9 and (b)e ­ 0.1575, s ­
2.1. The gray-scale images of the inhibitor fieldy and the
contours of the activator field withu ­ 0.5 are shown at time
instants (a)t ­ 1500 and (b)t ­ 400 in the comoving frame
The frame sizes are (a)120 3 120 and (b)160 3 90.
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disappeared with time. The two waves expanding fro
the corners did not merge to produce a single wave. T
heads of the two waves moved at a constant veloc
and their shapes remained practically fixed. Howev
the form and the size of their tails varied with time
They elongated and broke up, creating new islands
excitation that started to expand and to interact with ea
other. As a result of a series of breakups and collision
very irregular wave pattern of spiral turbulence develop
behind the leading waves [Fig. 2(b)].

To explain spatiotemporal regimes found in numeric
simulations we analyze the curvature dependence of
propagation velocityV for the general system (1). If the
wave is thin as compared with the radius of curvatur
its front and rear sides have the same curvatureK.
Under this condition the solution of Eqs. (1) for the wav
propagating steadily with a stationary profile satisfies t
equations (cf. [12,13])

sV 1 Kd
du
dj

­
d2u
dj2 1 Fsu, yd ,

sV 1 sKd
dy

dj
­ s

d2y

dj2 1 eGsu, yd ,

(4)

where j ­ r 1 Vt is the coordinate in the coordinate
system moving with the wave.

System (4) can be reduced to a similar system with
zero curvatureK, following [14,15], by multiplying the
second equation of the system (4) with

g ­
V 1 K

V 1 sK
. (5)

With the notations V p ­ V 1 K , ep ­ ge, sp ­ gs

and we write Eqs. (4) in the form

V p du
dj

­
d2u
dj2 1 Fsu, yd ,

V p dy

dj
­ sp d2y

dj2 1 epGsu, yd .

(6)

We note next that Eqs. (6) coincide with Eqs. (4) descr
ing steady propagation of a flat wavesK ­ 0d in system
(1) with the renormalizedparametersep and sp. This
implies thatV p ­ Vpsep, spd. Therefore we have

V ­ Vpsge, gsd 2 K , (7)
whereg is given by (5).

It is convenient to introduce the functionVe,ssgd ;
Vpseg, sgd, treating g as an independent argumen
Note that varyingg is equivalent to moving along a
ray eys ­ const in the parameter planes-e. As an
example, we have computed this function (accuracy ab
61%) by integrating Eqs. (1) for the pointe ­ 0.1575
and s ­ 2.1 (the filled circle in Fig. 1) laying on the
straight line eys ­ 0.075 in the parameter planes-e.
Note that since the filled circle in Fig. 1 is located abov
the existence boundary of flat waves, the system in t
case does not support propagation of flat waves atg ­ 1.
The flat wave solutions are possible only forg , gc , 1,
wheregc ­ 0.92 as shown in Fig. 3.
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Taking into account thatV 1 K ­ Ve,ssgd and using
Eqs. (5) and (7), we find that the velocityV of a traveling
wave with curvatureK is determined by two algebrai
equations:

Ve,ssgd ­ K
gss 2 1d

1 2 g
, (8)

V ­ Ve,ssgd 2 K . (9)

The solutions of Eq. (8) can be analyzed by simulta
ously plotting the functionVe,ssgd vs g and the hyper-
bola, representing the right-hand side of this equation (
e.g., Fig. 3). The intersection of the two graphs is the r
of Eq. (8). As the curvatureK is decreased, the hyperbo
shifts down and to the right in this plot, until it ceas
eventually to intersect the graph of the functionVe,ssgd
and the solution disappears. Hence, the solution ex
in this case only ifK . Kc . 0, whereKc is the criti-
cal curvature at which the hyperbola touches the grap
the functionVe,ssgd at its end point (this last hyperbol
is shown as the dotted curve in Fig. 3). Thus, we s
that if the excitable medium does not support propaga
of flat waves, traveling convex wavessK . Kc . 0d still
exist in this system. Using similar arguments, it can
shown that, when propagation of flat waves is possi
and s . 1, concave wavessK , 0d can propagate only
if their curvature is sufficiently small.

Figure 4 shows the dependences of the propagation
locity on curvature for different values of the paramete
s ande taken along the dashed line in Fig. 1 as obtain
by numerically solving Eqs. (8) and (9). When the d
fusion constants of the activator and inhibitor species
equal, i.e.,s ­ 1, the plot ofV sKd is a straight line with
the slopedVydK ­ 21 (cf. [16]). When the value of
parameters is increased, the solutions for the propag
ing concave waves are possible only if their curvature
not too strong (the curves fors ­ 1.5 and s ­ 1.9 in
Fig. 4). Increasing further the ratios of the two diffu-

FIG. 3. The propagation velocityVe,ssgd of a flat wave for
e ­ 0.1575 ands ­ 2.1 (solid curve). The dashed and dotte
curves show the right-hand side of Eq. (8) plotted forK ­ 0.57
andK ­ Kc ­ 0.057, respectively.
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sion constants, we see that the propagation of flat wa
is no longer possible, but convex waves still exist if th
curvature is sufficiently strong (the curves fors ­ 2.1
ands ­ 2.4 in Fig. 4).

The graphs for the curvature dependence of the pro
gation velocity can be used to discuss the stab
of propagating waves and explain the development
turbulent regimes. It is known that propagation of fl
waves is stable only if the conditiondVydK , 0 at
K ­ 0 is satisfied [8]. Examining Fig. 4, one notes th
this slope becomes positive shortly before the soluti
for the flat traveling waves disappear under increasings.
The solid thin curveG2 in Fig. 1 shows the boundar
determined by the equationdVydK ­ 0 at K ­ 0. In
the narrow region between this boundary and the cu
G1 in Fig. 1, flat waves exist but they are unstab
with respect to the transverse instability. The fold
nonbreaking wave, seen in Fig. 2(a), corresponds to
parameterse and s chosen inside this narrow regio
On the other hand, the repetitive breakups of waves
spreading of turbulence in Fig. 2(b) have been fou
for the parameterse and s lying above the existenc
boundary of flat waves in Fig. 1.

The velocity-curvature relation shown in Fig. 4 pe
mits steady propagating convex waves even in the
gion above the boundaryG1. We have attempted t
produce such propagating convex waves by gradually
creasing the width of the channel in our simulatio
Figure 5 gives, in the comoving coordinate frame, s
sequent snapshots of a propagating pattern observe
a narrow channel by integration of Eqs. (1) with the p
rameters corresponding to the filled circle in Fig. 1. T
same parameter values and similar initial conditions as
the simulation of spreading spiral turbulence in the wi
channel [Fig. 2(b)] were used here. However, the w
propagation pattern inside the narrow channel was dif
ent. Initially, spiral turbulence developed [Fig. 5(a)], b
later a thin elongated band appeared in the frontal

FIG. 4. The curvature dependence of the propagation velo
for different values of the parameterse ands along the straight
dashed line in Fig. 1.
2813
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FIG. 5. Wave propagation in a narrow channel withe ­
0.1575 and s ­ 2.1. Gray scale and contour lines as i
Fig. 2. The snapshots (a), (b), and (c) correspond, respectiv
to the time instantst ­ 500, 570, and 800. The frame size
is 160 3 30.

of the spreading pattern [Fig. 5(b)]. The leading conv
head of this band moved at a constant velocity and ha
stationary shape. Its curvature was approximately eq
to that of the fastest propagating curved wave permitt
according to Fig. 4. The rear end of this band move
however, more slowly and therefore the band continu
to stretch along the channel, tending to occupy it com
pletely after a long time [Fig. 5(c)].

In conclusion, two boundaries in the parameter pla
s-e play an important role for propagating excitatio
waves in the considered system. The first of them (G1 in
Fig. 1) limits the region, where steady propagation of fl
waves is possible. The second boundary (G2 in Fig. 1) is
determined by the condition thatdVydK ­ 0 at K ­ 0.
It corresponds to a bifurcation resulting in the transver
instability of a flat excitation wave. In the paramete
region between these two boundaries the computations
the channels of various widths show the development
folded waves that do not undergo a spontaneous break
The spiral turbulence and repeated breakups of wa
have been observed only above the first boundaryG1
in the ss-ed parameter plane. We found moreover th
the spiral turbulence is suppressed in relatively narro
channels and complex regular regimes are realized inst
which depend on the initial stimulation procedure and t
width of the channel.

Stabilization of turbulent reaction fronts in narrow
channels has been recently found for bistable chemi
2814
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reactions [17]. However, the observed propagating str
tures were then different and represented folded fro
separating two steady states. The folded waves, see
our computations [Fig. 2(b)], look similar to the wav
patterns observed in the experiments with the Belous
Zhabotinsky reaction [18,19], but it is not yet cle
whether these effects have the same theoretical expl
tion. It should be noted that our simulations in this Let
were performed for relatively low ratios of the inhibito
and activator diffusion constantsss . 2d which enhances
the possibility of a corresponding experimental obser
tion in aqueous excitable medium.
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