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Wave Instabilities in Excitable Media with Fast Inhibitor Diffusion
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An excitable activator-inhibitor system with relatively fast inhibitor diffusion is considered.
Numerical simulations of wave propagation inside long channels show transitions from stable flat
traveling waves to folded waves and further to spreading spiral turbulence as the inhibitor diffusivity
is increased. For sufficiently narrow channels the suppression of turbulence and the development of
regular steadily propagating patterns is observed. The curvature dependence of the wave propagation
velocity is derived and used to interpret the observed phenomena. [S0031-9007(98)07163-4]

PACS numbers: 82.20.Wt, 05.70.Ln, 82.40.Ck

Excitable media represent a wide class of nonequiis diffusing faster than the activator. Our numerical analy-
librium activator-inhibitor systems that play an impor- sis is performed for a frequently used Rinzel-Keller-type
tant role in physical, chemical, and biological applicationsmodel with the following nonlinear functions (see [13]):
[1-3]. They show a rich potential for spatiotemporal pat- F( _ B

: . . w,v) = f(u) — v,
tern formation and can support propagation of single or
periodic traveling excitation waves, as well as more com- fu) = —ku, u<9ya,
plex regimes, such as rotating spiral waves and turbulence. _ . _
Until recently, the principal attention in studies of wave = kplu = a), d<u<l-=4, (2
instabilities in such media has been paid to the systems = k(1 — u), 1-6<u,
with nondiffusing or weakly diffusing inhibitor species Gu.v) = ko — v
[4,5]. The instabilities of propagating excitation waves in ’ 8 ’
media with relatively fast inhibitor diffusion are less inves- with k; = 2,k, = 2,a = 0.1,6 = 0.01. The parameters
tigated (see, however, [6]). The transverse front instabilix; andk, are chosen in such a way that the functjt(a)
ties due to fast diffusion of an inhibitor species have beeris continuous at: = 6 andu = 1 — 6.
previously discussed for bistable activator-inhibitor mod- The model has a single steady state which is stable with
els, e.g., in the context of the combustion theory [7,8] andespect to small perturbations. Application of a sufficiently
propagating chemical fronts separating two steady statesfrong local perturbation gives rise to a stable traveling
[9]. Such instabilities can lead to the development of compulse in a one-dimensional medium or to an expanding
plex labyrinthine patterns and spiral wave turbulence [10]circular wave in a two-dimensional medium. The latter
An important role in the stability analysis of propagating eventually approaches a steady flat wave at large radius
fronts in the bistable media is played by the curvature depropagating at the velocity
pendenpe of their velqcity [7,8,10,11]. . N V, = V,(e.0) 3)

In this Letter we investigate transverse instabilities
of traveling excitation waves caused by fast inhibitorthat can be computed or determined analytically
diffusion. The curvature dependence of the propagatiofil0,12,13]. Steady propagating pulses and flat waves are
velocity for such waves is derived and its properties ard0ssible however only in a certain portion of thee
used to explain the observed transitions from a stable flq@arameter plane. Their existence boundary- € (o)
wave to a folded one and then to spiral turbulence. has been computed by us for the model (1) and (2); it is

We consider wave propagation in two-dimensionalshown by the solid curvé’; in Fig. 1. No steady propa-
excitable media using a general two-component reactiorgating waves with flat fronts exist above this boundary,

diffusion system (cf. [12,13]) although the curved waves may still propagate there. To
study an example of the evolution of locally induced
du _ Vau + F(u,v), waves systematically in the vicinity of such a boundary
ot 1 we integrated Egs. (1) and (2) numerically for different
o , ) Values ofe ando. In particular we chose the parameters
TR oVv + €G(u,v), along the straight line /o = 0.075 crossing the existence
boundary of flat waves at = 0.15 ando = 2.0.
for the activator u = u(x,y,r) and inhibitor v = The computations were carried out with the constant

v(x,y,t). Here the activator diffusion constant is chosentime stepAr = 0.005 and the space stefpx = 0.2. The
to be unity by appropriate scaling of the space coordiintegrated medium represented a long channel with no-
nates. We study the situation when> 1, i.e., inhibitor  flux boundaries for both species. As the initial condition,
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o8 T ' ] disappeared with time. The two waves expanding from
the corners did not merge to produce a single wave. The
heads of the two waves moved at a constant velocity
and their shapes remained practically fixed. However,
the form and the size of their tails varied with time.
They elongated and broke up, creating new islands of
excitation that started to expand and to interact with each
other. As a result of a series of breakups and collisions a
very irregular wave pattern of spiral turbulence developed
behind the leading waves [Fig. 2(b)].

I To explain spatiotemporal regimes found in numerical
0.0 simulations we analyze the curvature dependence of the
0.0 0.5 1.0 1.5 2.0 2.5 propagation velocity for the general system (1). If the
wave is thin as compared with the radius of curvature,

FIG. 1. The boundaries of steady propagatidnand trans- its front and rear sides have the same curvatkre

verse InStablhty Fg of flat waves. The circles show the Under this condition the solution of EqS (1) for the wave

nggﬁg O‘]Catw:%rg‘;;gzr&#f/i?oéﬁy‘_:ompure the curvature OIB'ropa.gating steadily with a stationary profile satisfies the
equations (cf. [12,13])

du d*u
(V + K)E = @ + F(L{,U),

0.6
0.4

0.2

we used the uniform steady state of this system and then
stimulated the two right corners to create waves propa- dv P

gating to the left. After collision of the two expanding (V+0K)—77 =05 + eGu,v),
waves, a single wave with a flat front was quickly 45 dg . . .
established if the parameters were chosen from the regioff€r€ ¢ = r + Vi is the coordinate in the coordinate

below the existence boundary and relatively far from itSystem moving with the wave. o .
(e.g., for the points on the straight line in Fig. 1 with SYStem (4) can be reduced to a similar system with a

o =1.00rc = 1.5). However, for the point withr = 2670 curvaturex,, following [14,15], py multiplying the
1.9 the same initial condition resulted in the developmenS€cond equation of the system (4) with

of a traveling folded wave with characteristic ripples y = u' (5)
[Fig. 2(@)]. We did not find that this folded wave _ V+ oK

eventually breaks up, even when the propagation wa¥/ith the notationsV* =1V + K,e" = ye.o" = yo
followed by us over a long distance using the comoving@nd we write Egs. (4) in the form

(4)

integration frame. The wave shape was not stationary and v* du @ + F(uv)
the ripples randomly wandered across the channel. It was d¢  dé? T
shown that initial stimulation of a whole right edge leads dv v (6)
asymptotically to the same regime. Vie— =0"—"— + €Gu,v).
In contrast to this, breakups of waves have always been dg d¢

We note next that Egs. (6) coincide with Egs. (4) describ-
the existence boundary of flat waves (e.g., for the pointd!d Stéady propagation of a flat wa(& = 0) in system
with & = 2.1 or o = 2.4 in Fig. 1). Note that in this .l) W|th the renormalizedparameters™ and o*. This
gnplles thatV* = V,(e*, o). Therefore we have
V=V,(ye,yo) — K, @)
wherev is given by (5).

It is convenient to introduce the functioVi, ,(y) =
V,(ey,ov), treating y as an independent argument.
Note that varyingy is equivalent to moving along a
ray €/o = const in the parameter plang-e. As an
example, we have computed this function (accuracy about
+1%) by integrating Egs. (1) for the poirt = 0.1575
and o = 2.1 (the filled circle in Fig. 1) laying on the
straight linee/o = 0.075 in the parameter plane-e.
FIG. 2. Waves propagating down the channel with excitableNote that since the filled circle in Fig. 1 is located above
medium for (a)e = 0.1425,0 = 1.9 and (b)e = 0.1575,0 = a0 axistence boundary of flat waves, the system in this

2.1. The gray-scale images of the inhibitor field and the d t ¢ fi f flat at |
contours of the activator field with = 0.5 are shown at ime ©@S€ G0€S Not support propagation of Tlat waveg :

instants (ay = 1500 and (b)r = 400 in the comoving frame. ~The flat wave solutions are possible only for< y. < 1,
The frame sizes are (d20 X 120 and (b)160 X 90. wherey,. = 0.92 as shown in Fig. 3.

parameter region a flat wave induced at the right edg
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Taking into account tha¥ + K = V., (y) and using sion constants, we see that the propagation of flat waves
Egs. (5) and (7), we find that the velocityof a traveling is no longer possible, but convex waves still exist if their
wave with curvatureK is determined by two algebraic curvature is sufficiently strong (the curves for= 2.1

equations: ando = 2.4 in Fig. 4).
y(o — 1) The graphs for the curvature dependence of the propa-
Veoly) = K=Y—" (8)  gation velocity can be used to discuss the stability
Y of propagating waves and explain the development of
V=Vs(y) =K. (9) turbulent regimes. It is known that propagation of flat

The solutions of Eq. (8) can be analyzed by simultaneWaves is stable only if the conditioaV/dK <0 at
ously plotting the functionV. ,(y) vs y and the hyper- K =01s satisfied [8]. Examining Fig. 4, one notes that
bola, representing the right-hand side of this equation (sediS slope becomes positive shortly before the solutions
e.g., Fig. 3). The intersection of the two graphs is the roofor the flat traveling waves disappear under increasmg

of Eq. (8). As the curvaturk is decreased, the hyperbola "€ solid thin curvel’; in Fig. 1 shows the boundary
shifts down and to the right in this plot, until it ceasesdetermined by the equatiodV’/dK = 0 at K = 0. In
eventually to intersect the graph of the functivp, (y) the narrow region between this boundary and the curve

and the solution disappears. Hence, the solution exists! N Fig. 1, flat waves exist but they are unstable
in this case only ifkK > K, > 0, whereK. is the criti- with resp_ect to the trans_verse instability. The folded
cal curvature at which the hyperbola touches the graph dionbreaking wave, seen in Fig. 2(a), corresponds to the
the functionV. ,(y) at its end point (this last hyperbola parameterse and o chosen |'n.5|de this narrow region.
is shown as the dotted curve in Fig. 3). Thus, we sen the_ other hand, the repetitive breakups of waves and
that if the excitable medium does not support propagatiojPréading of turbulence in Fig. 2(b) have been found
of flat waves, traveling convex wavég > K, > 0) still for the parameters an_d o lying above the existence
exist in this system. Using similar arguments, it can bg?oundary of flat waves in Fig. 1. o
shown that, when propagation of flat waves is possible "€ Velocity-curvature relation shown in Fig. 4 per-
ando > 1, concave wavek < 0) can propagate only Mits steady propagating convex waves even in the re-
if their curvature is sufficiently small. gion above the boundary’,. We have attempted to
Figure 4 shows the dependences of the propagation v@roduce such propagating convex waves by gradually de-
locity on curvature for different values of the parameterscr€asing the width of the channel in our simulations.
o ande taken along the dashed line in Fig. 1 as obtained9Ure 5 gives, in the comoving coordinate frame, sub-
by numerically solving Egs. (8) and (9). When the dif- sequent snapshots of a propagating pattern 'observed in
fusion constants of the activator and inhibitor species ar& N&rrow channel by integration of Egs. (1) with the pa-
equal, i.e.o = 1, the plot of V(K) is a straight line with rameters corresponding to the filled circle in Fig. 1. The
the SI’Opec'z'V/dK' — 1 (cf. [16]). When the value of Same parameter values and similar initial conditions as for
parameterr is increased, the solutions for the propagat—the simulation of spreading spiral turbulence in the wider

ing concave waves are possible only if their curvature i€hannel [Fig. 2(b)] were used here. However, the wave
not too strong (the curves far = 1.5 and o = 1.9 in propagation pattern inside the narrow channel was differ-

Fig. 4). Increasing further the ratio of the two diffu- ent. Initially, spiral turbulence developed [Fig. 5(a)], but
later a thin elongated band appeared in the frontal part
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FIG. 3. The propagation velocity, ,(y) of a flat wave for

e = 0.1575 ando = 2.1 (solid curve). The dashed and dotted FIG. 4. The curvature dependence of the propagation velocity
curves show the right-hand side of Eq. (8) plotted ko= 0.57 for different values of the parametersand o along the straight
andK = K, = 0.057, respectively. dashed line in Fig. 1.
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reactions [17]. However, the observed propagating struc-

(@) tures were then different and represented folded fronts
Ead separating two steady states. The folded waves, seen in
our computations [Fig. 2(b)], look similar to the wave
patterns observed in the experiments with the Belousov-
(b) Zhabotinsky reaction [18,19], but it is not yet clear
- whether these effects have the same theoretical explana-
tion. It should be noted that our simulations in this Letter
were performed for relatively low ratios of the inhibitor
and activator diffusion constants = 2) which enhances
(c) the possibility of a corresponding experimental observa-
- tion in aqueous excitable medium.
FIG. 5. Wave propagation in a narrow channel with= [1] A T Winfree, Whe_n Time Breaks Dowr(Princeton
0.1575 and o = 2.1. Gray scale and contour lines as in University Press, Princeton, 1987). o
Fig. 2. The snapshots (a), (b), and (c) correspond, respectively[2] Spatio-Temporal Organization in Nonequilibrium Systems,
to the time instants = 500, 570, and 800. The frame size edited by S.C. Miller and Th. Plesser (Projekt Verlag,
is 160 X 30. Dortmund, 1992).
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