日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile

MPS-Authors
/persons/resource/persons210875

Woebken,  D.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210568

Lavik,  G.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210556

Kuypers,  M.M.M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Galán, A., Molina, V., Thamdrup, B., Woebken, D., Lavik, G., Kuypers, M., & Ulloa, O. (2009). Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile. Deep-Sea Research Part II-Topical Studies in Oceanography, 56(16), 1125-1135.


引用: https://hdl.handle.net/21.11116/0000-0001-CBE6-7
要旨
Anammox is the anaerobic oxidation of ammonium by nitrite or nitrate to yield N2. This process, along with conventional denitrification, contributes to nitrogen loss in oxygen-deficient systems. Anammox is performed by a special group of bacteria belonging to the Planctomycetes phylum. However, information about the distribution, activity, and controlling factors of these anammox bacteria is still limited. Herein, we examine the phylogenetic diversity, vertical distribution, and activity of anammox bacteria in the coastal upwelling region and oxygen minimum zone off northern Chile. The phylogeny of anammox bacteria was studied using primers designed to specifically target 16S rRNA genes from Planctomycetes in samples taken during a cruise in 2004. Anammox bacteria-like sequences affiliated with Candidatus “Scalindua spp.” dominated the 16S rRNA gene clone library. However, 62% of the sequences subgrouped separately within this cluster and together with a single sequence retrieved from the suboxic zone of the freshwater Lake Tanganyika. The vertical distribution and activity of anammox bacteria were explored through CARD-FISH (fluorescence in situ hybridization with catalyzed reporter deposition) and 15N labeling incubations, respectively, at two different open-ocean stations during a second cruise in 2005. Anammox bacterial CARD-FISH counts (up to 3000 cells ml−1) and activity (up to 5.75 nmol N2 L−1 d−1) were only detected at the station subjected directly to the upwelling influence. Anammox cell abundance and activity were highest at 50 m depth, which is the upper part of the OMZ. In this layer, a high abundance of cyanobacteria and a marked nitrogen deficit were also observed. Thus, our results show the presence of a new subcluster within the marine anammox phylogeny and indicate high vertical variability in the abundance and activity of anammox bacteria that could be related to an intensification of carbon and nitrogen cycling in the upper part of the OMZ.