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9. SULFUR-IRON-CARBON GEOCHEMISTRY 
IN SEDIMENTS OF THE DEMERARA RISE1 

Michael E. Böttcher,2, 3 Almut Hetzel,4 Hans-Jürgen Brumsack,4 
and Andrea Schipper2

ABSTRACT

The geochemical composition of sediments (squeeze cake samples)
from five drill sites (Ocean Drilling Program Sites 1257–1261) on the
Demerara Rise in the tropical Atlantic was determined, with special re-
gard to a sequence of Cretaceous black shales. Sediments were analyzed
for different iron (total, pyrite, Na dithionite, and HCl leachable) and
sulfur (total, pyrite, acid volatile, and organic bound) fractions, in addi-
tion to total organic carbon (TOC) and total inorganic carbon. The rela-
tive abundance of highly reactive iron (FeHR/FeT) in the investigated
black shale samples indicates that pyrite was formed both in the water
column and the sediment. This corresponds to euxinic paleoenviron-
mental conditions, a situation similar to the modern deep Black Sea.
This geochemical approach is independent of a possible minor contri-
bution from ongoing sulfate reduction which is triggered by anaerobic
methane oxidation above the black shale sequence. Pyrite sulfur in
black shales makes up between 30% and 100% of total sulfur. In addi-
tion to fixation of sulfide with iron, organic matter (OM) acted as an
important sulfur trap during early diagenesis, with organic sulfur com-
posing between 5 and 10 atom% of TOC. The relative importance of
OM sulfurization is increasing with its content.

INTRODUCTION

The paleoenvironmental conditions during organic matter (OM)-rich
black shale formation have been an important scientific issue in the
field of global and regional biogeochemical element cycling for a con-
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siderable period of time (e.g., Gauthier, 1987; Arthur et al., 1988; Arthur
and Sageman, 1994; Brumsack, 2006, and references therein) but are
still far from being completely understood. A number of different
geochemical approaches have been applied to approach these ques-
tions, including trace element, biomarker, and stable isotope studies. As
examples of more recent analogs for OM-rich sediment deposition, the
formation of sapropels in the Black Sea and the eastern Mediterranean
has been investigated in detail (e.g., Brumsack, 1986; Calvert et al.,
1996; Lyons, 1997; Arthur and Dean, 1998; Emeis et al., 2000; Rinna et
al., 2002; Lourens et al., 2001; Brumsack and Wehausen, 1999; Böttcher
et al., 2003). 

Accumulation of OM in sediments is often associated with the en-
richment of sulfur and iron. The systematics behind the combined
(bio)geochemistry of sulfur, iron, and organic carbon have been evalu-
ated for the modern Black Sea (e.g., Leventhal, 1983; Arthur and Dean,
1998; Canfield et al., 1996; Raiswell and Canfield, 1998; Anderson and
Raiswell, 2004) and successfully applied by analogy to the ancient dep-
ositional environments of OM-rich sediments (e.g., Dean and Arthur,
1989; Raiswell et al., 2001; Shen et al., 2003; Grice et al., 2005). Inter-
pretation of ancient black shales is often complicated because of the
modification by deeper burial and associated geochemical overprints.
Close to the Earth’s surface, modification of the geochemical composi-
tion of black shale can take place by weathering that may be induced by
flow of rain and ground water (Petsch et al., 2000, 2001, 2005). Black
shale sequences as well as corresponding pore water gradients obtained
by deep sea drilling, on the other hand, have seldom been analyzed at a
resolution sufficient for a detailed interpretation of past environmental
change and possible diagenetic overprints. First analyses of pore waters
associated with frequent sapropel layers from the Mediterranean gave
no indication for a contribution of OM-rich zones to the shapes of
present pore water profiles (Böttcher et al., 1998, 2003).

Widespread black shale formation took place during the global ocean
anoxic events of the Cretaceous period (e.g., Schlanger and Jenkyns,
1976; Jenkyns, 1980), the causes still being a matter of intense debate
(e.g., Arthur and Sageman, 1994; Arthur et al., 1988; Brumsack, 1986;
Sinninghe Damstae and Koester, 1998). In the present study, we carried
out a detailed geochemical investigation on Cretaceous black shale
samples from the southern North Atlantic not previously affected by
surface weathering. Expanded, shallowly buried Cretaceous sediments
were recovered during Ocean Drilling Program (ODP) Leg 207 from the
Demerara Rise off Suriname, South America, including multiple se-
quences of Cretaceous black shales. By means of a solid phase geochem-
ical approach we aimed to characterize the sulfur-iron-carbon (S-Fe-C)
systematics of these sediments and their use as indicators for the depo-
sitional paleoenvironment. Results are compared to the composition of
the overlying younger organic-poor sediments. This communication is
accompanied by reports on the bulk inorganic geochemistry including
trace element contents (Hetzel et al., this volume), a high-resolution
geochemistry study of Cretaceous black shales (Hetzel et al., unpubl.
data), and the biogeochemistry of stable sulfur and oxygen isotope frac-
tionation in pore waters and authigenic sulfur phases (Böttcher et al.,
unpubl. data).
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MATERIALS AND METHODS

During Leg 207, sediments on the Demerara Rise were cored at ~9°N
in the tropical Atlantic (Fig. F1; Table T1). The rise stretches ~380 km
along the coast of Suriname and reaches a width of ~220 km from the
shelf break to the northeastern escarpment, where water depths in-
crease sharply from 1000 to >4500 m. Although most of the plateau lies
in shallow water (700 m), the northwest margin is a gentle ramp that
reaches water depths of 3000–4000 m. Nearly uniform, shallowly bur-
ied stratigraphically expanded sections of Cretaceous and Paleogene age
exist with good stratigraphic control. Five drill sites (Sites 1257–1261)
constitute a depth transect ranging in water depths from 1900 m to
3200 m (Fig. F1). The recovered sediments include multiple sequences
of Cretaceous black shales (Erbacher, Mosher, Malone, et al., 2004; Er-
bacher et al., 2005) pointing to varying levels of bottom water dysoxia
and/or enhanced surface water productivity. Five units were identified: 

Unit I: consisting of modern, Pleistocene, and Pliocene sediments.
Unit II: consisting of Oligocene and Eocene sediments.
Unit III: consisting of late Paleocene–Campanian sediments.
Unit IV: consisting of Santonian–Cenomanian black shales. 
Unit V: consisting of Albian sediments.

Interstitial waters from 152 samples from Sites 1257–1261, covering a
depth range from the sediment/seawater interface to 648 meters com-
posite depth (mcd), were collected and processed using standard ODP
methods. Interstitial water samples were squeezed from sediment sam-
ples immediately after retrieval of the cores using titanium squeezers,
modified after the standard ODP stainless steel squeezer (Manheim and
Sayles, 1974). Results for dissolved species relevant to the present study
are summarized in Figure F2. On board the ship, splits of all squeeze
cakes were taken, freeze-dried, and stored in polyethylene bags. In the
shore-based laboratory, the samples were ground and homogenized in
an agate mill. X-ray fluorescence analysis for main elements (Philips PW
2400 X-ray spectrometer) using fused glass beads were conducted as de-
scribed by Schnetger et al. (2000). Detailed results are presented in Het-
zel et al. (this volume); the present communication only refers to the to-
tal iron (FeT) measurements. Total sulfur (ST) and total carbon (TC) were
analyzed using a LECO SC-444 infrared analyzer for squeeze cake sam-
ples. Total inorganic carbon (TIC) was determined coulometrically using
a UIC CM 5012 CO2 coulometer coupled to a CM 5130 acidification
module. Total organic carbon (TOC) was calculated as the difference be-
tween TC and TIC (e.g., Babu et al., 1999). Different sedimentary sulfur
fractions, acid volatile sulfur (SAVS), chromium-reducible sulfur (SP, essen-
tially pyrite), OM (essentially kerogen)-bound organic sulfur (SORG), and
residual sulfur (SRES) were separated quantitatively on freeze-dried pow-
dered samples. SAVS was obtained using anaerobic distillation with 6-M
HCl (1 hr). Because FeS is not expected to survive the diagenetic pyriti-
zation and laboratory-based freeze-drying process in the black shale sam-
ples, the SAVS fraction is assumed to dominantly represent water column–
derived ZnS and/or CuS (Brumsack, 1980). SAVS contents (data not
shown) in the investigated black shale samples are <270 mg/kg. These re-
sults will be discussed in the light of trace element enrichments in more
detail in a later contribution. Pyrite sulfur, SP, was extracted using hot
acidic Cr(II)Cl2 (2 hr) (Zhabina and Volkov, 1978; Canfield et al., 1986).
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Liberated H2S was precipitated quantitatively in Zn acetate traps and
measured spectrophotometrically (Cline, 1969). The residue was
washed, dried, and weighed and analyzed for CNS contents by elemental
analysis using a Fisons elemental analyzer. This fraction represents the
sum of SORG and SRES. The Cr(II) residue was then tempered in a porcelain
cruicible for several hours at 550°C to remove OM, weighed, and again
analyzed for CNS (Böttcher and Schnetger, 2004). This fraction is con-
sidered to mainly represent residual barite sulfur. The SORG-I fraction was
calculated from the difference of the two sulfur fractions. Additionally,
the organic sulfur fraction was calculated from the difference of total sul-
fur and the sum of chromium-reducible sulfur and the sulfur content of
the tempered Cr residue: 

SORG-II = ST – SP – SRES. 

Organic sulfur results from both approaches agree well (Fig. F3). Still-
reactive iron (FeD) was extracted from sediment samples using a buffered
solution of Na dithionite (Canfield, 1989), which removes iron (oxyhy-
dr)oxide phases (ferrihydrite, goethite, lepidocrocite, and hematite) but
only small amounts of iron from silicates (Canfield, 1989; Haese, 2000).
The iron concentration was determined spectrophotometrically (at 562
nm) with ferrozine in N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic
acid (HEPES) buffer at pH 7 (Stookey, 1970). The amount of pyrite iron
(FeP) was calculated from the content of SP. The highly reactive iron frac-
tion FeHR is calculated as the sum of extractable and pyrite iron:

FeHR = FeD + FeP. 

The range of geochemical results in the Fe-S-C system for Unit IV sedi-
ments is summarized in Table T2. Finally, the iron fraction extractable
by cold 0.5-M HCl (FeHCl) was determined in all samples (data not
shown). Maximum dry weight contents of FeHCl are 140 mg/kg (Unit V,
Site 1257), 70 mg/kg (Unit I, Site 1258), 199 mg/kg (Unit V, Site 1259),
83 mg/kg (Unit I, Site 1260), and 302 mg/kg (Unit I, Site 1261). FeHCl and
FeD contents are positively correlated. Scanning electron microprobe
analysis of gold-coated nonground sediment samples was carried out us-
ing a Hitachi S-3200N scanning electron microscope (SEM). 

RESULTS AND DISCUSSION

Lithologic Units, Pore Waters, Sulfate Reduction, 
and Anaerobic Methane Oxidation 

The depth profiles of the contents of different sedimentary carbon,
sulfur, and iron fractions measured at all sites recovered during Leg 207
are presented in Figure F4. The geochemical data demonstrate the oc-
currence of highly OM rich (Cretaceous) black shales (Unit IV) with
TOC contents as high as 18 wt%. The black shales were deposited on
synrift clastic sediments (Unit V). Units IV and V are overlain by or-
ganic-poor open-marine chalk and calcareous claystones (Units I–III)
(Erbacher, Mosher, Malone, et al., 2004). Downcore variations of the
pore water sulfate (Fig. F2) clearly indicate that deep-seated microbial
sulfate reduction at slow rates is occurring in the sediments above Unit
IV. Anaerobic oxidation of upward diffusing methane (AOM), which is
derived from the black shale sequence, is the process associated with
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the microbial sulfate reduction process (Erbacher, Mosher, Malone, et
al., 2004). AOM has been found to be carried out in marine sediments
by a consortium of archaea and sulfate-reducing bacteria (Hoehler et al.,
1994; Hinrichs et al., 1999; Boetius et al., 2000). The mechanistic, qual-
itative interpretations from the pore water profiles are additionally con-
firmed by quantitative modeling (Arndt et al., 2006). The reaction zone
is currently positioned at Sites 1257–1260 above the black shale se-
quences and is triggered by a flux of biogenic methane from the OM-
rich shales, where it is produced by methanogenesis. At Site 1261, sul-
fate reduction already goes to completion within the upper 200 mcd,
indicating that OM degradation takes place in the rapidly deposited
Pliocene nannofossil clay of Unit I (Erbacher, Mosher, Malone, et al.,
2004). Whereas OM mineralization at depth is reflected by the continu-
ous increase in ammonium concentrations, alkalinity data are partly su-
perimposed by carbonate precipitation. Accumulation of dissolved bar-
ium concentrations in the pore waters (Fig. F2) originates from the
dissolution of biogenic barites and only takes place where pore water
sulfate was completely exhausted. Enhanced dissolved iron concentra-
tions, on the other hand, exclude significant sulfide concentrations.

Sedimentary Iron and Sulfur Species

The burial of OM in the black shale sequence is associated with an
enrichment of all analyzed sulfur fractions: total, pyrite, and organic-
bound sulfur (Fig. F4). This is due to the coupling of OM deposition to
microbial sulfate reduction and the associated formation of sedimen-
tary sulfur compounds. Dissimilatory sulfate reduction leads to the for-
mation of hydrogen sulfide that may further react with reactive iron to
precipitate iron sulfides (essentially pyrite, FeS2) and with OM to form
organic sulfur compounds (e.g., Aizenshtat et al., 1983, 1995; Sin-
ninghe Damsté and De Leeuw, 1990; Bein et al., 1990; Rullkötter, 2000;
Werne et al., 2004). Other metal sulfides (e.g., ZnS) that may have been
formed in a sulfidic paleowater column (Brumsack, 1980), although
found in investigated black shale samples (A. Hetzel, unpubl. data), are
quantitatively only of trace importance.

Reactive Iron Phases and Pyrite Formation

Pyrite typically occurs in marine sediments in framboidal and euhe-
dral occurrence, depending on the physicochemical boundary condi-
tions (Wilkin et al., 1996; Wang and Morse, 1996). As shown in Figure
F5, framboidal pyrite was found in black shale samples from Site 1260.
This occurrence is typical for pyrite that is formed in a euxinic water
column or in sediment close to the sediment/water interface during
early diagenesis (Wilkin et al., 1996). Besides sulfur, the iron contents
are also enhanced in sediments of Unit IV (Fig. F4), in particular, the FeP

and FeD fractions. The only exception is Site 1261. The formation of py-
rite is ultimately limited by the availability of iron minerals that are
able to react with dissolved sulfide (Canfield, 1989). The amount of so-
called highly reactive iron (FeHR) in marine sediments consists of the
sum of the iron fraction that already reacted to pyrite (FeP) and sedi-
mentary iron that is still able to react with sulfide. This still-reactive
iron fraction (FeD) is extracted with buffered Na dithionite solution
(Canfield, 1989). The relationship between FeHR and FeT has been shown
to be indicative for the redox conditions characterizing the sediment-
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forming environment, with FeHR/FeT ratios < 0.38 in normal marine en-
vironments with oxic bottom waters (Raiswell and Canfield, 1998;
Anderson and Raiswell, 2004). In euxinic systems, on the other hand,
the clastic and reactive iron fluxes to the sediment may be decoupled,
which may lead to FeHR/FeT ratios > 0.38. This corresponds to an excess
of reactive sedimentary sulfur in euxinic compared to oxic sediments.
Below oxic bottom waters, pyrite formation takes place exclusively in
the sediment. An additional fraction of iron sulfide may be formed in
the water column of euxinic systems, as found in the modern Black Sea
(Raiswell and Berner, 1985; Canfield et al., 1996). It has been shown for
modern environments that the geochemical indicators in the iron-sul-
fur system, such as the FeHR/FeT ratio and the degree of pyritization,
mostly lead to the same paleoredox interpretations (e.g., Shen et al.,
2003).

The downcore variations of the relative fraction of highly reactive
iron (FeHR/FeT) for the Leg 207 samples are presented in Figure F4. Reac-
tive iron was enriched in virtually all black shale samples with FeHR/FeT

values > 0.38, indicating euxinic conditions during deposition of the
organic-rich sediments of Unit IV (Fig. F4). Differences between the
sites, as well as downcore variations of the relative enrichment of reac-
tive iron, indicate that environmental conditions and/or associated
transport processes were not constant with time. Besides water column
iron sulfide formation, the enrichment of reactive iron also requires the
presence of a paleoshelf situation where an extended oxygen minimum
zone (OMZ) led to the liberation of dissolved iron from shelf areas into
a suboxic water column and, after further transport, to precipitation
when reaching the sulfidic deeper waters (Canfield et al., 1996; Lyons,
1997; Wijsman et al., 2001; Anderson and Raiswell, 2004). Alterna-
tively, such an enrichment may have been caused by a fluctuation of a
chemocline on the shelf slope, leading to a pumping of dissolved iron
into suboxic waters with subsequent fixation in areas of higher sulfide
accumulation. The latter mechanism is similar to a model proposed by
Lepland and Stevens (1998) for the formation of Mn(II) carbonates in
an anoxic deep of the Baltic Sea. Additionally, an excess of FeHR is also
found below the black shales in Unit V at Sites 1257, 1258, and 1260. In
contrast, euxinic conditions were limited to Unit IV at Site 1259, based
on the present sampling resolution. Besides an onset of euxinic condi-
tions already occurring during clastic sediment deposition of Unit V, a
later sulfidization of underlying sediments as described for sediments
below sapropels of the Kau Basin (Middelburg, 1991), the Eastern Medi-
terranean (Passier and de Lange, 1998; Passier et al., 1996, 1997, 1999),
the Baltic Sea (Böttcher and Lepland, 2000), or the Black Sea (Jørgensen
et al., 2004) may also have caused this iron sulfide enrichment. A simi-
lar diagenetic sulfidization mechanism was identified in Mesoprotero-
zoic marine sediments of the Belt Supergroup (Lyons et al., 2000).

FeHR/FeT ratios in Units I–III are below the threshold value for euxinia,
indicating an essentially nonsulfidic water column during sediment for-
mation. When the different sites are compared, however, it becomes
obvious that FeHR is relatively enriched in the sediments at Site 1261,
which is positioned closest to the paleocoastline and at the lowest paleo-
water depth. An import of iron from shallower shelf sediments accord-
ing to the (suboxic) OMZ model is consistent with this observation.

The covariation of SP with TOC data is presented in a Berner plot (Fig.
F6) and compared to the relationship proposed for “normal marine sed-
iments” (Berner and Raiswell, 1983). Only a few data points coincide
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with the relation found for clastic sediments below an oxic water col-
umn. A number of data points plot above the regression line, indicating
an excess of sulfur that may coincide with a euxinic depositional envi-
ronment (Leventhal, 1983; Raiswell and Berner, 1985). At highest TOC
contents, however, most data show a relative excess of OM. This indi-
cates a certain degree of iron limitation during black shale deposition
(Leventhal, 1983) as also found for the Black Sea and Mediterranean
sapropels (Fig. F6) or Albian black shales from the North Atlantic (Hof-
mann et al., 2000). Iron limitation upon black shale formation is also
indicated from the sedimentary sulfur speciation (Fig. F4). SP in the in-
vestigated black shale samples makes up between 30% and 100% of ST,
with a decrease of the relative importance with increasing OM content
(Fig. F7). This indicates the importance of the balance between OM and
the syngenetic metal flux to the surface sediments. In addition to fixa-
tion of sulfide by the reaction with iron, OM acted as the second impor-
tant sulfur trap during early diagenesis.

Organic Sulfur Formation

Sulfur can react with OM via a number of different pathways, where
sulfide and polysulfides are the most likely reaction partners (Aizensh-
tat et al., 1983, 1995). This requires a decreased availability of reactive
iron and leads to a modification of reactivity of the remaining OM (Sin-
ninghe Damsté and De Leeuw, 1990). Organic sulfur incorporation is
found in the high-TOC black shale samples at all sites (Fig. F4). From
the nearly linear variation of organic sulfur and organic carbon con-
tents (Fig. F6), essentially constant atomic C/S ratios are obtained.
Quantitatively, the samples with TOC contents exceeding ~2 wt% have
as much as 10 atom% organic sulfur. Most of the atomic S/C ratios fall
in the range of 0.04 to 0.06. A similar linear relationship has been ob-
served previously for Mediterranean sapropels by Passier et al. (1999).
The fraction of SORG, however, is relatively more enriched in the Creta-
ceous black shale samples, probably due to a higher abundance of reac-
tive sulfur species or a higher reactivity of the OM toward sulfurization.
From a comparison with literature data it is obvious that OM in the
black shales is significantly enriched in sulfur when compared to ma-
rine planktonic material (S/C of ~0.008) (Francois, 1987). This is due to
the reaction of reduced sulfur species with OM upon early diagenesis
(Aizenshtat et al., 1983, 1995; Bein et al., 1990; Raiswell et al., 1993;
Sinninghe Damsté and de Leeuw, 1990; Passier et al., 1999; Werne et al.,
2004). Stable sulfur isotope measurements have shown that the original
seawater-derived sulfur in the OM was superimposed by the addition of
diagenetic sulfur species (Bein et al., 1990; Passier et al., 1999). The rela-
tive importance of OM sulfurization compared to the bonding to pyrite
increases with OM contents (Fig. F7). Deviations of atomic S/C ratios
from the mean value of 0.056 (TOC > 2 wt%) may be caused by differ-
ent extents of dissolved sulfur species availabilities and/or different sul-
fur sink capacities of OM. In Creaceous carbonates, Bein et al. (1990)
observed maximum S/C ratios as high as 0.38. On the other hand, Ju-
rassic black shales, anoxic Peru margin upwelling sediments, and Medi-
terranean sapropels had maximum S/C ratios of 0.019, 0.056, and
0.038, respectively (Raiswell et al., 1993; Mossmann et al., 1991; Passier
et al., 1999). 
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CONCLUSIONS

A detailed geochemical analysis of iron and sulfur speciation in sedi-
ments recovered during Leg 207 on the Demerara Rise show that the
paleoenvironment was euxinic during Cretaceous black shale deposi-
tion with iron sulfides being formed in the sulfidic part of the water col-
umn and the sediment. This requires the transport of iron to the place
of iron sulfide formation, for instance, via an intense but not sulfidic
OMZ. In addition, OM acted as an important early diagenetic sink for
dissolved reduced/intermediate sulfur species at (present) OM contents
exceeding ~2 wt%. Results from the five different sites demonstrate that
environmental redox conditions were not constant with time. A more
detailed analysis of iron-sulfur speciation during black shale deposition
at Sites 1258 and 1260 together with sulfur isotope partitioning be-
tween sulfur species is needed and is currently being carried out to iden-
tify the frequency of changes in water column euxinia during black
shale deposition with time in relation to the availability of iron.
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Figure F1. Positions of the investigated five sites cored during Leg 207 in the tropical Atlantic on the De-
merara Rise, off Suriname. A. Map modified from Erbacher, Mosher, Malone, et al. (2004). B. Map was cre-
ated using the Generic Mapping Tools (GMT) program (www.aquarius.geomar.de).
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Figure F2. Onboard measurements of selected constituents in pore waters at Sites (A) 1257, (B) 1258,
(C) 1259, (D) 1260, and (E) 1261 (from Erbacher, Mosher, Malone, et al. [2004] and ODP database). TA =
total alkalinity. (Continued on next page.)

Sulfate, TA (mM) NH4 (µM) Ba, Fe (µM)

Unit
IV

0 20,000 40,000 0 10 20 30 0 400 800 1200 0 100 200

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

0 40,000 80,000 0 10 20 30 0 500 1000 1500 0 40 80

0 10 20 300 40,000 80,000 0 500 1000 1500 0 200 400

0 10 20 300 40,000 80,000 0 1000 2000 3000 0 20 40 60

SO4 TA Ba Fe

D
ep

th
 (

m
cd

)
D

ep
th

 (
m

cd
)

D
ep

th
 (

m
cd

)
D

ep
th

 (
m

cd
)

Unit II

Unit III

Unit IV

Unit V

Unit II

Unit III

Unit V

Unit II

Unit III

Unit IV

Unit V

Unit II

Unit III

Unit IV

Unit V

B

C

D

Methane (ppm)A



M.E. BÖTTCHER ET AL.
SULFUR-IRON-CARBON GEOCHEMISTRY IN SEDIMENTS 15
Figure F2 (continued).
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Figure F3. Comparison of the results of two analytical approaches to measure organic sulfur (SORG) contents
in black shale samples (see “Materials and Methods,” p. 3).

SORG-II (wt%)

1

2

3

4

S
O

R
G

-I
 (

w
t%

)

0 1 2 3 4



M.E. BÖTTCHER ET AL.
SULFUR-IRON-CARBON GEOCHEMISTRY IN SEDIMENTS 17
Figure F4. Downcore variations of selected geochemical parameters for Sites (A) 1257, (B) 1258, (C) 1259,
(D) 1260, and (E) 1261. Definition of lithological units according to Erbacher, Mosher, Malone, et al.
(2004). TOC = total organic carbon, TIC = total inorganic carbon, FeT = total iron, FeD = still-reactive iron,
FeP = pyrite iron, ST = total sulfur, SP = pyrite sulfur, SORG = OM (essentially kerogen)-bound organic sulfur.
Dashed line in the relative abundance of highly reactive iron (FeHR/FeT) plots indicates boundary to euxinic
conditions (see “Reactive Iron Phases and Pyrite Formation,” p. 5). (Continued on next page.)
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Figure F4 (continued).
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Figure F5. A–B. SEM photographs of framboidal pyrite found in a foraminifer shell in a black shale sample
(Sample 207-1260B-40R-4, 140–150 cm). B is an extension from A.
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Figure F6. Covariation of (A) pyrite (SP) and (B) organic sulfur (SORG) contents as a function of total organic
carbon (TOC) contents. Dashed line marks the relationship derived for normal marine sediments as defined
by Berner and Raiswell (1983). o = Leg 207, this study. x = data for Holocene and Pleistocene sediments
from the Black Sea (Core BS4-14GC; Calvert et al., 1996; Core GeoB 7620-2, M. Böttcher and B. Jørgensen,
unpubl. data). + = data for sapropelic sediments from the Mediterranean Sea (Böttcher et al., 2003).
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Figure F7. Covariation of the sulfur fraction in pyrite with total organic carbon (TOC) in black shale sam-
ples.
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Table T1. Drilling locations of Leg 207 with geo-
graphical positions and water depths.

Note: mbsl = meters below sea level.

Hole Latitude Longitude

Water
depth
(mbsl)

1257A 9°27.230′N 54°20.518′W 2951.0
1257B 9°27.218′N 54°20.508′W 2951.0
1257C 9°27.206′N 54°20.495′W 2951.0

1258A 9°26.000′N 54°43.999′W 3192.2
1258B 9°26.000′N 54°43.982′W 3192.2
1258C 9°26.000′N 54°43.966′W 3192.2

1259A 9°17.999′N 54°11.998′W 2353.8
1259B 9°18.048′N 54°11.945′W 2353.8
1259C 9°18.024′N 54°11.969′W 2353.8

1260A 9°15.984′N 54°32.633′W 2548.8
1260B 9°15.931′N 54°32.652′W 2548.8

1261A 9°2.917′N 54°19.038′W 1899.7
1261B 9°2.918′N 54°19.049′W 1899.7
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Table T2. Range of geochemical parameters in the
Fe-S-C system measured on squeeze cake samples of
Unit IV sediments from Leg 207.

Notes: FeP was calculated from SP measurements considering the
stoichiometric composition of pyrite. Corresponding main,
minor, and trace elements are found in Hetzel et al. (this vol-
ume). TOC = total organic carbon, TIC = total inorganic carbon,
FeT = total iron, FeP = pyrite iron, FeHR = highly reactive iron, ST =
total sulfur, SP = pyrite sulfur, SORG = organic matter (essentially
kerogen)-bound organic sulfur.

Fe-S-C
(wt%) Site 1257 Site 1258 Site 1259 Site 1260 Site 1261

TOC 3.5–7.7 5.7–15.1 7.6–18.6 2.7–6.0 9.2–12.0
TIC 5.3–6.3 2.4–6.9 4.9–7.1 8.1–10.4 4.4–6.4
FeT 0.6–4.6 1.1–3.1 0.7–1.7 0.6–1.2 0.8–1.5
FeP 0.4–1.4 0.5–2.3 0.4–1.2 0.4–0.9 0.6–1.3
FeHR 0.4–1.5 0.6–2.6 0.4–1.3 0.4–0.9 0.6–1.3
ST 1.3–2.0 1.7–4.7 1.3–4.5 0.8–1.5 2.0–3.3
SP 0.5–1.6 0.6–3.0 0.4–1.4 0.4–1.0 0.7–1.5
SORG 0.3–1.0 1.2–2.9 0.8–3.1 0.4–0.8 1.4–1.9
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