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Abstract

The classical analysis of online algorithms, due to its worst-case nature, can be quite pessimistic
when the input instance at hand is far from worst-case. Often this is not an issue with machine
learning approaches, which shine in exploiting patterns in past inputs in order to predict the future.
However, such predictions, although usually accurate, can be arbitrarily poor. Inspired by a recent
line of work, we augment three well-known online settings with machine learned predictions about
the future, and develop algorithms that take them into account. In particular, we study the follow-
ing online selection problems: (i) the classical secretary problem, (ii) online bipartite matching and
(iii) the graphic matroid secretary problem. Our algorithms still come with a worst-case perfor-
mance guarantee in the case that predictions are subpar while obtaining an improved competitive
ratio (over the best-known classical online algorithm for each problem) when the predictions are
sufficiently accurate. For each algorithm, we establish a trade-off between the competitive ratios
obtained in the two respective cases.

1 Introduction

There has been enormous progress in the field of machine learning in the last decade, which has affected
a variety of other areas as well. One of these areas is the design of online algorithms. Traditionally, the
analysis of such algorithms involves worst-case guarantees, which can often be quite pessimistic. It is
conceivable though, that having prior knowledge regarding the online input (obtained using machine
learning) could potentially improve those guarantees significantly.

In this work, we consider various online selection algorithms augmented with so-called machine
learned advice. In particular, we consider secretary and online bipartite matching problems. The
high-level idea is to incorporate some form of predictions in an existing online algorithm in order to
get the best of two worlds: (i) provably improve the algorithm’s performance guarantee in the case
that predictions are sufficiently good, while (ii) losing only a constant factor of the algorithm’s existing

∗Work done in part while the author was at Saarland University and Max-Planck-Institute for Informatics and
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worst-case performance guarantee, when the predictions are subpar. Improving the performance of
classical online algorithms with the help of machine learned predictions is a relatively new area that
has gained a lot of attention in the last couple of years [2626, 2323, 4040, 2929, 3232, 3838, 1717, 3636, 3535].

We motivate the idea of incorporating such machine-learned advice, in the class of problems studied
in this work, by illustrating a simple real-world problem. Consider the following setting for selling a
laptop on an online platform.11 Potential buyers arrive one by one, say, in a uniformly random order,
and report a price that they are willing to pay for the laptop. Whenever a buyer arrives, we have to
irrevocably decide if we want to sell at the given price, or wait for a better offer. Based on historical
data, e.g., regarding previous online sales of laptops with similar specs, the online platform might
suggest a (machine learned) prediction for the maximum price that some buyer is likely to offer for
the laptop.

How can we exploit this information in our decision process? One problem that arises here is
that we do not have any formal guarantees for how accurate the machine-learned advice is for any
particular instance. For example, suppose we get a prediction of 900 dollars as the maximum price
that some buyer will likely offer. One extreme policy is to blindly trust this prediction and wait for
the first buyer to come along that offers a price sufficiently close to 900 dollars. If this prediction
is indeed accurate, this policy has an almost perfect performance guarantee, in the sense that we
will sell to the (almost) highest bidder. However, if the best offer is only, say, 500 dollars, we will
never sell to this buyer (unless this offer arrives last), since the advice is to wait for a better offer to
come along. In particular, the performance guarantee of this selling policy depends on the prediction
error (400 dollars in this case) which can become arbitrarily large. The other extreme policy is to
completely ignore the prediction of 900 dollars and just run the classical secretary algorithm: Observe
a 1/e-fraction of the buyers, and then sell to the first buyer that arrives afterwards, who offers a price
higher than the best offer seen in the initially observed fraction. This yields, in expectation, a selling
price of at least 1/e times the highest offer [3030, 1111].

Can we somehow combine the preceding two extreme selling-policies, so that we get a performance
guarantee strictly better than that of 1/e in the case where the prediction for the highest offer is not
too far off, while not loosing too much over the guarantee of 1/e otherwise? Note that (even partially)
trusting poor predictions often comes at a price, and thus obtaining a competitive ratio worse than
1/e seems inevitable in this case. We show that there is in fact a trade-off between the competitive
ratio that we can achieve when the prediction is accurate and the one we obtain when the prediction
error turns out to be large.

1.1 Our models and contributions

We show how one can incorporate predictions in various online selection algorithms for problems that
generalize the classical secretary problem. The overall goal is to include as little predictive information
as possible into the algorithm, while still obtaining improvements in the case that the information is
accurate. Our results are parameterized by (among other parameters) the so-called prediction error η
that measures the quality of the given predictions.

We briefly sketch each of the problems studied in this work, and then conclude with the description
of the meta-result in Theorem 1.11.1, that applies to all of them.

Secretary problem. In order to illustrate our ideas and techniques, we start by augmenting the
classical secretary problem22 with predictions. For details, see Section 33. Here, we are given a prediction
p∗ for the maximum value among all arriving secretaries.33 The prediction error is then defined as

1This example is similar to the classical secretary problem [1515].
2To be precise, we consider the so-called value maximization version of the problem, see Section 33 for details.
3This corresponds to a prediction for the maximum price somebody is willing to offer in the laptop example.
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η = |p∗ − v∗|, where v∗ is the true maximum value among all secretaries. We emphasize that the
algorithm is not aware of the prediction error η, and this parameter is only used to analyze the
algorithm’s performance guarantee.

Online bipartite matching with vertex arrivals. In Section 44, we study the online bipartite
matching problem in which the set of nodes L of a bipartite graph G = (L ∪ R,E), with |L| = n
and |R| = m, arrives online in a uniformly random order [2525, 2222]. Upon arrival, a node reveals the
edge weights to its neighbors in R. We have to irrevocably decide if we want to match up the arrived
online node with one of its (currently unmatched) neighbors in R. Kesselheim et al. [2222] gave a
tight 1/e-competitive deterministic algorithm for this setting that significantly generalizes the same
guarantee for the classical secretary algorithm [3030, 1111].

The prediction that we consider in this setting is a vector of values p∗ = (p∗1, . . . , p
∗
m) that predicts

the edge weights adjacent to the nodes r ∈ R in some fixed optimal (offline) bipartite matching. That
is, the prediction p∗ indicates the existence of a fixed optimal bipartite matching in which each node
r ∈ R is adjacent to an edge with weight p∗r . The prediction error is then the maximum prediction
error taken over all nodes in r ∈ R and minimized over all optimal matchings. This generalizes the
prediction used for the classical secretary problem. This type of predictions closely corresponds to the
vertex-weighted online bipartite matching problem [11], which will be discussed in Section 44.

Graphic matroid secretary problem. In Section 55, we augment the graphic matroid secretary
problem with predictions. In this problem, the edges of a given undirected graph G = (V,E), with
|V | = n and |E| = m, arrive in a uniformly random order. The goal is to select a subset of edges
of maximum weight under the constraint that this subset is a forest. That is, it is not allowed to
select a subset of edges that form a cycle in G. The best known algorithm for this online problem is
a (randomized) 1/4-competitive algorithm by Soto, Turkieltaub and Verdugo [4141]. Their algorithm
proceeds by first selecting no elements from a prefix of the sequence of elements with randomly chosen
size, followed by selecting an element if and only if it belongs to a (canonically computed) offline
optimal solution, and can be added to the set of elements currently selected online. This is inspired
by the algorithm of Kesselheim et al. [2222] for online bipartite matching.

As a result of possible independent interest, we show that there exists a deterministic (1/4−o(1))-
competitive algorithm for the graphic matroid secretary problem, which can roughly be seen as a
deterministic version of the algorithm of Soto et al. [4141]. Alternatively, our algorithm can be seen as
a variation on the (deterministic) algorithm of Kesselheim et al. [2222] for the case of online bipartite
matching (in combination with an idea introduced in [44]).

The prediction that we consider here is a vector of values p = (p∗1, . . . , p
∗
n) where p∗i predicts the

maximum edge weight that node i ∈ V is adjacent to, in the graph G. This is equivalent to saying
that p∗i is the maximum edge weight adjacent to node i ∈ V in a given optimal spanning tree (we
assume that G is connected for sake of simplicity), which is, in a sense, in line with the predictions
used in Section 44. (We note that the predictions model the optimal spanning tree in the case when
all edge-weights are pairwise distinct. Otherwise, there can be many (offline) optimal spanning trees,
and thus the predictions do not encode a unique optimal spanning tree. We intentionally chose not
to use predictions regarding which edges are part of an optimal solution, as in our opinion, such an
assumption would be too strong.) The prediction error is also defined similarly.

Meta Result

We note that for all the problems above, one cannot hope for an algorithm with a performance
guarantee better than 1/e in the corresponding settings without predictions, as this bound is known
to be optimal for the classical secretary problem (and also applies to the other problems) [3030, 1111].
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Hence, our goal is to design algorithms that improve upon the 1/e worst-case competitive ratio in the
case where the prediction error is sufficiently small, and otherwise (when the prediction error is large)
never lose more than a constant (multiplicative) factor over the worst-case competitive ratio.

For each of the preceding three problems, we augment existing algorithms with predictions. All of
our resulting algorithms are deterministic.

In particular, we show that the canonical approaches for the secretary problem [3030, 1111] and the
online bipartite matching problem [2222] can be naturally augmented with predictions. We also demon-
strate how to adapt our novel deterministic algorithm for the graphic matroid secretary problem.
Further, we comment on randomized approaches in each respective section.

Theorem 1.1 (Meta Result). There is a polynomial time deterministic algorithm that incorporates
the predictions p∗ such that for some constants 0 < α, β < 1 it is

i) α-competitive with α > 1
e , when the prediction error is sufficiently small; and

ii) β-competitive with β < 1
e , independently of the prediction error.

We note that there is a correlation between the constants α and β, which can be intuitively described
as follows: The more one is willing to give up in the worst-case guarantee, i.e. the more confidence
we have in the predictions, the better the competitive ratio becomes in the case where the predictions
are sufficiently accurate.

We next give a high-level overview of our approach. We split the sequence of uniformly random
arrivals in three phases. In the first phase, we observe a fraction of the input without selecting anything.
In the remaining two phases, we run two extreme policies, which either exploit the predictions or ignore
them completely. Although, each of the aforementioned extreme policies can be analyzed individually,
using existing techniques, it is a non-trivial task to show that when combined they do not obstruct
each other too much. In particular, the execution order of these policies is crucial for the analysis.

We give detailed formulations of the meta-result in Theorem 3.13.1 for the secretary problem; in
Theorem 4.14.1 for the online bipartite matching problem; and in Theorem 5.35.3 for the graphic matroid
secretary problem.

In addition, we show that the online bipartite matching algorithm, given in Section 44, can be turned
into a truthful mechanism in the case of the so-called single-value unit-demand domains. Details are
given in Theorem F.2F.2 in Appendix FF. We show that the algorithm of Kesselheim et al. [2222] can
be turned into a truthful mechanism in the special case of uniform edge weights, where for every
fixed online node in L, there is a common weight on all edges adjacent to it. In addition, we show
that truthfulness can be preserved when predictions are included in the algorithm. We note that
Reiffenhäuser [3939] recently gave a truthful mechanism for the general online bipartite matching setting
(without uniform edge weights). It would be interesting to see if her algorithm can be augmented with
predictions as well.

Remark 1.2. In the statements of Theorem 3.13.1, 4.14.1 and 5.35.3 it is assumed that the set of objects O
arriving online (either vertices or edges) is asymptotically large. We hide o(1)-terms at certain places
for the sake of readability.

Although the predictions provide very little information about the optimal solution, we are still able
to obtain improved theoretical guarantees in the case where the predictions are sufficiently accurate.
In the online bipartite matching setting with predictions for the nodes in R, we can essentially get
close to a 1/2-approximation – which is best possible – assuming the predictions are close to perfect.
This follows from the fact that in this case we obtain the so-called vertex-weighted online bipartite
matching problem for which there is a deterministic 1/2-competitive algorithm, and no algorithm can
do better [11]. Roughly speaking, our algorithm converges to that in [11] when the predictions get close
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to perfect. This will be discussed further in Section 44. For the graphic matroid secretary problem,
we are also able to get close to a 1/2-approximation in the case where the predictions (the maximum
edge weights adjacent to the nodes in the graph) get close to perfect. We note that this is probably
not tight. We suspect that, when given perfect predictions, it is possible to obtain an algorithm with
a better approximation guarantee. This is an interesting open problem.

1.2 Related work

This subsection consists of three parts. First we discuss relevant approximation algorithms for the
matroid secretary problem without any form of prior information, then we consider models that
incorporate additional information, such as the area of prophet inequalities. Finally, we give a short
overview of related problems that have been analyzed with the inclusion of machine learned advice
following the frameworks in [3232, 3838], which we study here as well.

Approximation algorithms for the matroid secretary problem. The classical secretary prob-
lem was originally introduced by Gardner [1515], and solved by Lindley [3030] and Dynkin [1111], who gave
1/e-competitive algorithms. Babaioff et al. [44] introduced the matroid secretary problem, a consider-
able generalization of the classical secretary problem, where the goal is to select a set of secretaries
with maximum total value under a matroid constraint for the set of feasible secretaries. They provided
an O(1/ log(r))-competitive algorithm for this problem, where r is the rank of the underlying matroid.
Lachish [2828] later gave an O(1/ log log(r))-competitive algorithm, and a simplified algorithm with the
same guarantee was given by Feldman, Svensson and Zenklusen [1313]. It is still a major open prob-
lem if there exists a constant-competitive algorithm for the matroid secretary problem. Nevertheless,
many constant-competitive algorithms are known for special classes of matroids, and we mention those
relevant to the results in this work (see, e.g., [44, 4141] for further related work).

Babaioff et al. [44] provided a 1/16-competitive algorithm for the case of transversal matroids, which
was later improved to a 1/8-competitive algorithm by Dimitrov and Plaxton [99]. Korula and Pál [2525]
provided the first constant competitive algorithm for the online bipartite matching problem considered
in Section 44, of which the transversal matroid secretary problem is a special case. In particular, they
gave a 1/8-approximation. Kesselheim et al. [2222] provided a 1/e-competitive algorithm, which is best
possible, as discussed above.

For the graphic matroid secretary problem, Babaioff et al. [44] provide a deterministic 1/16-
competitive algorithm. This was improved to a 1/(3e)-competitive algorithm by Babaioff et al. [33]; a
1/(2e)-competitive algorithm by Korula and Pál [2525]; and a 1/4-competitive algorithm by Soto et al.
[4141], which is currently the best algorithm. The algorithm from [44] is deterministic, whereas the other
three are randomized. All algorithms run in polynomial time.

Other models, extensions and variations. There is a vast literature on online selection algo-
rithms for problems similar to the (matroid) secretary problem. Here we discuss some recent directions
and other models incorporating some form of prior information.

The most important assumption in the secretary model that we consider is the fact that elements
arrive in a uniformly random order. If the elements arrive in an adversarial order, there is not much one
can achieve: There is a trivial randomized algorithm that selects every element with probability 1/n,
yielding a 1/n-competitive algorithm; deterministically no finite competitive algorithm is possible with
a guarantee independent of the values of the elements. There has been a recent interest in studying
intermediate arrival models that are not completely adversarial, nor uniformly random. Kesselheim,
Kleinberg and Niazadeh [2121] study non-uniform arrival orderings under which (asymptotically) one
can still obtain a 1/e-competitive algorithm for the secretary problem. Bradac et al. [55] consider the
so-called Byzantine secretary model in which some elements arrive uniformly at random, but where
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an adversary controls a set of elements that can be inserted in the ordering of the uniform elements
in an adversarial manner. See also the very recent work of Garg et al. [1616] for a conceptually similar
model.

In a slightly different setting, Kaplan et al. [1919] consider a secretary problem with the assumption
that the algorithm has access to a random sample of the adversarial distribution ahead of time. For
this setting they provide an algorithm with almost tight competitive-ratio for small sample-sizes.

Furthermore, there is also a vast literature on so-called prophet inequalities. In the basic model,
the elements arrive in an adversarial order, but there is a prior distributional information given for
the values of the elements {1, . . . , n}. That is, one is given probability distributions X1, . . . , Xn from
which the values of the elements are drawn. Upon arrival of an element e, its value drawn according
to Xe is revealed and an irrevocable decision is made whether to select this element or not. Note that
the available distributional information can be used to decide on whether to select an element. The
goal is to maximize the expected value, taken over all prior distributions, of the selected element. For
surveys on recent developments, refer to [3131, 77]. Here we discuss some classical results and recent
related works. Krengel, Sucheston and Garling [2727] show that there is an optimal 1/2-competitive
algorithm for this problem. Kleinberg and Weinberg [2424] gave a significant generalization of this result
to matroid prophet inequalities, where multiple elements can be selected subject to a matroid feasibility
constraint (an analogue of the matroid secretary problem). There is also a growing interest in the
prophet secretary problem [1212], in which the elements arrive uniformly random (as in the secretary
problem); see also [77].

Recently, settings with more limited prior information gained a lot of interest. These works ad-
dress the quite strong assumption of knowing all element-wise prior distributions. Azar, Kleinberg
and Weinberg [22] study the setting in which one has only access to one sample from every distribution,
as opposed to the whole distribution; see also [4242]. Correa et al. [66] study this problem under the
assumption that all elements are identically distributed. Recently, an extension of this setting was con-
sidered by Correa et al. [88]. Furthermore, Dütting and Kesselheim [1010] consider prophet inequalities
with inaccurate prior distributions X̃1, . . . , X̃n (while the true distributions X1, . . . , Xn are unknown).
They study to what extent the existing algorithms are robust against inaccurate prior distributions.

Although our setting also assumes additional information about the input instance, there are major
differences. Mainly, we are interested in including a minimal amount of predictive information about
an optimal (offline) solution, which yields a quantitative improvement in the case where the predic-
tion is sufficiently accurate. This is a much weaker assumption than having a priori all element-wise
(possibly inaccurate) probability distributions. Furthermore, our setting does not assume that the
predictive information necessarily comes from a distribution (which is then used to measure the ex-
pected performance of an algorithm), but can be obtained in a more general fashion from historical
data (using, e.g., statistical or machine learning techniques). Finally, and in contrast to other settings,
the information received in our setting can be inaccurate (and this is non-trivial do deal with).

Other problems with black-box machine learned advice Although online algorithms with
machine learned advice are a relatively new area, there has already been a number of interesting
results. We note that most of the following results are analyzed by means of consistency (competitive-
ratio in the case of perfect predictions) and robustness (worst-case competitive-ratio regardless of
prediction quality), but the precise formal definitions of consistency and robustness slightly differ in
each paper [3232, 3838]. 44 Our results can also be interpreted within this framework, but for the sake of
completeness we give the competitive ratios as a function of the prediction error. Purohit et al. [3838],

4The term “robustness” has also been used in connection with secretary problems (see for example [55]), but in a
totally different sense.
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considered the ski rental problem and the non-clairvoyant scheduling problem. For both problems they
gave algorithms that are both consistent and robust, and with a flavor similar to ours, the robustness
and consistency of their algorithms are given as a function of some hyper parameter which has to be
chosen by the algorithm in advance. For the ski rental problem, in particular, Gollapudi et al. [1717]
considered the setting with multiple predictors, and they provided and evaluated experimentally tight
algorithms.

Lykouris and Vassilvitskii [3232] studied the caching problem (also known in the literature as paging),
and were able to adapt the classical Marker algorithm [1414] to obtain a trade-off between robustness
and consistency, for this problem. Rohatgi [4040] subsequently gave an algorithm whose competitive
ratio has an improved dependence on the prediction errors.

Further results in online algorithms with machine learned advice include the work by Lattanzi
et al. [2929] who studied the restricted assignment scheduling problem with predictions on some dual
variables associated to the machines, and the work by Mitzenmacher [3636] who considered a different
scheduling/queuing problem. They introduced a novel quality measure for evaluating algorithms, called
the price of misprediction.

Finally, Mahdian et al. [3333] studied problems where it is assumed that there exists an optimistic
algorithm (which could in some way be interpreted as a prediction), and designed a meta-algorithm
that interpolates between a worst-case algorithm and the optimistic one. They considered several
problems, including the allocation of online advertisement space, and for each gave an algorithm
whose competitive ratio is also an interpolation between the competitive ratios of its corresponding
optimistic and worst-case algorithms. However, the performance guarantee is not given as a function
of the “prediction” error, but rather only as a function of the respective ratios and the interpolation
parameter.

2 Preliminaries

In this section we formally define the online algorithms of interest, provide the necessary graph theo-
retical notation, and define the so-called Lambert W -function that will be used in Section 33.

2.1 Online algorithms with uniformly random arrivals

We briefly sketch some relevant definitions for the online problems that we consider in this work. We
consider online selection problems in which the goal is to select the “best feasible” subset out of a finite
set of objects O with size |O| = n, that arrive online in a uniformly random order. More formally, the
n objects are revealed to the algorithm one object per round. In each round i, and upon revelation of
the current object oi ∈ O, the online selection algorithm has to irrevocably select an outcome zi out
of a set of possible outcomes Z(oi) (which may depend on o1, o2, . . . oi as well as z1, z2, . . . zi−1.) Each
outcome zi is associated with a value vi(zi), and all values vi become known to the algorithm with
the arrival of oi. The goal is to maximize the total value T =

∑
i vi(zi).

The cost of an algorithm A selecting outcomes z1, z2 . . . zn on σ is defined as T (A(σ)) =
∑

i vi(zi).
Such an algorithm A is γ-competitive if E(T (A(σ))) ≥ γ · OPT(σ), for 0 < γ ≤ 1, where OPT(σ) is
the objective value of an offline optimal solution, i.e., one that is aware of the whole input sequence σ
in advance. The expectation is taken over the randomness in σ (and the internal randomness of A in
case of a randomized algorithm). Alternatively, we say that A is a γ-approximation.

2.2 Graph theoretical notation

An undirected graph G = (V,E) is defined by a set of nodes V and set of edges E ⊆ {{u, v} :
u, v ∈ V, u 6= v}. A bipartite graph G = (L ∪ R,E) is given by two sets of nodes L and R, and
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E ⊆ {{`, r} : ` ∈ L, r ∈ R}. In the bipartite case we sometimes write (`, r) to indicate that ` ∈ L and
r ∈ R (we also use this notation for directed arcs in general directed graphs). For a set of nodes W ,
we use G[W ] to denote the induced (bipartite) subgraph on the nodes in W .

A function w : E → R≥0 is called a weight function on the edges in E; we sometimes write w(`, r)
in order to denote w({u, v}) for {u, v} ∈ E. A matching M ⊆ E is a subset of edges so that every
node is adjacent to at most one edge in M . For a set of nodes W , we write W [M ] to denote the nodes
in W that are adjacent to an edge in M . Such nodes are said to be matched. If G is undirected, we
say that M is perfect if every node in V is adjacent to precisely one edge in M . If G is bipartite, we
say that M is perfect w.r.t L if every ` ∈ L is adjacent to one edge in M , and perfect w.r.t R if every
r ∈ R is adjacent to some edge in M .

Remark 2.1. When G is bipartite, we will assume that for every subset S ⊆ L, there is a perfect
matching w.r.t S in G[S ∪ R]. This can be done without loss of generality by adding for every ` ∈ L
a node r` to the set R, and adding the edge {`, r`} to E. Moreover, given a weight function on E we
extend it to a weight function on E′ by giving all the new edges weight zero.

2.3 Lambert W -function

The Lambert W -function is the inverse relation of the function f(w) = wew. Here, we consider
this function over the real numbers, i.e., the case f : R → R. Consider the equation yey = x. For
−1/e ≤ x < 0, this equation has two solutions denoted by y = W−1(x) and y = W0(x), where
W−1(x) ≤W0(x) with equality if and only if x = −1/e.

3 Secretary problem

In the secretary problem there is a set {1, . . . , n} of secretaries, each with a value vi ≥ 0 for
i ∈ {1, . . . , n}, that arrive in a uniformly random order. Whenever a secretary arrives, we have
to irrevocably decide whether we want to hire that person. If we decide to hire a secretary, we auto-
matically reject all subsequent candidates. The goal is to select the secretary with the highest value.
We assume without loss of generality that all values vi are distinct. This can be done by introducing
a suitable tie-breaking rule if necessary.

There are two versions of the secretary problem. In the classical secretary problem, the goal is
to maximize the probability with which the best secretary is chosen. We consider a slightly different
version, where the goal is to maximize the expected value of the chosen secretary. We refer to this
as the value-maximization secretary problem.55 In the remainder of this work, the term ‘secretary
problem’ will always refer to the value-maximization secretary problem, unless stated otherwise. The
(optimal) solution [3030, 1111] to both variants of the secretary problem is to first observe a fraction of
n/e secretaries. After that, the first secretary with a value higher than the best value seen in the first
fraction is selected. This yields a 1/e-approximation for both versions.

The machine learned advice that we consider in this section is a prediction p∗ for the maximum
value OPT = maxi vi among all secretaries.66 Note that we do not predict which secretary has the

5Any α-approximation for the classical secretary problem yields an α-approximation for the value-maximization
variant.

6Such a prediction does not seem to have any relevance in case the goal is to maximize the probability with which
the best secretary is chosen. Intuitively, for every instance (v1, . . . , vn) there is a ‘more or less isomorphic’ instance
(v′1, . . . , v

′
n) for which v′i < v′j if and only if vi < vj for all i, j, and for which, all values are close to each other and also to

the prediction p∗, for which we assume that p∗ < mini v
′
i. Any algorithm that uses only pairwise comparisons between

the values v′i can, intuitively, not benefit from the prediction p∗. Of course, for the value-maximization variant, choosing
any i will be close to optimal in this case if the prediction error is small.
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highest value. We define the prediction error as

η = |p∗ −OPT|.

We emphasize that this parameter is not known to the algorithm, but is only used to analyse the
algorithm’s performance guarantee.

If we would a priori know that the prediction error is small, then it seems reasonable to pick the
first element that has a value ‘close enough’ to the predicted optimal value. One small issue that
arises here is that we do not know whether the predicted value is smaller or larger than the actual
optimal value. In the latter case, the entire Phase II of the algorithm would be rendered useless, even
if the prediction error was arbitrarily small. In order to circumvent this issue, one can first lower the
predicted value p∗ slightly by some λ > 0 and then select the first element that is greater or equal
than the threshold p∗ − λ.77 Roughly speaking, the parameter λ can be interpreted as a guess for the
prediction error η.

ALGORITHM 1: Value-maximization secretary algorithm

Input : Prediction p∗ for (unknown) value maxi vi; confidence parameter 0 ≤ λ ≤ p∗ and c ≥ 1.
Output: Element a.

Set v′ = 0.
Phase I:
for i = 1, . . . , bexp{W−1(−1/(ce))} · nc do

Set v′ = max{v′, vi}
end
Set t = max{v′, p∗ − λ}.
Phase II:
for i = bexp{W−1(−1/(ce))} · nc+ 1, . . . , bexp{W0(−1/(ce))} · nc do

if vi > t then
Select element ai and STOP.

end

end
Set t = max{vj : j ∈ {1, . . . , bexp(W0(−1/(ce))) · nc}}.
Phase III:
for i = bexp{W0(−1/(ce))} · nc+ 1, . . . , n do

if vi > t then
Select element ai and STOP.

end

end

Algorithm 11 incorporates the idea sketched in the previous paragraph (while at the same time
guaranteeing a constant competitive algorithm if the prediction error is large). It is a generalization
of the well-known optimal algorithm for both the classical and value-maximization secretary problem
[3030, 1111]. The input parameter λ is a confidence parameter in the prediction p∗ that allows us to
interpolate between the following two extreme cases:

i) If we have very low confidence in the prediction, we choose λ close to p∗;

ii) If we have high confidence in the prediction, we choose λ close to 0.

In the first case, we essentially get back the classical solution [3030, 1111]. Otherwise, when the confidence
in the prediction is high, we get a competitive ratio better than 1/e in case the prediction error η

7Alternatively, one could define an interval around p∗, but given that we get a prediction for the maximum value, this
does not make a big difference.
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is in fact small, in particular, smaller than λ. If our confidence in the prediction turned out to be
wrong, when λ is larger than the prediction error, we still obtain a 1/(ce)-competitive algorithm. The
parameter c models what factor we are willing to lose in the worst-case when the prediction is poor
(but the confidence in the prediction is high). In Theorem 3.13.1 below, we analyze Algorithm 11.

Theorem 3.1. For any λ ≥ 0 and c > 1, there is a deterministic algorithm for the (value-maximization)
secretary problem that is asymptotically gc,λ(η)-competitive in expectation, where

gc,λ(η) =

{
max

{
1
ce ,
[
f(c)

(
max

{
1− λ+η

OPT , 0
})]}

if 0 ≤ η < λ
1
ce if η ≥ λ

}
,

and the function f(c) is given in terms of the two branches W0 and W−1 of the Lambert W -function
and reads

f(c) = exp{W0(−1/(ce))} − exp{W−1(−1/(ce))}.

We note that λ and c are independent parameters that provide the most general description of the
competitive ratio. Here λ is our confidence of the predictions and c describes how much we are willing
to lose in the worst case. Although these parameters can be set independently, some combinations of
them are not very sensible, as one might not get an improved performance guarantee, even when the
prediction error is small (for instance, if c = 1, i.e., we are not willing to lose anything in the worst case,
then it is not helpful to consider the prediction at all). To illustrate the influence of these parameters
on the competitive ratio, in Figure 11, we plot various combinations of the input parameters c, λ and
p∗ of Algorithm 11 (in Section 33), assuming that η = 0. In this case p∗ = OPT and the competitive
ratio simplifies to

gc,λ(0) = max

{
1

ce
, f(c) ·max

{
1− λ

p∗
, 0

}}
.

We therefore choose the axes of Figure 11 to be λ/p∗ and c.

Figure 1: The red curve shows the optimal competitive ratio without predictions, i.e., gc,λ(0) = 1/e.
Our algorithm achieves an improved competitive ratio gc,λ(0) > 1/e in the area below this curve, and
a worse competitive ratio gc,λ(0) < 1/e in the area above it.

Furthermore, as one does not know the prediction error η, there is no way in choosing these
parameters optimally, since different prediction errors require different settings of λ and c.

To get an impression of the statement in Theorem 3.13.1, if we have, for example, η + λ = 1
10OPT,

then we start improving over 1/e for c ≥ 1.185. Moreover, if one believes that the prediction error is
low, one should set c very high (hence approaching a 1-competitive algorithm in case the predictions
are close to perfect).
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Remark 3.2. Note, that the bound obtained in Theorem 3.13.1 has a discontinuity at η = λ. This can be
easily smoothed out by selecting λ according to some distribution, which now represents our confidence
in the prediction p∗. The competitive ratio will start to drop earlier in this case, and will continuously
reach 1/(ce). Furthermore, for η = λ = 0 this bound is tight for any fixed c. We illustrate how the
competitive ratio changes as a function of η in Appendix A.1A.1.

Moreover, in Appendix A.2A.2, we show that our deterministic Algorithm 11 can achieve a better
competitive ratio than its corresponding naive randomization.

Proof of Theorem 3.13.1. By carefully looking into the analysis of the classical secretary problem, see,
e.g., [1111, 3030], it becomes clear that although sampling an 1/e-fraction of the items is the optimal
trade-off for the classical algorithm and results in a competitive ratio of 1/e, one could obtain a 1/(ce)-
competitive ratio (for c > 1) in two ways: by sampling either less, or more items, more specifically an
exp{W−1(−1/(ce))} or exp{W0(−1/(ce))} fraction of the items respectively. These quantities arise as
the two solutions of the equation

−x lnx =
1

ce
.

We next provide two lower bounds on the competitive ratio.
First of all, we prove that in the worst-case we are always 1/(ce)-competitive. We consider two

cases.
Case 1: p∗ − λ > OPT . Then we never pick an element in Phase II, which means that the

algorithm is equivalent to the algorithm that observes a fraction exp{W0(−1/(ce))} of all elements
and then chooses the first element better than what has been seen before, which we know is 1/(ce)-
competitive.

Case 2. p∗ − λ ≤ OPT . Consider a fixed arrival order and suppose that, for this permutation, we
select OPT in the algorithm that first observes a fraction exp{W−1(−1/(ce))} of all elements and then
selects the first element better than what has been seen before (which we know is 1/(ce)-competitive).
It should be clear that our algorithm also chooses OPT in this case. As the analysis in [1111, 3030]
relies on analyzing the probability with which we pick OPT, it follows that our algorithm is also
1/(ce)-competitive in this case.

The second bound on the competitive ratio applies to cases in which the prediction error is small.
In particular, suppose that 0 ≤ η < λ.

Case 1: p∗ > OPT . We know that p∗ − λ < OPT , as η < λ. Therefore, if OPT appears in Phase
II, and we have not picked anything so far, we will pick OPT . Since OPT appears in Phase II with
probability f(c), we in particular pick some element in Phase II with value at least OPT − λ with
probability f(c) (note that this element does not have to be OPT necessarily).

Case 2: p∗ ≤ OPT . In this case, using similar reasoning as in Case 1, with probability f(c) we
will pick some element with value at least OPT − λ − η. To see this, note that in the worst case we
would have p∗ = OPT − η, and we could select an element with value p∗ − λ, which means that the
value of the selected item is OPT − λ− η.

This means that, in any case, with probability at least f(c), we will pick some element in Phase II
with value at least min{OPT −λ,OPT −λ− η} = OPT −λ− η if η < λ. That is, if 0 ≤ η < λ, and if
we assume that OPT− λ− η ≥ 0, we are guaranteed to be f(c) (1− (λ+ η)/OPT) -competitive.

4 Online bipartite matching with random arrivals

In this section we consider a generalization of the value-maximization secretary problem discussed in
Section 33. We study an online bipartite matching problem on a graph G = (L∪R,E) with edge weight
function w : E → R≥0. The vertices ` ∈ L arrive in a uniformly random order. Whenever a vertex
` ∈ L arrives, it reveals its neighbors r ∈ R and what the corresponding edge weights w(`, r) are. We
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then have the option to add an edge of the form (`, r), provided r has not been matched in an earlier
step. The goal is to select a set of edges, i.e., a matching, with maximum weight.

We assume that we are given, for all offline nodes r ∈ R, a prediction p∗r for the value of the edge
weight adjacent to r in some fixed optimal offline matching (which is zero if r is predicted not to be
matched in this offline matching). That is, we predict that there exists some fixed optimal offline
matching in which r is adjacent to an edge of weight p∗r without predicting which particular edge
this is. Note that the predictions p = (p∗1, . . . , p

∗
r) implicitly provide a prediction for OPT, namely∑

r∈R p
∗
r .

It turns out that this type of predictions closely corresponds to the so-called online vertex-weighted
bipartite matching problem where every offline node is given a weight wr, and the goal is to select a
matching with maximum weight, which is the sum of all weights wr for which the corresponding r
is matched in the online algorithm. This problem has both been studied under adversarial arrivals
[2020, 11] and uniformly random arrivals [3434, 1818]. In case the predictions are perfect, then, in order to
find a matching with the corresponding predicted values, we just ignore all edges w(`, r) that do not
match the value p∗r . This brings us in a special case of the online vertex-weighted bipartite matching
problem.

The prediction error in this section will be defined as the maximum error over all predicted values
and the minimum over all optimal matchings in G. We use M(G,w) to denote the set of all optimal
matchings in G with respect to the weight function w, and then define

η = min
M∈M(G,r)

max
r∈R
|p∗r − w(Mr)|.

Here, we use w(Mr) to denote the value of the edge adjacent to r ∈ R in a given optimal solution with
objective value OPT =

∑
r w(Mr).

In the next sections we will present deterministic and randomized algorithms, inspired by algo-
rithms for the online vertex-weighted bipartite matching problem, that can be combined with the
algorithm in [2222] in order to obtain algorithms that incorporate the predictions and have the desired
properties. We start with a deterministic algorithm, which is the main result of this section.

4.1 Deterministic algorithm

We first give a simple deterministic greedy algorithm that provides a 1/2-approximation in the case
when the predictions are perfect (which is true even for an adversarial arrival order of the nodes). It
is very similar to a greedy algorithm given by Aggarwal et al. [11]. Although we do not emphasize it
in the description, this algorithm can be run in an online fashion.

ALGORITHM 2: Threshold greedy algorithm

Input : Thresholds t = (t1, . . . , t|R|) for offline nodes r ∈ R; ordered list (v1, . . . , v`) ⊆ L.
Output: Matching M

Set M = ∅.
for i = 1, . . . , ` do

Set ri = argmaxr{w(vi, r) : r ∈ N (vi), w(vi, r) ≥ tr and r /∈ R[M ]}.
if ri 6= ∅ then

Set M = M ∪ {vi, ri}.
end

end

Provided that there exists an offline matching in which every r ∈ R is adjacent to some edge
with weight at least tr, it can be shown, using the same arguments as given in [11], that the threshold
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greedy algorithm yields a matching with weight at least 1
2

∑
r tr. We present the details in the proof

of Theorem 4.14.1 later on.
It is also well-known that, even for uniformly random arrival order and unit edge weights, one

cannot obtain anything better than a 1/2-approximation with a deterministic algorithm [11].88 This
also means that, with our choice of predictions, we cannot do better than a 1/2-approximation in
the ideal case in which the predictions are perfect. Therefore, our aim is to give an algorithm that
includes the predictions in such a way that, if the predictions are good (and we have high confidence
in them), we should approach a 1/2-approximation, whereas if the predictions turn out to be poor,
we are allowed to lose at most a constant factor w.r.t. the 1/e-approximation in [2222].

Algorithm 33 is a deterministic algorithm satisfying these properties, that, similar to Algorithm 11,
consists of three phases. The first two phases correspond to the algorithm of Kesselheim et al. [2222].
In the third phase, we then run the threshold greedy algorithm as described in Algorithm 22. Roughly
speaking, we need to keep two things in mind. First of all, we should not match up too many offline
nodes in the second phase, as this would block the possibility of selecting a good solution in the third
phase in case the predictions are good. On the other hand, we also do not want to match too few
offline nodes in the second phase, otherwise we are no longer guaranteed to be constant-competitive
in case the predictions turn out to be poor. The analysis of Algorithm 33 given in Theorem 4.14.1 shows
that it is possible to achieve both these properties.

For the sake of simplicity, in both the description of Algorithm 33 and its analysis in Theorem 4.14.1,
we use a common λ to lower the predicted values (as we did in Section 33 for the secretary problem).
Alternatively, one could use a resource-specific value λr for this as well.

ALGORITHM 3: Online bipartite matching algorithm with predictions

Input : Predictions p∗ = (p∗1, . . . , p
∗
|R|), confidence parameter 0 ≤ λ ≤ minr p

∗
r , and c > d ≥ 1.

Output: Matching M .

Phase I: /*Algorithm from [2222]
for i = 1, . . . , bn/cc do

Observe arrival of node `i, and store all the edges adjacent to it.
end
Let L′ = {`1, . . . , `bn/cc} and M = ∅.
Phase II:
for i = bn/cc+ 1, . . . , bn/dc do

Set L′ = L′ ∪ `i.
Set M i = optimal matching on G[L′ ∪R].
Let ei = (`i, r) be the edge assigned to `i in M i.
if M ∪ ei is a matching then

Set M = M ∪ {ei}.
end

end
Phase III: /*Threshold greedy algorithm
for i = bn/dc+ 1, . . . , n do

Set ri = argmaxr{w(vi, r) : r ∈ N (vi), w(vi, r) ≥ p∗r − λ and r /∈ R[M ]}
if ri 6= ∅ then

Set M = M ∪ {`i, r}.
end

end

Theorem 4.1. For any λ ≥ 0 and c > d ≥ 1, there is a deterministic algorithm for the online
bipartite matching problem with uniformly random arrivals that is asymptotically gc,d,λ(η)-competitive

8The example given there is for adversarial arrival order, but also applies to uniformly random arrival order.
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in expectation, where

gc,d,λ(η) =

{
max

{
1
c ln( cd),

[
d−1
2c

(
max

{
1− (λ+η)|ψ|

OPT , 0
})]}

if 0 ≤ η < λ,
1
c ln( cd) if η ≥ λ.

}
,

and |ψ| is the cardinality of an optimal (offline) matching ψ of the instance.

If λ is small, we roughly obtain a bound of (d−1)/2c in case η is small as well, and a bound of ln(c/d)/c
if η is large. Moreover, when c/d → 1, we approach a bound of 1/2 in case η is small, whereas the
worst-case guarantee ln(c/d)/c for large η then increases.

Proof of Theorem 4.14.1. We provide two lower bounds on the expected value of the matching M output
by Algorithm 33.

First of all, the analysis of the algorithm of Kesselheim et al. [2222] can be generalized to the setting
we consider in the first and second phase. In particular, their algorithm then yields a(

1

c
− 1

n

)
ln
( c
d

)
-competitive approximation.

For completeness, we present a proof of this statement in Appendix CC.

The second bound we prove on the expected value of the matching M is based on the threshold greedy
algorithm we use in the third phase. Let ψ ∈M(G,w) be an optimal (offline) matching, with objective
value OPT, and suppose that

η = max
r∈R
|ψr − p∗r | < λ.

The proof of the algorithm in [2222] analyzes the expected value of the online vertices in L. Here we take
a different approach and study the expected value of the edge weights adjacent to the nodes in r ∈ R.
Fix some r ∈ R and consider the edge (`, r) that is matched to r in the optimal offline matching ψ (if
any).

Let Xr be a random variable denoting the value of node r ∈ R in the online matching M chosen
by Algorithm 33. Let Y` be a random variable that denotes the value of node ` ∈ L[ψ] in the online
matching M . It is not hard to see that

E(M) =
∑
r∈R

E(Xr) and E(M) ≥
∑
`∈L[ψ]

E(Y`). (1)

For the inequality, note that for any fixed permutation the value of the obtained matching is always
larger or equal to the sum of the values that were matched to the nodes ` ∈ L[ψ].

Now, consider a fixed ` and r for which the edge (`, r) is contained in ψ. We will lower bound the
expectation E(Xr + Y`) based on the expected value these nodes would receive, roughly speaking, if
they get matched in the third phase. Therefore, suppose for now that r did not get matched in the
second phase, and that ` appears in the part of the uniformly random permutation considered in the
third phase. We will later lower bound the probability with which the events occur. By definition of
the greedy threshold algorithm, we know that at the end of Phase III either node r ∈ R is matched,
or otherwise at least node ` is matched to some other r′ ∈ R for which

w(`, r′) ≥ w(`, r) ≥ p∗r − η ≥ p∗r − λ.

To see this, note that when the vertex ` arrived, there was the option to match it to r, as this node is
assumed not to have been matched in the second phase. So, there are the following three cases: either
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` got matched to r, or it got matched to some other r′ for which w(`, r′) ≥ w(`, r) ≥ p∗r − λ or r was
matched earlier during the third phase to some other `′ for which w(`′, r) ≥ p∗r − λ.

Looking closely at the analysis of Kesselheim et al. [2222], see Appendix C.3C.3, it follows that the
probability that a fixed node r did not get matched in the second phase satisfies

P(r was not matched in Phase II) ≥ d

c
− o(1).

This lower bound is true independent of whether or not ` appeared in Phase III, or the first two phases
(see Appendix CC). This former event holds with probability (1− 1/d). Therefore,

P(r was not matched in Phase II and ` arrives in Phase III) ≥
(
d

c
− o(1)

)(
1− 1

d

)
=
d− 1

c
− o(1).

Furthermore, we have from an earlier argument that under this condition either Xr ≥ p∗r − λ or
Y` ≥ p∗r − λ. This implies that

E(Xr + Y`) ≥
(
d− 1

c
− o(1)

)
(p∗r − λ), (2)

and combining this with (11), we find

2 · E(M) ≥
(
d− 1

c
− o(1)

) ∑
r∈R[ψ]

(p∗r − λ) ≥
(
d− 1

c
− o(1)

)
(OPT− (λ+ η)|ψ|)

assuming that OPT− (λ+ η)|ψ| ≥ 0. Rewriting this gives

E(M) ≥
(
d− 1

2c
− o(1)

)(
1− (λ+ η)|ψ|

OPT

)
·OPT,

which yields the desired bound.

In order to get close to a 1/2-approximation in case the predictions are (almost) perfect, we have
to choose both c and d very large, as well as the ratio c/d close to 1 (but still constant). It is perhaps
also interesting to note that Theorem 4.14.1 does not seem to hold in case we interchange the second and
third phase. In particular, if the predictions are too low, we most likely match up too many nodes in
r ∈ R already in the second phase (that now would execute the threshold greedy algorithm).

4.2 Truthful mechanism for single-value unit-demand domains

Algorithm 33 can be turned into a truthful mechanism for single-value unit-demand domains. Here,
every node arriving online corresponds to an agent i that is interested in a subset Ai of the items in
R (i.e., her neighbors in R) between which she is indifferent. That is, agent i has a value vi for all
items in Ai, and zero for all other items. Whenever an agent arrives, she reports a value v′i for the
items in Ai that she is interested in (we assume that these sets are common knowledge). Based on the
value v′i, the mechanism decides if it wants to allocate one of the items in Ai (not yet assigned to any
agent) to i, and, if so, sets a price ρi for this item that is charged to agent i. The goal is to choose an
allocation that maximizes the social welfare (which is the total value of all assigned items).

The goal of the agents is to maximize their utility which is their valuation minus the price that
they are charged by the mechanism for the item assigned to them (if any). We want to design a
mechanism that incentivizes agents to report their true value vi.

In Appendix FF, we provide formal definitions of all notions and show that Algorithm 33 can be
turned into a truthful mechanism for which its social welfare guarantee is gλ,c,d(η) as in Theorem 4.14.1.
In particular, we do this by exploiting some of the freedom we have in Algorithm 33.
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4.3 Randomized algorithm

If we allow randomization, we can give better approximation guarantees than the algorithm given in
the previous section by using a convex combination of the algorithm of Kesselheim et al. [2222], and
the randomized algorithm of Huang et al. [1818] for online vertex-weighted bipartite matching with
uniformly random arrivals.

We give a simple, generic way to reduce an instance of online bipartite matching with predictions
p∗r for r ∈ R to an instance of online vertex-weighted bipartite matching with vertex weights (that
applies in case the predictions are accurate). This reduction works under both a uniformly random
arrival order of the vertices, as well as an adversarial arrival order.

Suppose we are given an algorithm A for instances of the online vertex-weighted bipartite matching
problem. Now, for the setting with predictions, fix some parameter λ > 0 up front. Whenever a vertex
` arrives online we only take into account edges (`, r) with the property that w(`, r) ∈ [p∗r − λ, p∗r + λ],
and ignore all edges that do not satisfy this property. We then make the same decision for ` as we
would do in algorithm A (only considering the edges that satisfy the interval constraint given above)
based on assuming those edges have weight p∗r . Then the matching that algorithm A generates has
the property that its objective value is close (in terms of λ and η) to the objective value under the
original weights (and this remains to hold true in expectation in case of a uniformly random arrival
order of the vertices).

The 0.6534-competitive algorithm of Huang et al. [1818] is the currently best known randomized
algorithm A, for online vertex-weighted bipartite matching with uniformly random arrivals, and can
be used for our purposes. Detailed statements will be given in the journal version of this work.

5 Deterministic graphic matroid secretary algorithm

In this section we will study the graphic matroid secretary problem. Here, we are given a (connected)
graph G = (V,E) of which the edges in E arrive online. There is an edge weight function w : 2E → R≥0
and a weight is revealed if an edge arrives. The goal is to select a forest (i.e., a subset of edges that
does not give rise to a cycle) of maximum weight. The possible forests of G form the independent
sets of the graphical matroid on G. It is well-known that the offline optimal solution of this problem
can be found by the greedy algorithm that orders all the edge weights in decreasing order, and selects
elements in this order whenever possible.

We will next explain the predictions that we consider in this section. For every node v ∈ V , we
let p∗v be a prediction for the maximum edge weight maxu∈N (v)wuv adjacent to v ∈ V . The prediction
error is defined by

η = max
v∈V

∣∣p∗v − wmax(v)
∣∣, where wmax(v) = max

u∈N (v)
wuv.

Remark 5.1. Although the given prediction is formulated independently of any optimal solution (as
we did in the previous sections), it is nevertheless equivalent to a prediction regarding the maximum
weight wuv adjacent to v ∈ V in an optimal (greedy) solution. To see this, note that the first time
the offline greedy algorithm encounters an edge weight wuv adjacent to v, it can always be added as
currently there is no edge adjacent to v. So adding the edge {u, v} cannot create a cycle.

Before we give the main result of this section, we first provide a deterministic (1/4 − o(1))-
competitive algorithm for the graphic matroid secretary problem in Section 5.15.1, which is of inde-
pendent interest. Asymptotically, this is an improvement over the algorithm of Soto et al. [4141] in
the sense that we do not require randomness in our algorithm. We then continue with an algorithm
incorporating the predictions in Section 5.25.2.
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5.1 Deterministic approximation algorithm

In this section, we provide a deterministic (1/4−o(1))-approximation for the graphic matroid secretary
problem. For a given undirected graph G = (V,E), we use the bipartite graph interpretation that was
also used in [44]. That is, we consider the bipartite graph BG = (E ∪ V,A), where an edge {e, v} ∈ A,
for e ∈ E and v ∈ V , if and only if v ∈ e. Note that this means that every e = {u, v} is adjacent to
precisely u and v in the bipartite graph BG. Moreover, the edge weights for {e, v} and {e, u} are both
we (which is revealed upon arrival of the element e).99 We emphasize that in this setting, the e ∈ E
are the elements that arrive online.

Algorithm 44 is very similar to the algorithm in [2222] with the only difference that we allow an edge
{e, u} or {e, v} to be added to the currently selected matching M in BG if and only if both nodes u and
v are currently not matched in M . In this section we often represent a (partial) matching in BG by a
directed graph (of which its undirected counterpart does not contain any cycle). In particular, given
some matching M in BG, we consider the directed graph DM with node set V . There is a directed
edge (u, v) if and only if {e, v} is an edge in M , where e = {u, v} ∈ E. Note that every node in DM

has an in-degree of at most one as M is a matching.
Using the graph DM it is not too hard to see that if both u and v are not matched in the current

matching M , then adding the edge {e, u} or {e, v} can never create a cycle in the graph formed by
the elements e ∈ E matched up by M , called E[M ], which is the currently chosen independent set in
the graphic matroid. This subgraph of G is precisely the undirected counterpart of the edges in DM

together with {u, v}. For sake of contradiction, suppose adding the {u, v} to E[M ] would create an
(undirected) cycle C. As both u and v have in-degree zero (as they are unmatched in M), it follows
that some node on the cycle C must have two incoming directed edges in the graph DM . This yields
a contradiction.

We note that, although u and v being unmatched is sufficient to guarantee that the edge {u, v}
does not create a cycle, this is by no means a necessary condition.

ALGORITHM 4: Deterministic graphic matroid secretary algorithm

Input : Bipartite graph GB = (E ∪ V,A) for undirected weighted graph G = (V,E) with |E| = m.
Output: Matching M of GB corresponding to forest in G.

Phase I:
for i = 1, . . . , bm/cc do

Observe arrival of element ei, but do nothing.
end
Let E′ = {e1, . . . , ebm/cc} and M = ∅.
Phase II:
for i = bm/cc+ 1, . . . ,m do

Let E′ = E′ ∪ ei.
Let M i = optimal matching on BG[E′ ∪ V ].
Let ai = {ei, u} be the edge assigned to ei = {u, v} in M i (if any).
if M ∪ ai is a matching and both u and v are unmatched in M then

Set M = M ∪ ai.
end

end

Theorem 5.2. Algorithm 44 is a deterministic (1/4 − o(1))-competitive algorithm for the graphic
matroid secretary problem.

9We call the edges in E (of the original graph G) elements, in order to avoid confusion with the edges of BG.
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ALGORITHM 5: Graphic matroid secretary algorithm with predictions

Input : Bipartite graph GB = (E ∪ V,A) for undirected graph G = (V,E) with |E| = m. Predictions
p = (p∗1, . . . , p

∗
n). Confidence parameter 0 ≤ λ ≤ mini p

∗
i and c > d ≥ 1.

Output: Matching M of GB corresponding to forest in G.

Phase I:
for i = 1, . . . , bm/cc do

Let ei = {u, v}.
Set tv = max{tv, w(u, v)} and tu = max{tu, w(u, v)}.

end
Let E′ = {e1, . . . , ebm/cc} and M = ∅.
Phase II:
for i = bm/cc+ 1, . . . , bm/dc do

Let ei = {u, v}, S = {x ∈ {u, v} : x /∈ E[M ] and w(u, v) ≥ max{tx, p∗x − λ}} and yi = argmaxx∈Sp
∗
x − λ.

if E[M ] ∪ {ei} does not contain a cycle then
Set M = M ∪ {ei, yi}.

end

end
Phase III:
for i = bm/dc+ 1, . . . ,m do

Let E′ = E′ ∪ ei.
Let M i = optimal matching on BG[E′ ∪ V ].
Let ai = {ei, u} be the edge assigned to ei = {u, v} in M i (if any).
if M ∪ ai is a matching and both u and v are unmatched in M then

Set M = M ∪ ai.
end

end

5.2 Algorithm including predictions

In this section we will augment Algorithm 44 with the predictions for the maximum edge weights
adjacent to the nodes in V . We will use the bipartite graph representation BG as introduced in
Section 55. Algorithm 55 consists of three phases, similar to Algorithm 33.

Instead of exploiting the predictions in Phase III, we already exploit them in Phase II for technical
reasons.1010 Roughly speaking, in Phase II, we run a greedy-like algorithm that selects for every node
v ∈ V at most one edge that satisfies a threshold based on the prediction for node v. In order to
guarantee that we do not select too many edges when the predictions are poor (in particular when
they are too low), we also include a ‘’fail-safe’ threshold based on the edges seen in Phase I.

Theorem 5.3. For any λ ≥ 0 and c > d ≥ 1, there is a deterministic algorithm for the graphic
matroid secretary problem that is asymptotically gc,d,λ(η)-competitive in expectation, where

gc,d,λ(η) =

{
max

{
d−1
c2
, 12
(
1
d −

1
c

) (
1− 2(λ+η)|V |

OPT

)}
if 0 ≤ η < λ,

d−1
c2

if η ≥ λ.

If λ is small, we roughly obtain a bound of (1/d−1/c)/2 in case η is small, and a bound of (d−1)/c2

if η is large. Note that the roles of c and d have interchanged w.r.t. Algorithm 33 as we now exploit
the predictions in Phase II instead of Phase III. Roughly speaking, if d→ 1 and c→∞ we approach
a bound of 1/2 if the predictions are good, whereas the bound of (d− 1)/c2 becomes arbitrarily bad.

10One could have done the same in Algorithm 33, but this leads to a worst-case bound that is worse than ln(c/d)/c.
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Proof of Theorem 5.35.3. As in the proof of Theorem 4.14.1, we provide two lower bounds on the expected
value on the matching M outputted by Algorithm 55. We first provide a bound of

1

2

(
1

d
− 1

c

)(
1− 2(λ+ η)|V |

OPT

)
OPT

in case the prediction error is small, i.e., when η < λ. For simplicity we focus on the case where for
each v ∈ V , the weights of the edges adjacent to v in G are distinct.1111

For every v ∈ V , let emax(v) be the (unique) edge adjacent to v with maximum weight among all
edges adjacent to v. Consider the fixed order (e1, . . . , em) in which the elements in E arrive online,
and define Q = {v ∈ V : emax(v) arrives in Phase II}. We will show that the total weight of all edges
selected in Phase II is at least 1

2

∑
v∈Q(p∗v− (λ+ η)). Let T ⊆ Q be the set of nodes for which the edge

emax(v) arrives in Phase II, but for which v does not get matched up in Phase II.
In particular, let v ∈ T and consider the step ` in Phase II in which emax(v) = {u, v} arrived. By

definition of η, and because η < λ, we have

w(u, v) = wmax(v) ≥ max{tv, p∗v − η} ≥ max{tv, p∗v − λ}, (3)

and so the pair {ei, v} is eligible (in the sense that v ∈ S). Since v did not get matched, one of the
following two holds:

i) The edge emax(v) got matched up with u.

ii) Adding the edge {emax(v), v} to M would have yielded a cycle in E[M ] ∪ emax(v).

Note that it can never be the case that we do not match up emax(v) to u for the reason that it would
create a cycle. This is impossible as both u and v are unmatched.

Now, in the first case, since u is matched it must hold that w(u, v) ≥ max{tu, p∗u − λ}, and
p∗u−λ ≥ p∗v −λ as v was eligible to be matched up in the online matching M (but it did not happen).
Further, combining (33) and the definition of yi in Phase II, yields

2w(u, v) ≥ (p∗u − λ) + (p∗v − η) ≥ (p∗u − η − λ) + (p∗v − η − λ). (4)

We call u the i)-proxy of v in this case.
In the second case, if adding emax(v) would have created an (undirected) cycle in the set of elements

(i.e., the forest) selected so far, this yields a unique directed cycle in the graph DM defined in the
previous section. If not, then there would be a node with two incoming arcs in DM , as every arc on
the cycle is oriented in some direction. This would imply that M is not a matching.

Let e′ = {u, z} ∈ E be the element corresponding to the incoming arc at u in DM . Note that by
assumption u is already matched up, as emax(v) creates a directed cycle in DM∪emax(v). That is, we
have {e′, u} ∈M . Then, by definition of η, we have

η + p∗u ≥ emax(u) ≥ w(u, v) ≥ p∗v − η, (5)

where the last inequality holds by (33). Combining (55) with the fact that w(u, z) ≥ p∗u − λ (because
{u, z} got matched up to u), and the fact that emax(v) ≥ p∗v − η, by (33), it follows that

2w(u, z) ≥ [p∗u − (λ+ η)] + [p∗v − (λ+ η)]. (6)

In this case, we call u the ii)-proxy of v.

11For the general case, one can use a global ordering on all edges in E and break ties where needed.
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Claim 5.4. For any distinct v, v′ ∈ T , their corresponding proxies u and u′ are also distinct.

Proof. Suppose that u = u′. The proof proceeds by case distinction based on the proxy types.

1. u = u′ is defined as i)-proxy for both v and v′: This cannot happen as u = u′ would then have
been matched up twice by Algorithm 55.

2. u = u′ is defined as ii)-proxy for both v and v′: In this case there is a directed cycle with the arc
(u, v) = (u′, v) and another directed cycle with the arc (u′, v′) = (u, v′). Hence, there is a vertex
with two incoming arcs in DM . This also means that Algorithm 55 has matched up a vertex
twice, which is not possible.

3. u = u′ is defined as i)-proxy for v and as ii)-proxy for v′: Then emax(v), which gets matched
up with u = u′, must have arrived before emax(v′). If not, then both v′ and u = u′ would have
been unmatched when emax(v′) arrived and we could have matched it up with at least v′ (as this
cannot create a cycle since u = u′ is also not matched at that time). This means that when
emax(v′) arrived, the reason that we did not match it up to v′ is because this would create a
directed cycle in DM∪emax(v′). But, as u has an incoming arc from v in DM , this means that the
directed cycle goes through v, which implies that v did get matched up in Phase II, which we
assumed was not the case.

This concludes the proof of the claim.

Using Claim 5.25.2 in combination with (44) and (66), we then find that

w[MII ] ≥
1

2

∑
v∈Q

[p∗v − (λ+ η)],

where MII contains all the edges obtained in Phase II. Roughly speaking, for every edge emax(v) that
we cannot select in Phase II, there is some other edge selected in Phase II that ‘covers’ its weight in
the summation above (and for every such v we can find a unique edge that has this property).

Now, in general, we have a uniformly random arrival order, and therefore, for every v ∈ V , the
probability that edge emax(v) arrives in Phase II equals 1

d −
1
c . Therefore, with expectation taken over

the arrival order, we have

E[MII ] ≥
1

2

(
1

d
− 1

c

)∑
v∈V

(p∗v − (λ+ η)) ≥ 1

2

(
1

d
− 1

c

)(
1− 2(λ+ η)|V |

OPT

)
OPT.

We continue with the worst-case bound that holds even if the prediction error is large. We first analyze
the probability that two given nodes u and v do not get matched up in Phase II. Here, we will use the
thresholds tv defined in Algorithm 55.

Conditioned on the set of elements A that arrived in Phase I/II, the probability that the maximum
edge weight adjacent to v, over all edges adjacent to v in A, appears in Phase I is at equal to (d/c).
This implies that v will not get matched up in Phase II, by definition of Algorithm 55. The worst-case
bound of (d− 1)/c2 is proven in Appendix EE.

6 Conclusion

Our results can be seen as the first evidence that online selection problems are a promising area for
the incorporation of machine learned advice following the frameworks of [3232, 3838]. Many interesting
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problems and directions remain open. For example, does there exist a natural prediction model for the
general matroid secretary problem? It is still open whether this problem admits a constant-competitive
algorithm. Is it possible to show that there exists an algorithm under a natural prediction model that
is constant-competitive for accurate predictions, and that is still O(1/ log(log(r)))-competitive in the
worst case, matching the results in [1313, 2828]? Furthermore, although our results are optimal within this
specific three phased approach, it remains an open question whether they are optimal in general for
the respective problems.

Acknowledgments: We would like to thank Kurt Mehlhorn for drawing our attention to the area
of algorithms augmented with machine learned predictions.
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A Secretary Problem

This section is organized as follows:
In Subsection A.1A.1, we show that the discontinuity at η = λ, in Theorem 3.13.1, can be smoothed out

by selecting λ according to some distribution with mean representing our confidence in the prediction
p∗. Further, we study the competitive ratio as a function of the prediction error η.

In Subsection A.2A.2, we demonstrate that our deterministic Algorithm 11 can achieve a better com-
petitive ratio than its corresponding naive randomization.

A.1 Randomized Algorithms

We note that Algorithm 11 although deterministic, can be relatively easily transformed to an algorithm
that picks the confidence parameter λ ∈ [0, p∗] according to some probability distribution. Algorithm 11
is then the special case where the whole probability mass of the distribution is at one point in [0, p∗].

This naturally gives rise to the question of whether there exists a distribution that outperforms
the deterministic algorithm. It can be relatively easily seen, that the deterministic algorithm with
λ = η is the best possible competitive ratio that can be obtained with such an approach. Therefore, a
randomized algorithm can at best match the deterministic one with λ = η, and this happens only in
the case in the center of mass of the used distribution is at η. Since η is unknown to the algorithm,
it is not possible to select a distribution that outperforms any deterministic algorithm for all possible
η’s.

Despite that, it may still be advantageous to pick λ at random according to some distribution, in
order to avoid the “jump” that occurs at η = λ in the competitive ratio of the deterministic algorithm.
In particular for an appropriate distribution with density function hλ(x) the expected competitive ratio
is given by:

Eλ [gc,λ(η)] = Pr[λ < η] · 1

ce
+ f(c)

∫ p∗

η
hλ(x)

(
1− x+ η

OPT

)
dx,

which can be seen as a convex combination of two competitive ratios.
Some example distributions and how they compare to an algorithm that selects λ deterministically

can be seen in Figure 22.

A.2 Comparison between Algorithm 11 and its naive randomization

One natural question that arises from the bound in Theorem 3.13.1 is whether one can significantly
improve the result using randomization.

Here, we provide a brief comparison with the following naive randomization of Algorithm 11, which
randomly chooses between running the classical secretary problem without predictions and (roughly
speaking) the greedy prediction-based procedure in Phase II in Algorithm 11. That is, given γ ∈ [0, 1],
with probability γ it runs the classical secretary problem, and with probability 1 − γ, it runs the
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(a) (b)

(c)

Figure 2: A comparison the deterministic (in red) and randomized (in blue) choice of λ. The y-axes
are the competitive ratio, the x-axes are the prediction error η, and all figures consider p∗ = 100. In
Subfigure 2a2a we take λ = 25 for the deterministic algorithm and choose λ according to the uniform
distribution in (20, 30) for the randomized one. In Subfigure 2b2b we have λ ≈ 25 for the deterministic
one and the normal distribution with mean 25 and variance 10. Finally, in Subfigure 2c2c we have
λ ≈ 25, and the normal distribution with mean 0 and variance 32. All plots have c = 2.

prediction-based algorithm that simply selects the first element with value greater or equal than
p∗ − λ (if any). Note that its expected competitive ratio at least

γ
1

e
+ (1− γ)

(
max

{
1− λ+ η

OPT
, 0

})
. (7)

In order to compare Algorithm 11 with its naive randomization, we set γ = 1/c. This implies that
both algorithms are at least 1/(ce)-competitive in the worst-case when the predictions are poor. Having
the same worst-case guarantee, we now focus on their performance in case when the prediction error η
and the confidence parameter λ are small. In particular, let us consider the case where λ+η = δ ·OPT
for some small δ > 0. Then, the expected competitive ratio in (77) reduces to

1

ce
+

(
1− 1

c

)
(1− δ). (8)

We now compare the expected competitive ratio of Algorithm 11 and its naive randomization,
which read f(c)(1 − δ) and (88) respectively. In Figure 33, we conduct a numerical experiment with
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Figure 3: The black horizontal line indicates the tight bound of 1/e for the classical secretary algorithm.
The bold blue line is the performance guarantee for Algorithm 11; and the dashed red line is the
performance guarantee for the obvious randomized algorithm.

fixed δ = 0.1 and λ + η = 0.1OPT. Our experimental data indicates that for c ≥ 1.185, Algorithm 11
is at least 1/e-competitive and it significantly outperforms the classical secretary algorithm as c in-
creases. Furthermore, for c ≥ 1.605 Algorithm 11 performs better than its naive randomization. On
the other hand, we note that our experiments indicate that as δ increases the competitive advantage
of Algorithm 11 over its naive randomization decreases.
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B Perfect Matching Instances

Given an undirected weighted bipartite graph G′ = (L′ ∪ R′, E′, w′) we construct an augmented
bipartite graph G = (L ∪R,E,w) as follows:

i) the left node set L = L′; ii) the right node set R = R′ ∪ L′; iii) the edge set E = E′ ∪ F ′ where
the set F ′ consists of edges {ui, vi} such that ui and vi are the i-th node in L and L′ respectively, for
all i ∈ {1, . . . , |L|}; iv) w(e) = w′(e) for all edges e ∈ E′ and w(e) = 0 for all edges e ∈ F ′.

We call the resulting bipartite graph G perfect.

Fact B.1. Suppose G = (L∪R,E,w) is a perfect bipartite graph. Let ` ∈ {1, . . . , |L|} be an arbitrary
index and L(`) = {S ⊆ L : |S| = `} be the set of all subsets of nodes in L of size `. Then, for
every subset S ∈ L(`) the induced subgraph G[S ∪ N(S)] has a perfect matching MS of size `, i.e.,
|MS | = |S| = `.
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C General analysis of the algorithm of Kesselheim et al. [2222]

In this section, we analyze a modified version of the algorithm of Kesselheim et al. [2222], see Algorithm 66.
Our analysis extends the proof techniques presented in [2222, Lemma 1].

Theorem C.1. Given a perfect bipartite graph, Algorithm 66 is (1c −
1
n) ln c

d competitive in expectation.
In addition, the expected weighted contribution of the nodes {bn/dc+ 1, . . . , n} to the online matching
M is OPT · (1c −

1
n) ln d.

For convenience of notation, we will number the vertices in L from 1 to n in the random order
they are presented to the algorithm. Hence, we will use the variable ` as an integer, the name of an
iteration and the name of the current node (the last so far).

ALGORITHM 6: Online bipartite matching algorithm (under uniformly random vertex arrivals)

Input : Vertex set R and cardinality |L| = n.
Output: Matching M .

Phase I:
for ` = 1, . . . , bn/cc do

Observe arrival of node `, but do nothing.
end
Let L′ = {1, . . . , bn/cc} and M = ∅.
Phase II:
for ` = bn/cc+ 1, . . . , bn/dc do

Let L′ = L′ ∪ `.
Let M (`) = optimal matching on G[L′ ∪R].
Let e(`) = (`, r) be the edge assigned to ` in M (`).
if M ∪ e(`) is a matching then

Set M = M ∪ {e(`)}.
end

end

Organization

In Subsection C.1C.1, we present the notation. In Subsection C.2C.2, we give the main structural result and
prove Theorem C.1C.1. In addition, in Subsection C.3C.3, we give a lower bound on the probability that an
arbitrary node r ∈ R remains unmatched after the completion of Phase II.

C.1 Notation

Consider the following random process:
Sample uniformly at random a permutation of the nodes L. Let L` be a list containing the first `

nodes in L, in the order as they appear, and let M (`) be the corresponding optimum matching of the
induced subgraph G(`) on the node set L` ∪N(L`).

Let E(`) be the event {e(`) ∪M is a matching}, where (r.v.) M is the current online matching.
Note that the existence of edge (r.v.) e(`) is guaranteed by the Fact B.1B.1 and G is a perfect bipartite
graph. We define a random variable

A` =

{
w(e(`)) , if event E(`) occur;

0 , otherwise.
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C.2 Structural Lemma

Lemma C.2. Suppose G = (L ∪ R,E,w) is a perfect bipartite graph. Then, for every c > 1 it holds
for every ` ∈ {bn/cc+ 1, . . . , n} that

E[A`] ≥
bn/cc
n
· OPT
`− 1

.

Before we prove Lemma C.2C.2, we show that it implies Theorem C.1C.1.

C.2.1 Proof of Theorem C.1C.1

Using Lemma C.2C.2, we have

E

n/d∑
`=1

A`

 =

n/d∑
`=bn/cc+1

E [A`] ≥
n/d∑

`=bn/cc+1

bn/cc
n
· OPT
`− 1

≥ OPT ·
(

1

c
− 1

n

)
· ln c

d
,

where the inequalities follow by combining bn/ccn ≥ 1
c −

1
n and

n/d∑
`=bn/cc+1

1

`− 1
=

n/d−1∑
`=bn/cc

1

`
≥ ln

n/d

bn/cc
≥ ln

c

d
.

C.2.2 Proof of Lemma C.2C.2

We prove Lemma C.2C.2 in two steps. Observe that E[A` | � E(`)] = 0 implies

E [A`] = E
[
w(e(`)) | E(`)

]
· Pr

[
E(`)

]
.

We proceed by showing, in Lemma C.3C.3, that E
[
w(e(`)) | E(`)

]
≥ OPT

n , and then in Lemma C.4C.4

that Pr
[
E(`) | E(`)

]
≥ bn/cc`−1 .

Let S be a subset of L of size `, and let MS be the optimum weighted matching w.r.t. the induced
subgraph G[S ∪ N(S)]. For a fixed subset S ⊆ L with size `, let R`(S) be the event that {the
node set of L` equals S}, i.e. Set(L`) = S. Let L(`) be the set of all subsets of L of size `, i.e.,
L(`) = {S ⊆ L : |S| = `}.

Lemma C.3. For every perfect bipartite graph G = (L ∪R,E,w) it holds that

E
[
w(e(`)) | E(`)

]
≥ OPT

n
.

Proof. Using conditional expectation,

E
[
w(e(`)) | E(`)

]
=
∑

S∈L(`)

E
[
w(e(`)) | R`(S) ∧ E(`)

]
· Pr [R`(S)] . (9)

Since the order of L is sampled u.a.r. we have Pr [R`(S)] = 1/
(
n
`

)
, and thus it suffices to focus on

the conditional expectation

E
[
w(e(`)) | R`(S) ∧ E(`)

]
=

∑
e(i)∈MS

w(e(i)) · Pre(`)∼MS

[
e(`) = e(i)

]
=

1

`

∑
e(i)∈MS

w(e(i)). (10)
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where the last equality uses G is a perfect bipartite graph and Fact B.1B.1. Then, by combining (99,1010)
we have

E
[
w(e(`)) | E(`)

]
=

1(
n
`

) · 1

`

∑
S∈L(`)

∑
e(i)∈MS

w(e(i)). (11)

Observe that for any subset S ⊆ L, it holds for M?|S = {e(i) = (i, ri) ∈M? : i ∈ S} the restriction
of the optimum matching M? (w.r.t. the whole graph G) on S that∑

e(i)∈MS

w(e(i)) ≥
∑

e(i)∈M?|S

w(e(i)). (12)

Further, since every vertex i ∈ L(M?) appears in
(
n−1
`−1
)

many subsets of size ` and
(
n−1
`−1
)
/
(
n
`

)
= `/n,

it follows by (1111,1212) that

E
[
A` | E(`)

]
≥ 1(

n
`

) · 1

`

∑
S∈L(`)

∑
e(i)∈M?|S

w(e(i))

=

(
n−1
`−1
)(

n
`

) · 1

`

∑
e(i)∈M?

w(e(i)) =
OPT

n
.

Lemma C.4. For every perfect bipartite graph G = (L ∪R,E,w) it holds that

Pr
[
E(`)

]
≥ bn/cc

`− 1
. (13)

Proof. For a fixed subset S ⊆ L with size `, let F
(i)
S,` be the event that {event R`(S) occurs} and {the

edge e(`) = (i, ri)}. Then, by conditioning on the choice of subset S ∈ L(`), we have

Pr
[
E(`)

]
=

1(
n
`

) ∑
S∈L(`)

Pr
[
e(`) ∪M is a matching | R`(S)

]
=

1(
n
`

) 1

`

∑
S∈L(`)

∑
(i,ri)∈MS

Pr
[
(i, ri) ∪M is a matching | F (i)

S,`

]
. (14)

Note that in (1414), the subset S ⊆ L with size ` and the edge (i, ri) ∈MS are fixed!
Given the first k nodes of L, in the order as they arrive, and the corresponding perfect matching

(r.v.) M (k), let (r.v.) e(k) = (k, rk) be the edge matched in (r.v.) M (k) from the last node (r.v.) k.
Note that since G is perfect, it follows by Fact B.1B.1 that edge e(k) exists and |M (k)| = k. We denote
by (r.v.) M (k)[k] the corresponding right node rk.

Let Qk be the event that

{node ri 6∈M (k)} ∨
{
{node ri ∈M (k)} ∧ {M (k)[k] 6= ri}

}
.

Then, we have

Pr
[
(i, ri) ∪M is a matching | F (i)

S,`

]
= Pr

 `−1∧
k=bn/cc+1

Qk | F
(i)
S,`

 . (15)
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Observe that the probability of event � Qk is equal to

Pr
[
{node ri ∈M (k)} ∧

{
{node ri /∈M (k)} ∨ {M (k)[k] = ri}

}]
= Pr

[
{node ri ∈M (k)} ∧ {M (k)[k] = ri}

]
. (16)

Let Wi,t be the event that F
(i)
S,` ∧

(∧t−1
j=kQj

)
for t ∈ {k+ 1, . . . , `− 1}, and Wi,k be the event F

(i)
S,`.

Using conditional probability, we have

Pr

 `−1∧
k=bn/cc+1

Qk | F
(i)
S,`

 = Pr [Q`−1 | Wi,`−1] · · ·Pr [Qk+1 | Wi,k+1] · Pr [Qk | Wi,k] . (17)

We now analyze the terms in (1717) separately. Let T (i, k) be the set of all matchings M (k) satisfying

the event F
(i)
S,` ∧ {node ri ∈M (k)}. Using (1616), we have

Pr
[
� Qk | F

(i)
S,`

]
= Pr

[
{node ri ∈M (k)} ∧ {M (k)[k] = ri} | F (i)

S,`

]
≤ Pr

[
M (k)[k] = ri | F (i)

S,` ∧ {node ri ∈M (k)}
]

=
1

|T (i, k)|
∑

M ′∈T (i,k)

1

|M ′|
=

1

k
, (18)

where the last equality follows by Fact B.1B.1 and G is perfect. Thus,

Pr [Qk | Wi,k] = 1− Pr
[
� Qk | F

(i)
S,`

]
≥ 1− 1

k
. (19)

Similarly, for t ∈ {k + 1, . . . , `− 1} we have

Pr [� Qt | Wi,t] ≤ Pr
[
M (t)[t] = ri | Wi,t ∧ {node ri ∈M (t)}

]
=

1

t
,

and therefore

Pr [Qt | Wi,t] = 1− Pr [� Qt | Wi,t] ≥ 1− 1

t
. (20)

By combining (1515,1717,1919,2020), we obtain

Pr
[
(i, ri) ∪M is a matching | F (i)

S,`

]
≥

`−1∏
k=bn/cc+1

(
1− 1

k

)
=
bn/cc
`− 1

. (21)

Since every summand in (1414) is lower bounded by (2121), we have

Pr
[
E(`) | E(`)

∃

]
≥ bn/cc

`− 1
.

C.3 Algorithm 33 (Omitted Proofs)

We now lower bound the probability that an arbitrary node r ∈ R remains unmatched after the
completion of Phase II in Algorithm 33. Our analysis uses similar arguments as in Lemma C.4C.4, but for
the sake of completeness we present the proof below.
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Lemma C.5. For every constants c ≥ d ≥ 1 and for every perfect bipartite graph G = (L ∪R,E,w),
it holds for every node r ∈ R that

Pr [r is not matched in Phase II] ≥ d

c
− o(1).

Proof. Observe that

Pr [r is not matched in Phase II] = Pr

 bn/dc∧
k=bn/cc+1

Qk

 .
Using (2121), we have

Pr [r is not matched in Phase II] ≥
bn/dc∏

k=bn/cc+1

(
1− 1

k

)
≥ bn/cc
bn/dc

≥ d

c
− d

n
.
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D Deterministic Graphic Matroid Secretary Algorithm

In this section, we analyze the competitive ratio of Algorithm 44.

Theorem 5.25.2. The deterministic Algorithm 44 is (1/4 − o(1))-competitive for the graphic matroid
secretary problem.

The rest of this section is devoted to proving Theorem 5.25.2, and is organized as follows. In Sub-
section D.1D.1, we give two useful summation closed forms. In Subsection D.2D.2, we present our notation.
In Subsection D.3D.3, we extend Lemma C.2C.2 to bipartite-matroid graphs. In Subsection D.4D.4, we prove
Theorem 5.25.2.

D.1 Summation bounds

Claim D.1. For any k ∈ N and n ∈ N+ , we have

n+k∑
`=n

1

` · (`+ 1)
=

k + 1

n(n+ k + 1)
.

Proof. The proof is by induction. The base case follows by

1

n
· 1

n+ 1
+

1

n+ 1
· 1

n+ 2
=

2

n(n+ 2)
.

Our inductive hypothesis is
∑n+k

`=n
1

`·(`+1) = k+1
n(n+k+1) . Then, we have

n+k+1∑
`=n

1

`
· 1

`+ 1
=

k + 1

n(n+ k + 1)
+

1

n+ k + 1
· 1

n+ k + 2
=

1

n+ k + 1

[
k + 1

n
+

1

n+ k + 2

]
=

1

n+ k + 1

[
(k + 1)(n+ k + 1) + n+ k + 1

n(n+ k + 2)

]
=

k + 2

n(n+ k + 2)
.

Claim D.2. For any c > 1, it holds that

f(c, n) :=
1

n

n−1∑
`=bn/cc

(bn/cc − 1) bn/cc
(`− 1)`

=
bn/cc
n
·
[
n− 1

n− 2
− bn/cc
n− 2

]
?
c− 1

c2
.

In particular, the lower bound is maximized for c = 2 and yields f(2, n) ? 1/4.

Proof. By Claim D.1D.1, we have

n−1∑
`=bn/cc

1

`− 1
· 1

`
=

bn/cc+[n−bn/cc−2]∑
`=bn/cc−1

1

`
· 1

`+ 1
=

n− bn/cc − 1

(bn/cc − 1) (n− 2)
,

and thus

1

n

n−1∑
`=bn/cc

(bn/cc − 1) bn/cc
(`− 1)`

=
(bn/cc − 1) bn/cc

n
· n− bn/cc − 1

(bn/cc − 1) (n− 2)

=
bn/cc
n
·
[
n− 1

n− 2
− bn/cc
n− 2

]
≥

(
1

c
− 1

n

)
·
[
1 +

1

n− 2
− n

n− 2
· 1

c

]
?

1

c
·
[
1− 1

c

]
=
c− 1

c2
.
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Let g(x) = (x− 1)/x2. Observe that its first derivative satisfies

d

dx
g(x) =

x2 − (x− 1)2x

x4
=
x(2− x)

x4
= 0 ⇐⇒ x1 = 0 x2 = 2.

Further, g(x) decreases in the range [−∞, 0], increases in [0, 2] and again decreases in [2,∞]. Hence,
we have maxx>0 g(x) = g(2) = 1/4.

D.2 Notation

Given an undirected weighted graph G′ = (V,E′, w′), we construct a bipartite-matroid graph G =
(L ∪R,E,w) as follows:

i) let the set of the right nodes be R = V ; ii) the set of the left nodes be L = E′, i.e., {u, v} ∈ L if
{u, v} ∈ E′; iii) and for each edge in {u, v} ∈ E′ we insert two edges {{u, v}, u}, {{u, v}, v} ∈ E with
equal weight w({{u, v}, u}) = w({{u, v}, v}) = w′({u, v}).

Although M (`) is a matching, we note that M is not a matchings in the strict sense, since for an
edge {{u, v}, u} ∈ E (similarly {{u, v}, v} ∈ E) to be matched it is required that both nodes u, v ∈ R
are not yet matched. To emphasize this, we refer to M as “matching?”.

D.3 Structural Lemma

We now extend Lemma C.2C.2 to bipartite-matroid graphs.

Lemma D.3. Suppose G = (L ∪ R,E,w) is a perfect bipartite-matroid graph as above. Then, for
every c > 1 it holds for every ` ∈ {bm/cc+ 1, . . . ,m} that

E[A`] ≥
bm/cc − 1

(`− 1)− 1
· bm/cc
`− 1

· OPT
m

.

It is straightforward to verify that the statement of Lemma C.3C.3 holds for perfect bipartite-matroid
graphs, and yields

E
[
w(e(`)) | E(`)

]
≥ OPT

m
.

Hence, to prove Lemma D.3D.3 it remains to extend the statement of Lemma C.4C.4.

Lemma D.4. For every perfect bipartite-matroid graph G = (L ∪R,E,w) it holds that

Pr
[
E(`)

]
≥ bm/cc − 1

(`− 1)− 1
· bm/cc
`− 1

.

Proof. We follow the proof in Lemma C.4C.4, with the amendment that a node {uk, vk} ∈ L and an edge
{{uk, vk}, rk} ∈ E. Recall that for a fixed subset S ⊆ L with size ` and an edge (i, ri) ∈ MS , we can

condition on the event F
(i)
S,` that {the node set of L` equals S} and {the edge e(`) = (i, ri)}.

Let Qrk be the event that

{node r 6∈M (k)} ∨
{
{node r ∈M (k)} ∧ {M (k)[k] 6= r}

}
,

and let Pk be the event that Quik ∧Q
vi
k . Then, we have

Pr
[
{{ui, vi}, ri} ∪M is a matching? | F (i)

S,`

]
= Pr

 `−1∧
k=bm/cc+1

Pk | F
(i)
S,`

 .
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Combining the Union bound and (1818), yields

Pr
[
� Pk | F

(i)
S,`

]
= Pr

[
� Quik ∨ � Q

vi
k | F

(i)
S,`

]
≤ Pr

[
� Quik | F

(i)
S,`

]
+ Pr

[
� Qvik | F

(i)
S,`

]
≤ 2

k
.

Hence, using similar arguments as in the proof in Lemma C.4C.4, we have

Pr
[
E(`)

]
≥

`−1∏
k=bm/cc+1

(
1− 2

k

)
=
bm/cc − 1

(`− 1)− 1
· bm/cc
`− 1

.

D.4 Proof of Theorem 5.25.2

Using Lemma D.3D.3, we have

E

[
m∑
`=1

A`

]
=

m∑
`=bm/cc+1

E [A`] ≥
OPT

m

m∑
`=bm/cc+1

bm/cc − 1

(`− 1)− 1
· bm/cc
`− 1

.

The statement follows by Claim D.2D.2 and noting that

1

m

m∑
`=bm/cc+1

bm/cc − 1

(`− 1)− 1
· bm/cc
`− 1

≥
(
c− 1

c2
− o(1)

)
≥
(

1

4
− o(1)

)
. (22)
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E Graphic Matroid Secretary Algorithm with Predictions

In this section, we prove the worst-case bound of (d − 1)/c2 in Theorem 5.35.3, by analyzing Phase III
of Algorithm 55.

Theorem E.1. The Phase III in Algorithm 55 is (d−1
c2
− o(1))-competitive.

The rest of this section is denoted to proving Theorem E.1E.1, and is organized as follows. In
Subsection E.1E.1, we analyze the probability that a fixed pair of distinct vertices is eligible for matching
in Phase III. In Subsection E.2E.2, we give a lower bound on the event that {e(`) ∪M is a matching?}.
In Subsection E.3E.3, we prove Theorem E.1E.1.

E.1 Pairwise Node Eligibility in Phase III

For any distinct nodes u, v ∈ R, we denote by Φ/∈M
u,v the event that

{u and v are not matched in Phase II}.

Claim E.2. It holds that

Pr
[
Φ/∈M
u,v

]
≥
(
d

c

)2

·
1− c

m

1− d
m

.

Proof. Let S be a random variable denoting the set of all nodes in L that appear in Phase I and Phase
II. Let

e′max(u, S) = arg max
{u,z}∈S

w(u, z)

be a random variable denoting the node {u, z} ∈ L with largest weight seen in the set S.
The proof proceeds by case distinction:
Case 1. Suppose e′max(u, S) = e′max(v, S), i.e., there is a node {u, v} ∈ S. Let Kr(S) be the event

that node e′max(r, S) ∈ S is sampled in Phase I. By conditioning on the choice of S, we have

Pr
[
Φ/∈M
u,v

]
=
∑
S

Pr [Kr(S) | S] · Pr [S] =
m/c

m/d
·
∑
S

Pr [S] =
d

c
.

Case 2. Suppose e′max(u, S) 6= e′max(v, S), i.e., there are distinct nodes {u, x} ∈ S and {v, y} ∈ S
with largest weight, respectively from u and v. By conditioning on the choice of S, we have

Pr [Ku(S) ∧ Kv(S) | S] =
2
(m

c
2

)
· (md − 2)!

(md )!
=

(
d

c

)2

·
1− c

m

1− d
m

,

and thus

Pr
[
Φ/∈M
u,v

]
=
∑
S

Pr [Ku(S) ∧ Kv(S) | S] · Pr [S] =

(
d

c

)2

·
1− c

m

1− d
m

.

E.2 Lower Bounding the Matching? Event

Recall that E(`) denotes the event that {e(`) ∪ M is a matching?}, where (r.v.) M is the current
online matching?, see Subsection D.2D.2 for details. In order to control the possible negative side effect
of selecting suboptimal edges in Phase II, we extend Lemma D.4D.4 and give a lower bound on the event
E(`) for any node ` ∈ L that appears in Phase III.
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Lemma E.3. For every perfect bipartite-matroid graph G = (L∪R,E,w), Algorithm 55 guarantees in
Phase III that

Pr
[
E(`)

]
≥ bm/dc − 1

(`− 1)− 1
· bm/dc
`− 1

· Pr
[
Φ/∈M
u,v

]
, ∀` ∈ {bm/dc+ 1, . . . ,m}.

Proof. We follow the proof in Lemma C.4C.4, with the amendment that a node {uk, vk} ∈ L and an edge
{{uk, vk}, rk} ∈ E. Recall that for a fixed subset S ⊆ L with size ` and a fixed edge {{ui, vi}, ri} ∈MS ,

we can condition on the event F
(i)
S,` that

{the set of nodes of L` equals S} and {the edge e(`) = {{ui, vi}, ri}}.

Let Qrk be the event that

{node r 6∈M (k)} ∨
{
{node r ∈M (k)} ∧ {M (k)[k] 6= r}

}
,

and let Pk denotes the event Quik ∧Q
vi
k . The proof proceeds by case distinction:

Case 1. For ` = bm/dc+ 1, we have

Pr
[
E(`)

]
= Pr

[
{{ui, vi}, ri} ∪M is a matching? | F (i)

S,`

]
= Pr

[
Φ/∈M
u,v

]
.

Case 2. For ` = {bm/dc+ 2, . . . ,m}, we have

Pr
[
E(`)

]
= Pr

[
{{ui, vi}, ri} ∪M is a matching? | F (i)

S,`

]
= Pr

 `−1∧
k=bm/dc+1

Pk | F
(i)
S,` ∧ Φ/∈M

u,v

 · Pr [Φ/∈M
u,v

]
.

Combining the Union bound and (1818), yields

Pr
[
� Pk | F

(i)
S,` ∧ Φ/∈M

u,v

]
= Pr

[
� Quik ∨ � Q

vi
k | F

(i)
S,` ∧ Φ/∈M

u,v

]
≤ Pr

[
� Quik | F

(i)
S,` ∧ Φ/∈M

u,v

]
+ Pr

[
� Qvik | F

(i)
S,` ∧ Φ/∈M

u,v

]
≤ 2

k
.

Hence, using similar arguments as in the proof of Lemma C.4C.4, we have

Pr

 `−1∧
k=bm/dc+1

Pk | F
(i)
S,` ∧ Φ/∈M

u,v

 ≥ `−1∏
k=bm/dc+1

(
1− 2

k

)
=
bm/dc − 1

(`− 1)− 1
· bm/dc
`− 1

.

Therefore, it holds that

Pr
[
E(`)

]
≥ bm/dc − 1

(`− 1)− 1
· bm/dc
`− 1

· Pr
[
Φ/∈M
u,v

]
.
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E.3 Proof of Theorem 5.35.3

In this section, we analyze the expected contribution in Phase III. Our goal now is to lower bound the
expression

E [A`] = E
[
w(e(`)) | E(`)

]
· Pr

[
E(`)

]
.

It is straightforward to verify that Lemma C.3C.3 holds in the current setting and yields

E
[
w(e(`)) | E(`)

]
≥ OPT

m
.

Further, by Lemma E.3E.3, it holds for every ` ∈ {bm/dc+ 1, . . . ,m} that

E [A`] = E
[
w(e(`)) | E(`)

]
· Pr

[
E(`)

]
≥ OPT

m
· bm/dc − 1

(`− 1)− 1
· bm/dc
`− 1

· Pr
[
Φ/∈M
u,v

]
,

and thus
m∑

`=bm/dc+1

E [A`] ≥ Pr
[
Φ/∈M
u,v

]
· OPT

m

m∑
`=bm/dc+1

bm/dc − 1

(`− 1)− 1
· bm/dc
`− 1

.

Hence, by combining the first inequality in (2222) and Claim E.2E.2, yields

E

 m∑
`=bm/dc+1

A`

 ≥
(
d

c

)2

(1− o(1)) ·
(
d− 1

d2
− o(1)

)
·OPT

≥
(
d− 1

c2
− o(1)

)
·OPT.
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F Truthful mechanism for unit-demand domain

We first re-interpret some of the terminology in Section 44.1212 We have a set L of agents and a set R
of items. Every agent i ∈ L has a (private) value vi ≥ 0 for a set of preferred items Ri ⊆ R. We
write Ω for the set of all (partial) matchings between R and L, called outcomes, and Ai for the set of
all (partial) matchings in which i gets matched up with some node in Ri, i.e., satisfying outcomes for
agent i. We use Xi : Ω→ {0, 1} as the indicator function for the set Ai, i.e., we have Xi(ω) = 1 if and
only if ω ∈ Ai. An agent’s type is her value vi, which is private information.

In the online setting, the agents arrive in a uniformly random order, and, upon arrival, an agent
announces a (common) value v′i that she has for the items in Ri. The mechanism then commits to
either choosing an outcome ω ∈ Ai, that (partially) matches up all agents arrived so far, or some
outcome ω /∈ Ai that also (partially) matches up all agents arrived so far but not i, by definition of Ai.
It also sets a price ρi,

1313 which depends on the choice of ω. We assume that ρi ∈ N0. The outcome ω
should be consistent with previous outcomes in the sense that the proposed matching in step i−1 is a
submatching of that committed to in step i.1414 After all agents have arrived the mechanism commits to
the final outcome ω in step n. Informally speaking, whenever an agent arrives, the mechanism either
offers her an item r ∈ Ri at some price pi, or it offers her nothing.

The goal of an agent is to maximize her utility

ui(ω) = viXi(ω)− ρi,

and the goal of the mechanism designer is to maximize the social welfare∑
i∈L

viXi(ω).

We will show that Algorithm 44 can be used to design a truthful (online) mechanism in the case of
so-called single-value unit-demand domains.

We want to design a mechanism that is truthful, meaning that it is always in the best interest
of an agent to report v′i = vi for any declarations of the other agents and any arrival order of the
agents. We do this by showing that the procedures in Phase II and III can be modified so that the
assignment rules in Algorithm 33 become monotone, see, e.g., Chapter 16 in [3737]. It is not hard to see,
and well-known, that this kind of monotonicity incentivizes truthfulness.

In order to turn Algorithm 33 into a truthful mechanism we need to make some modifications, and
define a pricing scheme. The outcome ω in every step corresponds to the (online) matching M we
have chosen so far, together with the edge ei in case we match up i when she arrives.

The modification for Phase I is straightforward. For every arriving agent i, we choose as outcome
the empty matching (which is not in Ai for any i), and set a price of ρi = 0. That is, we assign no
item to any agent arriving in Phase I.

For Phase III we can use a similar idea as the price sampling algorithm in [44]. We set price-
thresholds ρ(r) = p∗r − λ. Whenever an agent arrives in Phase III, we look at all the items in Ri for
which her reported value v′i exceeds the price threshold ρ(r) and assign her (if any) the item r′ for
which the price threshold is the lowest among those. We charge her a price of ρi = p∗r′ −λ for the item
r′. The fact that this incentivizes truthful behavior follows from similar arguments as those given in
[44].

In order to incentivize truthfulness in Phase II, we exploit the fact that we are free to choose any
fixed algorithm to compute the (offline) matching M i in that phase once a node i has arrived. That is,

12We use notation and terminology closely related to that in [44].
13We use ρi in order to avoid confusion with the predictions p∗r .
14This submatching corresponds to the online matching M that we construct in Algorithm 33.
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Algorithm 33 works for every choice of such an offline algorithm, but in order to guarantee truthfulness,
we need a specific type of bipartite matching algorithm.

We first introduce an additional graph-theoretical definition. We say that an instance of the bipartite
matching problem on a (bipartite) graph G = (A ∪ B,E), with |A| = n, has uniform edge weights if
all edges adjacent to a given node a ∈ A have the same weight, i.e., we have w(a, b) = w(a, b′) for all
b, b′ ∈ N (a) ⊆ B. We denote this common weight by wa. Moreover, we write (w′a, w−a) to denote the
vector (w1, . . . , wa−1, w

′
a, wa+1, . . . , wn) in which wa is replaced by w′a.

Definition F.1. We say that a deterministic (bipartite matching) algorithm A is monotone for in-
stances with uniform edge weights if the following holds. For an instance I = (G, (w1, . . . , wn)) and
any fixed a ∈ A, there exists a critical value τa = τa(I) such that A has the following properties:

1. The node a does not get matched for any I = (G, (w′a, w−a)) with w′a < τa;

2. There exists a node b ∈ N (a), such that for any w′a ≥ τa the node a gets matched up to b in
I = (G, (w′a, w−a)).

We emphasize that whenever w′a ≥ τa, we want a to be matched up to the same node b. So for
any w′a, the node a either does not get matched up by A, or it gets matched up to some fixed b.

Now, in Phase II we compute an offline matching M i using algorithm A. If the edge ei = (i, r) assigned
to i in M i (if any) satisfies the condition that M ∪ ei is a matching, where M is the online matching
constructed so far, we assign item r to i. We charge a price of ρi = τa. It is not hard to see, using
a standard argument, that any monotone bipartite matching algorithm with the given pricing rule
incentivizes truthful behaviour (this is left to the reader).

A summary of the modifications to Algorithm 33 can be found in Algorithm 77. Based on Algorithm
77, and the analysis of Algorithm 33, we obtain the following theorem, provided there exists a monotone
bipartite matching algorithm A for instances with uniform edge weights. We will show the existence
of such an algorithm in the proof of Theorem F.2F.2.

Theorem F.2. There is a deterministic truthful mechanism that is a gλ,c,d(η)-approximation for the
problem of social welfare maximization, with gλ,c,d as in Theorem 4.14.1 . Furthermore, the alignment
rule and pricing scheme of the mechanism are computable in polynomial time.

Proof. As mentioned above, it suffices to show the existence of a monotone bipartite matching al-
gorithm. Fix an arbitrary total order � over all the elements of L × R. We say that a matching
M = {m1,m2 . . . } is lexicographically larger than matching M ′ = {m′1,m′2, . . . } with M ′ 6= M and
write M �lex M

′ if and only if, there exists an integer k ≥ 0 such that mi = m′i for i = 1, . . . k and
mk+1 � mk+1.

We claim that any existing exact algorithm for the maximum weight bipartite matching problem
can be easily converted to an exact algorithm for the lexicographically maximum weight bipartite
matching problem, i.e., the problem where one seeks to find lexicographically largest matching among
the maximum weight matchings. Indeed, consider some existing algorithm A′ for maximum weight
bipartite matching, and assume that A′ on instance G = (L ∪ R,E) gives a matching of cost OPT.
Now consider the maximum e = (`, r) ∈ E according to �, and compute the maximum weight bipartite
matching in G′ = ({L \ {u}} ∪ {R \ {v}}, E \ {e′ : e′ ∩ u 6= ∅ or e′ ∩ v 6= ∅}). If the resulting solution
has cost < OPT−we, then we know that e is not in any maximum weight bipartite matching, and can
recursively continue with OPT and G := (L ∪R,E \ {e}). If on the other hand the resulting solution
has cost = OPT− we, then e is part of some maximum weight bipartite matching (and in particular
the lexicographically maximal one), so we fix e and compute the rest of the matching recursively with
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ALGORITHM 7: Truthful online mechanism for single value unit-demand domains

Input : Predictions p∗ = (p∗1, . . . , p
∗
|R|), confidence parameter λ > 0, and c > d ≥ 1. Monotone bipartite

matching algorithm A.
Output: Matching (or assignment) M and prices ρ = (ρ1, . . . , ρn).

Phase I:
for i = 1, . . . , bn/cc do

Assign no item to agent i and set ρi = 0.
end
Let L′ = {`1, . . . , `bn/cc} and M = ∅.
Phase II:
for i = bn/cc+ 1, . . . , bn/dc do

Let L′ = L′ ∪ {i}.
Let M i = optimal matching on G[L′ ∪R] computed using A.
Let ei = (i, r) be the edge assigned to i in M i.
if M ∪ ei is a matching then

Set M = M ∪ {ei}, i.e., assign item r to i.
Set ρi = τi(G[L′ ∪R], (v′1, . . . , v

′
i)).

end

end
Phase III:
for i = bn/dc+ 1, . . . , n do

Let S = {r ∈ N (i) : v′i ≥ p∗r − λ and r /∈ R[M ]}
if S 6= ∅ then

Set M = M ∪ {i, r′} where r′ = argmax{v′i − (p∗r − λ) : r ∈ S}, i.e., assign item r′ to agent i.
Set ρi = p∗r′ − λ.

end

end
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OPT := OPT − we and G := G′. By construction, we will in the end obtain the lexicographically
largest maximum weight bipartite matching. We note that the lexicographically maximum weighted
bipartite matching is unique for any input instance. Furthermore, we run algorithm A′ at most O(n2)
times. In other words we can determine such a matching in polynomial time for any given set of
weights.

It remains therefore to show that the value τa, as described in Definition F.1F.1, exists. It is easy to
see that there exists a value w′a for which a is matched in any lexicographically maximum weighted
bipartite matching (for example, set w′a =

∑
e∈E\a∩E we + ε =: W ). Therefore it suffices to show

that if a is matched to some vertex b ∈ N (a) for some weight w′a = τa, then it is also matched
to the same neighbor b for any weight w′′a > τa. Assume for the sake of contradiction that this
is not the case, and let the corresponding two lexicographically maximum weighted matchings be
M ′ 3 (a, b) and M ′′. Note that M ′′ could leave a unmatched, or it could contain an edge adjacent to
a but not (a, b). In the following we use value(M) to describe the total weight of matching M , i.e.,∑

e∈M we.We also note that, since M ′ is a lexicographically maximal weighted bipartite matching for
(w′a, w−a), we have that either value(M ′(w′a, w−a)) > value(M ′′(w′a, w−a)) or the two values are equal
and M ′(w′a, w−a) �lex M

′′(w′a, w−a).
For the second case, and since the lexicographic order does not depend on the edge weights, we also

have M ′(w′′a, w−a) �lex M
′′(w′′a, w−a). Therefore, for M ′′ to be a lexicographically maximal weighted

bipartite matching for (w′′a, w−a), it has to be that

value(M ′′(w′′a, w−a)) > value(M ′(w′′a, w−a)).

However, this is not possible, since value(M ′(w′′a, w−a)) = value(M ′(w′a, w−a)) + w′′a − w′a, and

value(M ′′(w′′a, w−a)) ≤ value(M ′′(w′a, w−a)) + w′′a − w′a,

which is a contradiction. For the first case:

value(M ′(w′′a, w−a)) = value(M ′(w′a, w−a)) + w′′a − w′a
> value(M ′′(w′a, w−a)) + w′′a − w′a
≥ value(M ′′(w′′a, w−a)),

This gives a contradiction. This concludes the proof for the first statement of the theorem.
For the second part, first recall that we run some deterministic algorithm for the bipartite weighted

maximum matching O(n2) many times. It remains to show that τa can be computed. We know that
τa exists and is in the range [0,W ]. Also recall that τa is the smallest value for w′a such that a gets
matched in a lexicographically maximal weighted bipartite matching for (w′a, w−a). We therefore can
perform a binary search over [0,W ], by trying out if in the corresponding instance a is part of the
lexicographically maximum weighted bipartite matching. Since we assume weights to be integers, this
will terminate after at most logW many steps. By using for example the Edmonds-Karp algorithm
for A′, our mechanism has a running time of O(n4m2 logW ) which is polynomial in the input size.
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