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Abstract. Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become
a commonly used tool for quantifying the forced response and internal variability in various components of
the climate system. However, there is no consensus on the ideal or even sufficient ensemble size for a large
ensemble. Here, we introduce an objective method to estimate the required ensemble size that can be applied
to any given application and demonstrate its use on the examples of global mean near-surface air temperature,
local temperature and precipitation, and variability in the El Niño–Southern Oscillation (ENSO) region and
central United States for the Max Planck Institute Grand Ensemble (MPI-GE). Estimating the required ensemble
size is relevant not only for designing or choosing a large ensemble but also for designing targeted sensitivity
experiments with a model. Where possible, we base our estimate of the required ensemble size on the pre-
industrial control simulation, which is available for every model. We show that more ensemble members are
needed to quantify variability than the forced response, with the largest ensemble sizes needed to detect changes
in internal variability itself. Finally, we highlight that the required ensemble size depends on both the acceptable
error to the user and the studied quantity.

1 Introduction

Single model initial-condition large ensembles (SMILEs)
are a valuable tool for cleanly separating a model’s forced
response from internal variability and improving our un-
derstanding of the observed trajectory of the climate sys-
tem in the past, as well as its projected future evolution
(Zelle et al., 2005; Deser et al., 2012a; Rodgers et al., 2015;
Kay et al., 2015; Maher et al., 2019; Branstator and Selten,
2009; von Känel et al., 2017; Kirchmeier-Young et al., 2017;
Frankignoul et al., 2017; Stolpe et al., 2018).

The ensemble sizes currently available for individual
global coupled climate models greatly differ. The single-
model ensembles within the Coupled Model Intercomparison
Project Phase 5 and 6 (CMIP5, CMIP6) are on the low end
of available ensemble sizes, typically ranging from 3 to 10
ensemble members for a model, with the majority of mod-
els having only one member available. In contrast, compu-
tationally expensive SMILEs position themselves on the top
end of available ensemble sizes, providing up to 200 ensem-
ble members for a single model and forcing scenario. While

studies are beginning to compare multiple SMILEs (Maher
et al., 2018; Deser et al., 2020), there is still no clear consen-
sus on how large such an ensemble should be for any given
application.

We here introduce a new framework to objectively esti-
mate the required ensemble size for different types of ques-
tions and make use of a model’s pre-industrial control sim-
ulation where possible. Using the pre-industrial control sim-
ulation allows us to estimate the required ensemble size for
a specific model even if no large ensemble is available. The
objective approach can also help to allocate resources more
efficiently (Ferro et al., 2012) and to inform the modelling
community how many ensemble members are desirable for
CMIP models.

One of the most common applications of SMILEs is
to separate a forced response due to anthropogenic global
warming from the noise of internal variability. In a suffi-
ciently large ensemble the ensemble mean can be used as an
estimator for the forced response (Frankcombe et al., 2018).
This approach has been applied to study various regions and
quantities.
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On a global scale, Deser et al. (2012b) investigate the
forced response in temperature and precipitation. They found
that around 10 ensemble members are sufficient to detect
changes in the global mean land temperature in the next
decade, while more than 40 ensemble members are required
to detect changes in precipitation. When going further into
the future when the signal becomes larger, they find that
fewer members are sufficient to detect a forced change. If the
signal is large enough, a single ensemble member is suffi-
cient to detect a significant change compared to present-day
conditions. This happens when the trajectory of the single
member emerges from the range of internal variability for
present-day conditions.

On both global and regional scales, Olonscheck and Notz
(2017) used both the CMIP5 multi-model ensemble and the
Max Planck Institute Grand Ensemble (MPI-GE) to conclude
that multiple small ensembles from different models are use-
ful for quantifying the response uncertainty across different
models.

While a forced response in global mean temperature only
requires a relatively small ensembles size, forced changes on
a smaller regional scale can be more difficult to detect be-
cause of the larger variability. Li and Ilyina (2018) investi-
gated the ocean carbon sink and found that up to 79 ensemble
members are required to isolate a forced decadal trend in the
RCP4.5 scenario in the Southern Ocean, a region with large
internal variability. Steinman et al. (2015) quantify the forced
response in North Atlantic temperature and argue that for this
region more than four ensemble members are required for a
robust estimate of the forced response from a SMILE. Al-
though the objective of the two studies is similar – identify-
ing a forced response – the required ensemble size is very
different, indicating that different regions and quantities can
have very different requirements for the ensemble size.

In addition to investigating forced changes to anthro-
pogenic forcing, large ensembles also allow an investigation
of forced responses to other external forcings such as vol-
canic eruptions. For regional temperature changes, Pausata
et al. (2015) find that up to 40 ensemble members are neces-
sary for a robust detection of a temperature response after a
volcanic eruption. Bittner et al. (2016) investigate changes in
atmospheric circulation after a volcanic eruption. They anal-
yse the polar vortex and find that the required ensemble size
to detect changes in the zonal wind after a strong volcanic
eruption depends on the latitude: seven members are suffi-
cient at the southward flank of the maximum positive wind
anomaly, but up to 40 members are necessary to identify a re-
sponse at high northern latitudes. The ratio of the signal to the
noise from internal variability is different in different regions
because the signal and/or the internal variability may differ.
The target of Bittner et al. (2016) was to detect a change in
the circulation that is different from zero, but not to quantify
it. Quantifying the magnitude of the forced response may re-
quire an even larger ensemble size for this application.

Large ensembles have also been used to quantify internal
variability, with some studies arguing that very large ensem-
ble sizes are necessary: Daron and Stainforth (2013) con-
clude that an ensemble with several hundred members is re-
quired to characterise a model’s climate, while Drótos et al.
(2017) demonstrate that 100 members are sufficient. On the
other hand, some studies argue that the pre-industrial control
simulation is sufficient to quantify internal variability and no
large ensemble is required. Thompson et al. (2015) argue that
the pre-industrial control simulation can be used to provide
a robust estimate of internal variability and represent future
internal variability, implying that a single ensemble member
for each model may be sufficient. However, this approach
only works if the internal variability does not change over
time. In addition, a single realisation for a transient scenario
does not allow a clean separation of the forced response and
internal variability, even if the magnitude of the internal vari-
ability is quantified using a pre-industrial control simulation.

El Niño–Southern Oscillation (ENSO) variability and its
potential changes under global warming have been investi-
gated in several studies, and widely different future changes
have been identified (Stevenson et al., 2012; Bellenger et al.,
2013; Christensen et al., 2013). Maher et al. (2018) investi-
gate ENSO variability and its potential changes under global
warming in several large ensembles. They find that at least
30 ensemble members are required for a robust estimate of
ENSO variability. When using a smaller ensemble, sampling
uncertainty may lead to false detection of a forced change in
ENSO or a robust difference between two models.

All of the aforementioned studies demonstrate that differ-
ent applications require different ensemble sizes. However,
these studies suffer from two drawbacks. First, the required
ensemble size can only be estimated once a signal has been
identified in a large ensemble, which requires the large en-
semble to exist and be large enough in the first place. Second,
the result might be model dependent and may only provide
a very rough estimate of the required ensemble size when
addressing the same question with a different model.

In this paper, we introduce a basic recipe for estimating
the required ensemble size in Sect. 3. The required or ideal
ensemble size depends on the region and quantity that is in-
vestigated and the type of question. Therefore we differenti-
ate three types of questions that represent questions typically
addressed with large ensembles:

1. How many ensemble members are required to iden-
tify the response to a change in the external forcing?
(Sect. 4.1)

2. How many ensemble members are required to ade-
quately sample the spectrum of internal variability?
(Sect. 4.2)

3. How many ensemble members are required to identify
a forced change in internal variability (e.g., a mode of
variability such as ENSO)? (Sect. 4.3)
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An additional discussion of caveats associated with the
choice of sampling method is discussed in Appendix A and
is relevant for users of the approach proposed in this study.

2 Model

In this study, we are using simulations from the Max Planck
Institute Grand Ensemble. The MPI-GE consists of large
initial-condition ensembles for several experiments with
the Max Planck Institute Earth System Model (MPI-ESM)
in its low-resolution configuration. Ensemble members are
generated by sampling different years from a 2000-year
pre-industrial control simulation for the initial conditions
(macro-initialisation). The forcing for the experiments fol-
lows the protocol of the CMIP5 simulations (Taylor et al.,
2012). The model configuration and experiments are de-
scribed in more detail in Maher et al. (2019).

In this study, we use three experiments from the MPI-GE:

– pre-industrial control simulation (2000 years)

– historical simulations (1850–2005, 200 members)

– 1 % CO2 simulations (156 years, 100 members).

Note that only the first 100 historical realisations are de-
scribed in Maher et al. (2019). Realisations 101–200 were
added later and use the same configuration as the first 100 re-
alisations but are initialised from different years of the pre-
industrial control simulation.

3 A simple method to estimate the required
ensemble size

In this section, we use a simple example to design a generic
recipe for estimating the required ensemble size for any given
application. In Sect. 4.1 to 4.3, we then apply this recipe to
various examples.

One of the most common applications of a large ensem-
ble is the separation of the forced response and the random
internal variability in a time series. Each realisation from a
large ensemble is subject to the same external forcing. Due
to different initial conditions, each realisation is a combina-
tion of the forced response due to this external forcing and a
unique trajectory of quasi-random internal variability. By av-
eraging over a large number of realisations, internal variabil-
ity cancels out and the forced response remains (Frankcombe
et al., 2015). Therefore, the ensemble mean of a large ensem-
ble is often referred to as the forced response. Figure 1 shows
the ensemble mean global mean near-surface air temperature
(GSAT, blue line) of 200 realisations with CMIP5 histori-
cal forcing from the MPI-GE (Maher et al., 2019). Because
of the large ensemble size and the use of a globally aver-
aged quantity, the 200-member mean is a clean estimate of
the forced response.

Assuming that the 200-member mean provides a good esti-
mate of the forced response, we can then form subsets of the
large ensemble to investigate how well the ensemble mean
of a smaller ensemble can isolate the forced response. We
draw 1000 random samples of sets of three members from
MPI-GE without replacement. For each of these samples, the
three-member ensemble mean is computed. The red envelope
in Fig. 1 shows the range of these 1000 samples of a three-
member mean forced response. Compared to individual real-
isations (grey envelope), a three-member mean reduces in-
ternal variability, but it can deviate substantially from the
200-member mean. Repeating this analysis for 10, 20, and
50 members shows that a larger ensemble size can separate
the forced response from internal variability more effectively.

To quantify how effective the separation of forced re-
sponse and internal variability is, we show the root-mean-
square error (RMSE) of ensemble means for different ensem-
ble sizes compared to the 200-member mean. The solid black
line in Fig. 2 shows how the expected RMSE decreases with
increasing ensemble size until reaching zero for 200 mem-
bers. By choosing an acceptable error, we can then deter-
mine the required ensemble size. For example, an acceptable
error of 0.02 ◦C would mean that an ensemble with approxi-
mately 50 members is required. We will return to the discus-
sion of what constitutes an acceptable error in the examples
in Sect. 4.1 to 4.3.

While a reduction in the error with increasing ensemble
size is expected and indicates that a larger ensemble allows a
more accurate representation of the forced response, the van-
ishing error when using 200 members occurs by construction
because we assume that the 200-member mean represents the
true forced response. How fast the error is converging there-
fore depends on how the random samples are generated.

3.1 A cautionary note on resampling

One difficulty when determining the required ensemble size
for a specific question is the chosen sampling approach: in
this study, we generate synthetic ensembles of different en-
semble sizes by randomly sampling members from a 200-
member ensemble without replacement. Samples generated
in this way are not fully independent when approaching the
full ensemble size. For example, two random samples of
190 out of the available 200 members will share most of their
members. This resampling introduces a problem when the
signal is defined by using the full ensemble. Any subsample
that is close to the full ensemble size will then indicate that
the ensemble size is sufficient by construction.

The resampling problem occurs with any limited sample.
At some point, the 1000 random subsamples are not inde-
pendent anymore because they share many of the randomly
drawn members from the full ensemble. Therefore, they look
more similar not only to each other but also to the 200-
member mean. To demonstrate how this resampling affects
our estimate of the error, we deliberately reduce the size of
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Figure 1. The forced response can be quantified using the ensemble mean in a large ensemble, while the ensemble mean of smaller ensembles
still contains a contribution from internal variability. The figure is based on global and annual mean near-surface air temperature from the
MPI-GE 200-member historical ensemble. The dark blue line shows the 200-member ensemble mean time series. Shaded regions show the
range of forced responses estimated by resampling 1000 times for various ensemble sizes. The light grey shading shows the range of the full
ensemble, i.e. the minimum to maximum of all 200 realisations for every single year.

Figure 2. A larger ensemble allows a more accurate quantification of the forced response. The black line shows the mean RMSE for GSAT
for ensemble sizes from 2 to 200. The reference is the 200-member mean from Fig. 1, and the RMSE is computed for all 1000 samples. The
shaded area shows the range of RMSE values for individual samples; the solid line shows the mean RMSE.

the ensemble, for instance by only using the first 150 mem-
bers and repeating the analysis. In an empirical analysis, we
find that samples using more than 50 % of the available en-
semble size to generate random samples lead to a substan-
tial bias in the error estimate. We therefore recommend treat-
ing results indicating that, for example, more than 100 out of
200 members are required with caution because the true re-
quired ensemble size might be much larger. A more detailed
discussion is provided in Appendix A.

3.2 A recipe for estimating ensemble size

Based on the example introduced in this section, we suggest
the following approach to derive a robust estimate of the re-
quired ensemble size for any application. This method can
be applied either to one of the existing large ensembles, as
shown above for the MPI-GE, or to a long control run, which
is available for all models participating in CMIP. We sum-
marise the method in five steps before applying it to several
examples in the next section:
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1. Define the question to be addressed (isolate a forced re-
sponse, quantify variability, or detect a change in vari-
ability).

2. Choose an error metric (e.g. RMSE or variance across
samples) and an upper threshold based on the maximum
error that is acceptable in the specific application.

3. Estimate the error for different ensemble sizes by sub-
sampling a long control run or a large ensemble of tran-
sient simulations.

4. Determine the minimum ensemble size that is required
to reduce the error below the threshold chosen in step 2.

5. If the ensemble size determined in this way is less than
50 % of the available sample size (e.g. 50 members
when subsampling a 100-member ensemble), then the
estimated required ensemble size provides a robust es-
timate for the specific question and model investigated.
If the estimated required ensemble size is larger than
50 % of the available sample size, then the estimate is
biased low and the true required ensemble size could be
substantially larger.

4 Estimating the required ensemble size:
applications

In this section we use the pre-industrial control simulation
and transient forced simulations from the MPI-GE to esti-
mate the required ensemble size for a variety of applications,
ranging from global to regional quantities. We investigate the
different aspects of quantifying the forced response or quan-
tifying internal variability.

4.1 Quantifying the forced response

The forced response shown in Fig. 1 contains various sig-
nals. The most prominent signal is the long-term warming
trend caused by anthropogenic greenhouse gas emissions. On
shorter timescales, volcanic eruptions lead to a cooling of the
global mean surface temperature.

In the first example, we continue to use the RMSE to quan-
tify how well the entire forced response is estimated, but we
move from the global mean to the regional forced response
in near-surface air temperature in the historical runs from
the MPI-GE. In Fig. 3a–e, the expected RMSE for each grid
point is shown for ensemble sizes of 3, 5, 10, 50, and 100
members. This analysis is equivalent to the computation of
the mean RMSE for GSAT (black line in Fig. 2), but applied
to each grid point separately. The RMSE is computed as the
mean difference between 100 samples and the 200-member
mean. When the ensemble mean is based on just three mem-
bers, the expected error in the estimated forced response is
large over land regions, in particular in the Northern Hemi-
sphere. Over the ocean, the RMSE is already small in many

regions. Increasing the ensemble size reduces the error. At
50 members, the error is small in most regions of the globe.
Because 50 members is smaller than 50 % of the maximum
ensemble size (200 members), the error estimate for this en-
semble size is reliable.

To estimate how many members are sufficient to reduce
the error below a critical threshold, we first need to determine
what is an acceptable error as outlined in step 2 of the recipe.
This choice will depend on the region of interest and the ac-
curacy with which the forced response needs to be quanti-
fied. In Fig. 3f–j, we show how many members are necessary
to estimate the forced response in near-surface air tempera-
ture for five acceptable errors that were chosen for illustrative
purposes. If the acceptable error (RMSE) is 0.1 ◦C, 10–30 en-
semble members are sufficient over the tropical ocean, while
more than 50 ensemble members are required over most land
regions. Beyond 100 members, the resampling problem in-
hibits reliable estimates of the sufficient ensemble size. For
an acceptable error of 0.25 ◦C, fewer than 10 members are
sufficient over most ocean regions, while more than 50 mem-
bers are required over high-northern-latitude land regions.
For an acceptable error of 0.5 ◦C, only high-latitude land re-
gions require a large ensemble, while the forced response
over ocean and land regions at lower latitudes can be esti-
mated with fewer than 10 members.

Conversely for rainfall, the error in estimating the forced
signal when using a small ensemble is larger over the tropics
than over the higher latitudes (Fig. 4a–e). The largest errors
can be found over the Indian Ocean and western tropical Pa-
cific. Similar to temperature, a 50-member ensemble shows
very small errors across the globe.

In Fig. 4f–j we show how many members are necessary
to estimate the forced response with an acceptable error
of 0.1, 0.2, 0.3, 0.5, and 1 mm d−1. For an acceptable er-
ror of 0.2 mm d−1, some ocean regions require more than
100 members to capture the forced rainfall response with the
required accuracy, while fewer than 20 members are suffi-
cient over northern Africa and Eurasia. Over large parts of
North America, between 20 and 40 members are required to
estimate the forced rainfall response. For an acceptable er-
ror of 0.5 mm d−1, 20 to 40 members are required over the
Indian Ocean and western tropical Pacific, while fewer than
10 members are sufficient elsewhere.

For the example in Figs. 3 and 4, the objective was to iso-
late the full forced response in a time series, defined as the
200-member ensemble mean time series at every grid point.
The full forced response includes all external forcings, both
natural and anthropogenic. In many applications, the objec-
tive might be to isolate a specific feature of the forced re-
sponse rather than all components. In the following two ex-
amples, we will demonstrate how to estimate the required
ensemble size needed to isolate the global warming trend in
the 20th century and the global cooling after a major volcanic
eruption.
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Figure 3. (a–e) The mean RMSE for the forced response in historical monthly mean near-surface air temperature of MPI-GE for (a) 3,
(b) 5, (c) 10, (d) 50, and (e) 100 ensemble members relative to the 200-member mean, globally. The RMSE shown here is the mean from
100 random samples without replacement. (f–j) Required ensemble size to capture the 200-member mean forced response in historical
monthly mean near-surface air temperature dependent on the acceptable error of (f) 0.1, (g) 0.2, (h) 0.3, (i) 0.5, and (j) 1.0 ◦C.

Figure 4. (a–e) The mean RMSE for the forced response in historical monthly mean total precipitation of MPI-GE for (a) 3, (b) 5, (c) 10,
(d) 50, and (e) 100 ensemble members relative to the 200-member mean, globally. The RMSE shown here is the mean from 100 random
samples without replacement. (f–j) Required ensemble size to capture the 200-member mean forced response in historical monthly mean
total precipitation dependent on the acceptable error of (f) 0.1, (g) 0.2, (h) 0.3, (i) 0.5, and (j) 1.0 mm d−1.

The global warming signal follows a much simpler tra-
jectory than the forced response to all external forcings
(cf. Fig. 1). Here, we fit a linear trend to the historical time
series for 1920 to 2005 and define the 200-member mean
as the true forced warming trend. Over the 68-year period
from 1920 to 2005, the model warms by 0.65 K (Fig. 5). We
acknowledge that a linear trend may not represent the an-
thropogenic warming accurately but use this definition to il-
lustrate how a specific aspect of the forced response can be
investigated.

We subsample the ensemble for smaller ensemble sizes to
generate forced warming trends for smaller ensemble sizes.
While the trends in a single realisation can be anywhere in the
range from 0.4 K to more than 0.8 K warming over 68 years,
increasing the ensemble size to even five members leads to
a significant reduction in the error (Fig. 5). The warming
trend in every 10-member ensemble is within the 20 % range
(±10 %, cyan dashed lines) of the true warming trend, indi-
cating that ensembles with 5–10 members can provide a good
estimate of the forced linear warming trend. While an error

within the 20 % range of the true signal may be sufficient for
some applications, the acceptable error for other applications
might be larger or smaller and result in a smaller or larger
acceptable ensemble size. For an acceptable error of ±15 %,
five ensemble members would be sufficient, while for an ac-
ceptable error of ±5 % at least 25 ensemble members are re-
quired. All of these error estimates are below 100 members
and therefore not dominated by the resampling problem.

For signals on shorter timescales, the required ensemble
size can be quite different. In Fig. 6 we analyse the GSAT
cooling after the Krakatoa eruption in 1883. The forced cool-
ing is quantified as the difference between 1884, the year af-
ter the eruption, and 1882, the year before the eruption. The
200-member mean shows a forced cooling of −0.34 K after
the eruption. Due to internal variability, a single realisation
can even show a warming after the volcanic eruption. More
than one member is required for the ensemble mean to cap-
ture a cooling in all samples. However, the ensemble mean
cooling for five members can still exceed the range from
−0.2 to−0.5 K. More than 50 ensemble members are neces-
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Figure 5. Linear warming trend from 1920 to 2005 for different ensemble sizes shown as a linear trend fitted to the ensemble mean. Black
lines show maximum and minimum 86-year ensemble mean temperature trend from 1000 random samples. Errors are shown as percentage
of the 200-member ensemble mean temperature trend.

Figure 6. GSAT cooling after Krakatoa eruption for different ensemble sizes shown as the ensemble mean temperature difference be-
tween 1882 and 1884. Black lines show maximum and minimum temperature response from 1000 random samples. Errors are shown as
percentage of the 200-member ensemble mean temperature response.

sary to estimate the forced cooling within ±15 % of the true
forced cooling, and approximately 100 members are required
to reduce the error below ±10 %. Due to the resampling
problem, we cannot derive a robust estimate for the ensem-
ble size required to reduce the error to less than±5 %. While
the analysis in Fig. 6 suggests that 150 members would be
sufficient for a ±5 % error, this number is close to the full
ensemble size of 200 members and therefore biased low. The
true required ensemble size to reduce the error to ±5 % is
likely larger than 150 members.

These examples demonstrate that the required sample size
to estimate the forced response depends on the region and
variable (Figs. 3 and 4), as well as the feature of interest in
the forced response (Figs. 5 and 6). Whereas for some ap-

plications five members are sufficient to reduce the error to
an acceptable magnitude, other applications require at least
50 members. A robust estimate for the forced response is
given by the ensemble mean when averaging over the ensem-
ble attenuates internal variability sufficiently (Frankcombe
et al., 2018). The number of members required for this de-
pends both on the magnitude of the forced signal and the
magnitude of internal variability, as well as on the acceptable
error for a specific application.

4.2 Quantifying internal variability

While quantifying the forced response only requires a robust
estimate of the mean, quantifying internal variability requires
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more members because higher-order moments of the distri-
bution need to be estimated. In the following two examples,
we use the second statistical moment of the distribution, the
standard deviation, to quantify internal variability. We note
that, if the distribution deviates from a normal distribution,
only using the standard deviation to quantify internal vari-
ability may not be sufficient.

Here, we investigate internal variability in two regions:
the tropical Pacific, where the variability is primarily driven
by ENSO, and the central United States (34–46◦ N, 116–
96◦W). The tropical Pacific region shows substantial vari-
ability on interannual to decadal timescales. Previous work
has demonstrated that large sample sizes are necessary to
quantify ENSO variability (Maher et al., 2018; Wittenberg,
2009). As a second region, we analyse temperature variabil-
ity over the central United States. We hypothesise that these
two regions should have different requirements for the en-
semble size, with a smaller required ensemble size for the
central United States than the tropical Pacific to stay within
an acceptable error range.

For the following examples we use the 2000-year pre-
industrial control simulation from the MPI-GE. The advan-
tage of this approach, in contrast to the examples for the
forced response, is that the required ensemble size can be
estimated for any model without needing a large ensemble to
be available. The disadvantage is that, when using the pre-
industrial control simulation, we assume that internal vari-
ability does not change under global warming.

We quantify ENSO variability by using the December,
January, and February (DJF) variability in the Niño3.4 box
(5◦ N–5◦ S, 170–120◦W). To ensure that ENSO variability
on interannual to multi-decadal timescales is sampled, we
use the Niño3.4 standard deviation for a 100-year period.
The standard deviation, as computed for the full 2000-year
time series, is used as the truth in this context and indicated
by the horizontal black line in Fig. 7a. To generate synthetic
ensemble members, we split the pre-industrial control simu-
lation into overlapping 100-year segments. Each segment is
used as one ensemble member, and the temporal standard de-
viation over the 100-year segment represents ENSO variabil-
ity for this member. For an ensemble size of one, the spread
in ENSO variability seen in Fig. 7a indicates that individual
100-year periods can have substantially more or less variabil-
ity than the reference value based on the full control run.

To account for this centennial modulation of ENSO vari-
ability, the ENSO variability in multiple ensemble members
can be averaged to get a more accurate estimate of the aver-
age ENSO variability. We simulate different ensemble sizes
by averaging over randomly chosen members for a given
ensemble size and repeat this 1000 times. By using a five-
member mean, the error of the estimated variability in all
samples is within ±15 % of the true value. To reduce the er-
ror below ±10 %, 10 ensemble members are sufficient. To
improve the accuracy so that the ENSO variability estimate

is within±5 % of the truth, nearly 50 ensemble members are
necessary.

For a region with less variability, much smaller ensemble
sizes are sufficient to obtain a similar accuracy. For annual
mean central US temperatures (Fig. 7b) any individual re-
alisation is within ±15 % of the truth and 10 members are
sufficient to increase the accuracy to the ±5 % range around
the truth, whereas 50 members are necessary for ENSO. This
emphasises that for some regions and quantities a moderate
ensemble size or even a single realisation can be sufficient to
quantify internal variability.

In both examples, the long sampling period of 100 years
increases the sample size and thereby improves the accuracy
for individual realisations. This is useful if the objective is
to quantify variability when stationarity can be assumed, but
it can be problematic if the objective is to identify a change
in variability, such as changes in ENSO characteristics under
global warming. A more detailed discussion of estimating
ENSO variability, in particular using the ensemble dimen-
sion instead of the time dimension in transient simulations
to quantify internal variability, can be found in Maher et al.
(2018) and Haszpra et al. (2020).

4.2.1 Notes on sampling from a pre-industrial control
simulation

Sampling from a pre-industrial control simulation to estimate
the required ensemble size has two advantages: this can be
done before producing a large ensemble for the model and
is based on a simulation that is available for every climate
model in CMIP5 and CMIP6. Different approaches can be
used when sampling from a pre-industrial control simulation.
In the following, we discuss different options and their ad-
vantages and disadvantages.

– Overlapping segments (applied here): we choose to use
continuous 100- and 30-year segments to keep temporal
autocorrelation intact. From the 2000-year simulation,
we can thus generate 20 independent, non-overlapping
synthetic realisations (for 100-year segments). To in-
crease the sample size, we allow overlapping segments.
These samples are not independent, which leads to a bi-
ased estimate, as discussed in Appendix A, but enables
estimates for ensemble sizes larger than 20.

– Non-overlapping segments: the advantage of this ap-
proach is that synthetic members can be assumed to be
independent and temporal autocorrelation is kept intact.
However, for long segments or a short pre-industrial
control simulation, only a small number of synthetic
members can be generated.

– Random year selection to generate synthetic segments
or members: the synthetic segments generated by ran-
dom year selection allow for a wider variety of samples
in a segment than continuous segments sampled from
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Figure 7. We show for increasing ensemble sizes the (a) ENSO variability in the Niño3.4 box (5◦ N–5◦ S, 170–120◦W) calculated over
100-year periods, (b) central United States variability (34–46◦ N, 116–96◦W) calculated over 100-year periods, (c) ENSO variability in
the Niño3.4 box calculated over 30-year periods, and (d) central United States variability calculated over 30-year periods. All indices are
calculated from the 2000-year MPI-GE control run. Each index is calculated as a running value at each time step in the control. ENSO
indices are calculated for DJF, and United States indices are calculated for the annual mean. Ensembles of 1 to 120 members are created by
randomly sampling the control simulation without replacement. For each ensemble size we create 1000 artificial ensembles. The estimated
true value is calculated by using the entire 2000 years of the control and is shown as a horizontal black line. The maximum and minimum
values of each index from the 1000 samples are shown as solid black lines. Varying error thresholds are shown as horizontal coloured lines.

the pre-industrial control simulation. However, infor-
mation about temporal autocorrelation is lost, and syn-
thetic segments could have larger variability than con-
tinuous segments in the presence of strong variability
on timescales longer than the segment. If the timescale
of variability is not the focus of a study, sampling ran-
dom years to generate synthetic ensemble members can
be informative to estimate how well statistics computed
across ensemble members (e.g. Maher et al., 2018;
Haszpra et al., 2020) capture the model characteristics.

4.3 Quantifying changes in internal variability

To quantify changes in internal variability, we need a robust
estimate of internal variability both for a reference period and
for a period where we want to investigate a potential change
in variability (e.g. a pre-industrial control state and a time pe-
riod in a future scenario). This problem is more challenging
than the previous examples because the errors for the vari-

ability estimates of the two time periods add up. To demon-
strate this, we use the internal variability of September Arc-
tic sea ice area as an example. Previous work has shown that
the internal variability in Arctic sea ice area first increases
under warming, before it approaches zero when most of the
Arctic sea ice has melted (Goosse et al., 2009; Olonscheck
and Notz, 2017). We analyse the 100 members from the 1 %
CO2 scenario from the MPI-GE and use the ensemble stan-
dard deviation as an estimator of internal variability. After
120 years, nearly all ensemble members show a completely
ice-free Arctic in September (Fig. B1a). The internal vari-
ability increases from model year 1 to year 80, before it
sharply drops, reaching zero around year 120 (Fig. B1b).

Here we focus on the increase in variability from the be-
ginning of the simulation to year 80 and ask how many
ensemble members are necessary to robustly quantify this
change in internal variability. To increase the sample size,
we use a decadal mean of the ensemble standard deviation
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Figure 8. Change in internal variability of September Arctic sea ice is from the first decade to years 71–80 in a 1 % CO2 experiment.
For different ensemble sizes, we compute the ensemble standard deviation and then average for the first decade and years 71–80 before
computing the difference. Black lines show maximum and minimum change in variability from 1000 random samples. Errors are shown as
percentage of the 100-member variability change.

rather than a single year. We then compute the difference in
internal variability between the two time periods for ensem-
ble sizes between 3 and 100 members. Figure 8 shows the
range of this change in internal variability from 1000 ran-
dom samples. To quantify the change in variability within
±15 % of the true value (here defined as the internal vari-
ability change estimated with 100 members), 50 ensemble
members are necessary. An error of less than ±10 % and
±5 % is only reached beyond 50 members. Due to the effect
of resampling beyond 50 members, we cannot estimate the
required ensemble size for these error thresholds from the
100-member ensemble used here. For very small ensemble
sizes, the estimate of the variability change may even show
the opposite sign of the true change, i.e. a decrease in internal
variability.

The large number of ensemble members required to ro-
bustly quantify this change in variability shows that identi-
fying a change in internal variability requires the largest en-
semble size of all examples shown in this study, even when
using decadal averaging to increase the sample size. This is
because a robust estimate of a change in internal variabil-
ity requires a clean separation of internal variability from the
forced response and a robust estimate of internal variability
for two different time periods. Errors in any of these esti-
mates will propagate to the estimated change in variability,
thereby making it more challenging. A small forced change
in internal variability will further complicate this analysis.

A first estimate for the magnitude of a detectable change
in internal variability can be derived from the control run (as
in Fig. 7). Any change in variability that is smaller than the
uncertainty of the estimated internal variability for a given
ensemble size is not detectable. We note that this method can
also be used to add error bars to estimates of forced changes

in internal variability under climate change in small ensem-
bles or single realisations from CMIP and hence determine
the robustness of results.

5 Summary and conclusions

Multiple ensemble members for a single climate model are
required for robustly estimating the model’s forced response
to an external forcing change and its internal variability.
Without a robust characterisation of these model characteris-
tics, differences between models or a model and observations
can easily be misinterpreted as significant differences, while
they could be simply caused by an insufficient sample size.
Therefore it is important to use an ensemble size that is suf-
ficiently large to allow a robust quantification of the model
characteristic that is investigated.

Here we present a generalised approach to estimate the
ensemble size that is required to robustly estimate a model’s
characteristics. While the focus of this study is on the gener-
alised method, the example applications can provide some in-
sight into the required ensemble size for a variety of applica-
tions in the MPI-GE. We differentiate three types of question:
identifying a forced response, quantifying internal variabil-
ity, and identifying a change in internal variability. In a next
step, an adequate error metric for quantifying the deviations
from the true model characteristics is defined, and an accept-
able error suitable for the application is chosen. By subsam-
pling a pre-industrial control simulation or a large ensemble
of transient simulations, the error for different ensemble sizes
can be estimated. By applying the previously selected accept-
able error as a threshold to these error estimates for different
ensemble sizes, the minimum required ensemble size for the
given question and model can be determined. Because the
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subsampling of the full sample does not generate indepen-
dent samples when approaching the full ensemble size, the
error estimate is biased for ensemble sizes close to the avail-
able ensemble size. We demonstrate that this resampling ef-
fect substantially affects the error estimate when using more
than 50 % of the full ensemble. For example, a 50-member
ensemble cannot be used to conclude that 50 members are
sufficient for a given application, because all ensemble esti-
mates beyond 25 members would be affected by resampling
and therefore biased.

We apply the method to several examples and use the 200-
member historical ensemble, a 2000-year pre-industrial con-
trol simulation, and a 100-member 1 % CO2 experiment from
the MPI-GE to estimate required ensemble sizes for various
applications for the MPI-ESM model.

To identify the externally forced temperature response
from 1850 to 2005, most ocean regions require fewer than
10 members, while land regions at higher latitudes may re-
quire more than 50 members. To characterise rainfall changes
over the same period, more ensemble members are required
in the tropics than at higher latitudes. While regions that re-
quire more ensemble members can be objectively identified,
the required number of members depends on a subjective
choice of the acceptable error and can therefore vary sub-
stantially for different applications.

The analysis of the forced cooling after a volcanic erup-
tion and the analysis of ENSO variability demonstrate that
a small ensemble size can lead to a misinterpretation. For
the example of the volcanic eruption, an ensemble consist-
ing of two or three members could show a warming after
the volcanic eruption, while the true forced response of the
model is a cooling. For ENSO, a too-small ensemble still
contains a large uncertainty in the estimate of ENSO vari-
ability. This may lead to a misinterpretation of a signal as a
forced change in ENSO, whereas it might still be within sam-
pling uncertainty. Wittenberg (2009) show that samples from
different time periods in a pre-industrial control simulation
can show substantially different ENSO characteristics. Cai
et al. (2018) on the other hand use single realisations for dif-
ferent models to identify forced changes in ENSO in future
projections. While the robustness of the results seems clear
given most models show an increase in ENSO amplitude, we
show that within a single model differences between realisa-
tions can be large due to internal variability alone. By using
the method introduced in this study, we can add to the ro-
bustness of studies such as Cai et al. (2018) by adding error
bars from the pre-industrial control simulation to each model
to test if changes in variability are indeed robust within each
model.

The examples in this study demonstrate that for some ap-
plications ensemble sizes around five members are sufficient,
while other applications require ensemble sizes well above
100 members. In Sect. 1 we introduced several estimates
for required ensemble sizes from the literature. While most
of the applications from previous studies are not directly
comparable to the examples we use here, the large range
of required ensemble sizes emphasises the need to system-
atically estimate the required ensemble size for each indi-
vidual application. Furthermore, the required ensemble size
may be model dependent. Therefore, the numbers derived in
this and previous studies should only be used as approxi-
mate estimates and supported by a systematic model- and
application-specific estimate following the approach outlined
in this study.

Information about the sufficient ensemble size is not only
crucial when choosing or designing a large ensemble, but it
can also help to identify applications where a small number
of ensemble members is sufficient and thereby inform the
design of multi-model intercomparison studies. The method
introduced in this study can add to the robustness of results
both from single-model large ensembles and multi-model en-
sembles.
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Appendix A: Notes on sampling

In this study, we made several choices on how we sample
from a large ensemble or pre-industrial control simulation.
In this section, we discuss alternative sampling approaches
and caveats.

A1 Resampling with and without replacement

We choose to resample without replacement for all examples
shown. While this choice leads to ambiguities in error con-
vergence as discussed in Sect. A2, we argue that sampling
without replacement is a better proxy for what we try to im-
itate by resampling: a random set of members that we could
have produced when running a given number of realisations.
Sampling with replacement would mean that for example a
randomly sampled five-member ensemble could contain two
(or more) identical realisations. Given how SMILEs are ini-
tialised, this is unlikely to happen, and, even if it did happen,
such an ensemble would not be used as a set of independent
realisations without careful investigation.

In Fig. A1, we repeat the analysis shown in Fig. 2 but al-
low replacement when resampling from the 200 members.
We still use the 200-member mean as the reference for the
forced response in historical GSAT. Sampling with replace-
ment results in a consistently larger error estimate for the
mean RMSE, resulting in a larger required ensemble size for
a given error.

A2 How resampling from a small ensemble can bias the
error estimate

Generating samples without replacement as applied in this
study can bias the error estimate when approaching the full
ensemble size. We use the distribution parameters of the full
ensemble, for example the mean or standard deviation, as the
“truth” in many of the examples shown here. When the size
of the sample approaches the size of the full ensemble, for ex-
ample 190 members from a 200-member ensemble, the dif-
ference between these ensembles will be small because they
share most of their members. This results in a small error es-
timate but does not necessarily mean that 190 members are
sufficient for a given application.

The resampling problem occurs with any limited sample.
At some point, the 1000 random subsamples are not inde-
pendent anymore because they share many of the randomly
drawn members from the full ensemble. Therefore, they look
more similar not only to each other but also to the 200-
member mean. To demonstrate how this resampling affects
our estimate of the error, we deliberately reduce the size of
the ensemble. For instance, by only using the first 150 mem-
bers and repeating the analysis (purple line in Fig. A2), the
random samples are subsets of these 150 members. Because
the 150-member mean is now used as the best estimate, the
RMSE is – by construction – 0 at 150 members. Similar

behaviour can be seen when only using the first 100 (red),
75 (green), 50 (blue), and 20 members (yellow line).

We investigate at which sample sizes the reduction of the
error mainly occurs because of an increased ensemble size,
or simply because of resampling that leads to an error con-
vergence without additional information about a sufficient
ensemble size. For a smaller number of realisations in the
full ensemble, the resampling starts to dominate the error
convergence earlier than in a much larger ensemble. There-
fore, the comparison of the different maximum ensemble
sizes in Fig. A2 indicates when the resampling begins to af-
fect the error convergence. For ensemble sizes that are much
smaller than the maximum ensemble size, the different ran-
dom samples are largely independent and therefore hardly
affected by resampling. When increasing the ensemble size
in the subsamples, the resampling starts to affect the error
estimate for a small maximum ensemble size (e.g. 20 mem-
bers), whereas the samples are still independent when drawn
from a much larger maximum ensemble size (e.g. 200 mem-
bers). The sample size for which the RMSE estimate in a
smaller maximum ensemble size starts to diverge from the
RMSE estimate based on a larger maximum ensemble size
determines the threshold of where resampling substantially
affects the error convergence. Beyond this sample size, the
error estimate should not be used to approximate the true er-
ror.

We find that the RMSE estimates for different maximum
ensemble sizes in Fig. A2 always start to diverge when about
50% of the maximum ensemble size is used. This implies
that up to 50 % of the maximum ensemble size can be used
to estimate the forced response of GSAT in a transient forcing
scenario without a major impact from resampling.

The same resampling problem also occurs for other ques-
tions. To demonstrate this, we investigate how many mem-
bers are necessary to sample ENSO variability. We use the
50-year standard deviation of the Niño3.4 box to quantify
ENSO variability. A single 50-year period is treated as one
ensemble member. Random subsamples of 50-year periods
from the 2000-year pre-industrial control simulation from
the MPI-GE are used to generate a synthetic ensemble. In
Fig. A3, the light blue envelope shows that, by averaging the
standard deviation from more members, a more accurate es-
timate of ENSO variability can be obtained.

We then reduce the maximum ensemble size by using
only 500 (200, 100, and 50) years from the control run. Sim-
ilar to the result in Fig. A2, the error appears to converge
when approaching the maximum ensemble size. By compar-
ing the different maximum ensemble sizes in Fig. A3, we
can see that the resampling begins to affect the error estimate
when the ensemble size approaches 50 % of the maximum
ensemble size.

These two independent lines of evidence demonstrate that
resampling affects the error estimate when using more than
50 % of the available maximum sample size (either ensemble
members or years in a pre-industrial control simulation). Be-
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yond this ensemble size, the analysis does not provide a real-
istic estimate of the error and conclusions about the required
ensemble size will be biased low. We note that for very sim-
ple applications, such as the mean of a stationary time series,
the error scales with 1

√
n

. For more complex error estimates,
such as the RMSE between non-stationary time series, the
scaling law is not as simple, which is why we rely on the
empirical analysis outlined above.

Figure A1. Sampling with or without replacement affects the error estimate and therefore the estimate for the required ensemble size. The
black line shows the mean RMSE for GSAT for ensemble sizes from 2 to 200. The reference is the 200-member mean from Fig. 1, and the
RMSE is computed for all 1000 samples. The shaded area shows the range of RMSE values for individual samples; the solid line shows the
mean RMSE. The red line and shading show the RMSE for ensemble sizes from 2 to 200, but samples are generated by allowing sampling
with replacement.

Figure A2. In a smaller ensemble, the RMSE converges to zero earlier. This is caused by resampling and does not indicate that the error
is small. The black line shows the mean RMSE for GSAT for ensemble sizes from 2 to 200. The reference is the 200-member mean from
Fig. 1, and the RMSE is computed for all 1000 samples. The shaded area shows the range of RMSE values for individual samples; the solid
line shows the mean RMSE. The other colours show the same analysis after excluding the last 50 members (purple), 100 members (red),
125 members (green), 150 members (blue), and 180 members (yellow) from the ensemble.
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Figure A3. Probability density function (PDF) of ensemble-averaged Niño3.4 standard deviations possible in the MPI-GE pre-industrial
control simulation for subsampling ensembles ranging from 50 to 1000 members (shown as different colours) for smaller ensemble sizes.
Each PDF is shown relative to the corresponding ensemble mean value. We use the last 1000 years of the 2000-year control run to calculate
the ranges. The Niño3.4 standard deviation is calculated over 50-year periods. The PDFs are created by resampling the control simulation
1000 times. For each PDF the entirety of the 1000 years is used (i.e. the blue 500-member PDF is the mean of two 500-member PDFs).
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Appendix B: Arctic sea ice area under strong
warming

The internal variability of September Arctic sea ice area is
known to change under global warming. In this study, we use
September Arctic sea ice area as an example for a quantity
with a change in internal variability under global warming.

Previous work has shown that the internal variability in
Arctic sea ice area first increases under warming, before it
approaches zero when most of the Arctic sea ice has melted
(Goosse et al., 2009; Olonscheck and Notz, 2017). We anal-
yse the 100 members from the 1 % CO2 scenario from the
MPI-GE and use the ensemble standard deviation as an es-
timator of internal variability. After 120 years, nearly all
ensemble members show a completely ice-free Arctic in
September (Fig. B1a). The internal variability increases from
model year 1 to year 80, before it sharply drops, reaching
zero around year 120 when all sea ice is lost (Fig. B1b).

Figure B1. (a) September Arctic sea ice area in the 100 realisations for the 1 % CO2 experiment. (b) Ensemble standard deviation for the
100 realisations.
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