Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spring onset forecast using harmonic analysis on daily mean temperature in Germany

MPG-Autoren
/persons/resource/persons256189

Deng,  Qimin
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons219913

Meyer,  Philipp G.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons145742

Kantz,  Holger
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Deng, Q., Meyer, P. G., Fu, Z., & Kantz, H. (2020). Spring onset forecast using harmonic analysis on daily mean temperature in Germany. Environmental Research Letters, 15(10): 104069. doi:10.1088/1748-9326/abb0b0.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-D500-8
Zusammenfassung
The onset of spring is crucial for planning agricultural practices and has influences on animal activities as well. It is no doubt beneficial to properly forecast spring onset in advance. In this work, we present a new method based on harmonic analysis of daily mean temperature to predict the date of spring onset in the next year. The algorithm of the proposed method considers the memory of the seasonal cycle and can be easily conducted using the local past records. This study is based on gridded observational surface air temperature (SAT) in Europe. The SAT data are first decomposed into harmonics by wavelet transform and each harmonic's time-dependent amplitude and phase are extracted. Then the time evolution for amplitude and phase are modelled by an AR(2) process, where we employ a new method to fit its coefficients from the data. This provides a prediction of the time dependent amplitudes and phases in the next year, from which we compose the future seasonal cycle and identify the prediction of spring onset by threshold crossing. We compare our model with a classical climatological seasonal cycle forecast. While this benchmark forecast leads to only very small variations of the predicted onset date, our method yields predictions which vary by about 15 days from year to year. We verify the correctness of our predictions by a correlation measure and the root mean squared errors.