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Abstract

In this thesis we investigate fundamental features of a mechanism that attempts to explain
the origin of the electroweak scale by the condensation of fermions in high color represen-
tations. Since chiral symmetry in the new fermion sector is dynamically broken due to
non-perturbative effects of the running strong coupling this mechanism provides a natural
explanation for the scale of the condensate by dimensional transmutation. Electroweak
symmetry breaking (EWSB) could then be triggered indirectly via a singlet scalar mediator
which couples to the Standard Model Higgs boson and the new fermion sector. In our
analysis particular focus is put to the impact of the representation on the condensate and
the significance of vector-like fermion masses which explicitly break chiral symmetry. In
doing so, we solve the Dyson-Schwinger equation for the fermion propagator within the
rainbow-approximation and analyze the behavior of the dynamical mass. In the chiral limit,
we find a comparatively larger expectation value (EV) of the condensate for fermions in high
representations than for the fundamental representation. A property reflecting the larger
Casimir invariants of higher representations. For massive fermions, we propose a method to
isolate the non-perturbative contributions to the propagator from the perturbative ones and
calculate a lower bound for the EV of the condensate. Our result suggests that in absolute
numbers the EV of the condensate increases with mass, while its relative contribution to
the dynamical mass diminishes. On the basis of these results, we believe the condensation
of a high color fermion with an explicit mass of the order ∼ 10 TeV could successfully create
the scale of EWSB.

Zusammenfassung

In dieser Arbeit untersuchen wir grundlegende Eigenschaften eines Mechanismus zur dy-
namischen Erzeugung der elektroschwachen Skala durch Kondensation von Fermionen, die
unter einer hohen Darstellung der Farbeichgruppe transformieren. Nicht-pertubative Effekte
in der laufenden starken Eichkopplung brechen hierbei dynamisch die chirale Symmetrie
im Bereich der Fermionen und bieten damit eine natürliche Erklärung für die Entstehung
einer neuen Energieskala. Diese Skala kann indirekt, mittels eines neuen Skalars, auf
das Standardmodell übertragen werden und so Auslöser der elektroschwachen Symme-
triebrechung (ESSB) sein. Bei unserer Analyse steht im Vordergrund welche Auswirkung
die Wahl der Repräsentation auf das Kondensat hat und wir gehen der Frage nach, welchen
Einfluss ein expliziter Massenterm auf die dynamische chirale Symmetriebrechung hat.
Unsere methodische Herangehensweise hierfür ist die Lösung der Dyson-Schwinger Gle-
ichung für den Fermion Propagator innerhalb einer geeigneten Näherung. Im chiralen
Grenzfall zeigen unsere Ergebnisse, dass der Erwartungswert des Kondensats für Fermionen
in hohen Repräsentationen vergleichsweise größer ist, als für ein Fermion in der funda-
mentalen Darstellung der Farbeichgruppe. Dies ist eine Eigenschaft, die der größeren
Casimir Konstante von hohen Repräsentationen zuzuschreiben ist. Um das Kondensat für
ein massives Fermion zu untersuchen, ist es erforderlich die nicht-pertubativen Beiträge
zum Propagator von den pertubativen zu trennen. Wir schlagen hierfür ein Verfahren vor
mit dem wir in der Lage sind eine untere Grenze für den Erwartungswert des Kondensats
anzugeben. Unsere Ergebnisse legen nahe, dass absolut gesehen, der Erwartungswert des
Kondensates mit steigender expliziter Masse anwächst, wohingegen der relative Anteil an
der gesamten dynamischen Masse abnimmt. Auf Grundlage dieser Ergebnisse nehmen wir
an, dass die Skala der ESSB durch das Kondensat eines Fermions mit einer Masse von der
Größenordnung ∼ 10 TeV in einer hohen Darstellung der SU(3) erzeugt werden kann.

I



II



Contents

1 Introduction 1

2 Concepts and Methods of Quantum Chromodynamics 5

2.1 Introduction to Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Lie Groups and Lie Algebras . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Casimir Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Representations of SU(3) . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Introduction to Quantum Chromodynamics . . . . . . . . . . . . . . . . . . 9
2.2.1 QCD Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Gauge Invariance and Gauge Fixing . . . . . . . . . . . . . . . . . . 11
2.2.3 Phenomenological Aspects . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Color Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Effective Action for Composite Operators . . . . . . . . . . . . . . . . . . . 17
2.5 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Perturbative Methods in QCD . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Running Coupling Constant . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2 Running Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Operator Product Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Truncation of the Fermion Dyson-Schwinger Equation 31

3.1 Truncation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Numerical Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Effective Strong Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Solution of the Fermion Dyson-Schwinger Equation 39

4.1 Solution in the Chiral Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Chiral Condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Solution for Massive Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Analysis of the Loop Integral . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Extraction of the Condensate . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Generalization to Higher Representations . . . . . . . . . . . . . . . 55

III



CONTENTS

5 Outlook to the Model 59

6 Summary and Conclusion 63

A Conventions 67
A.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Dirac Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 Fundamental Representation of SU(2) and SU(3) . . . . . . . . . . . . . . . 68
A.4 Wick Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B Numerical Integration Methods 69
B.1 Gauss- Legendre Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 Chebyshev-Gauss Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Acknowledgements 71

Bibliography 73

IV



Chapter 1

Introduction

Developments of the past sixty years have led to a successful theoretical description of nature
by the Standard Model of particle physics which includes the Glashow-Weinberg-Salam
theory of electroweak interactions [1, 2, 3] and the theory of quantum chromodynamics
(QCD) [4, 5, 6]. This picture was only recently completed by the discovery of the Higgs
boson in 2012 providing an explanation for the generation of fermion and gauge boson
masses by the Brout-Englert-Higgs mechanism [7, 8]. Although the Standard Model is a
self-consistent theory, we know that it is not a full description of nature as it cannot explain
several observations. Among these are neutrino masses, dark matter, matter-antimatter
asymmetry or the unification with gravity. In addition, there are some astonishing aspects
from theoretical point of view such as the separation of scales.
There emerge three basic energy scales in the Standard Model. These are the Planck
scale Mpl ≈ 1019 GeV, where gravity becomes strong, the electroweak scale v ≈ 250 GeV

responsible for the generation of masses and ΛQCD ≈ 200 MeV, where QCD becomes
non-perturbative. Ordering from low to high values reveals an inherent hierarchy

ΛQCD . v �Mpl .

The origin of the relatively low value of ΛQCD compared to Mpl raises no further questions
as this hierarchy of scales finds a natural explanation by the dynamics of the theory. More
precisely, the dimensionful scale ΛQCD is created from the logarithmic running of the di-
mensionless strong coupling, a mechanism commonly known as dimensional transmutation.
Nonetheless, we cannot explain the smallness of the electroweak scale by this mechanism.
In the first place the large hierarchy between v and Mpl constitutes no problem within the
Standard Model itself. However with an embedding into a high energy theory naturally the
question arises, what stabilizes the electroweak scale against corrections of new physics at
high energies. The fundamental issue of this is that there is no symmetry in the Standard
Model which protects scalar mass terms from large scale corrections. Usually, the fact that
the elctroweak scale is many orders of magnitude smaller than the Planck scale is referred
to as the electroweak hierarchy problem.
A possible starting point in attempting to cure this problem is the introduction of classical
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scale invariance, which is violated at the quantum level. The electroweak scale can then be
generated dynamically by a Coleman-Weinberg mechanism or by dimensional transmutation
in a strongly coupled sector.
Imitating the great success of QCD, we will investigate the properties of a model which
follows the latter approach. The idea goes back to an initial proposal by Lüst, Papantonopou-
los and Zoupanos in 1984 [9, 10]. They suggested to break electroweak symmetry by the
condensation of chiral fermions in high color representations, which couple directly to the
electroweak sector. An approximation of the gap equation suggest that these condensates
generate larger scales than the usual triplet representation as the criticality condition

C2(R)α(Λ2) & O(1) (1.1)

is already fulfilled for smaller values of the strong gauge coupling α owing to the larger
Casimir constant C2(R) of a high representation R [11]. This setting is particularly
attractive as it necessitates no new gauge interactions. However nowadays, the original
proposal is strongly ruled out by modern measurements of electroweak precision observables
such as the well-known Peskin-Takeuchi parameters [12, 13].
This is why we suggest a modified model, where we introduce a vector-like fermion in a
high representation of QCD which is a singlet under the remaining Standard Model gauge
group. The chiral symmetry breaking condensate of the new fermion can then be used to
induce a vacuum expectation value of the Standard Model Higgs boson φ by a singlet scalar
mediator S

〈ψψ〉 −→ 〈S〉 −→ 〈φ〉 . (1.2)

Hence, EWSB is triggered indirectly via the scalar portal. This allows the dynamical
generation of scales, although starting from a classically scale invariant scalar sector.
To create a realistic model the high color fermion should have a vector-like explicit mass
of at least ∼ O(1 TeV), in order to escape from current LHC bounds [14]. Even though
this introduces a scale to the model, it is technically natural as the fermionic mass term is
protected by chiral symmetry.
The main part of this thesis is devoted to the determination of the expectation value of
the condensate (or in the following, the condensate for short) for a high color fermion with
explicit chiral symmetry breaking mass. Instead of using the approximation of Eq. (1.1),
we chose a more thorough method and solve the Dyson-Schwinger equation (DSE) for the
fermion propagator in the rainbow-approximation. By this we obtain the dynamical mass
which allows us to ascertain properties of the condensate, under usage of the operator
product expansion (OPE).
The structure of this thesis will be the following. In chapter 2 we start with an introduction
of some general concepts of quantum chromodynamics. Besides an overview over group
theoretical aspects, this includes the introduction of the Dyson-Schwinger equation for the
fermion propagator within the effective action formalism and a brief review on the OPE
technique. Then, in Chapter 3 we explain the approximation scheme within which we solve
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CHAPTER 1. INTRODUCTION

the Dyson-Schwinger equation and discuss our numerical strategy. The resulting solutions
are presented in Chapter 4. We illustrate the determination of the chiral condensate and
subsequently turn to the massive case. Since the solution of the Dyson-Schwinger equation
for massive fermions includes both perturbative and non-perturbative contributions, a
consistent extraction of the condensate is much more challenging. We approach this
difficulty using the OPE and determine a lower bound for the condensate of massive
fermions.
Chapter 5 is dedicated to give a brief outlook for the suggested model, especially referring
to a possible scale transmission from the new fermion sector to the Standard Model. Finally,
in Chapter 6 we recapitulate our results.
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Chapter 2

Concepts and Methods of Quantum
Chromodynamics

In this chapter we introduce the theoretical framework which will be the footing for the
following studies. Starting with the basics of group and representation theory, we will
continue to introduce the concept of quantum chromodynamics.
Herein, focus is put on different methods which are commonly used to describe both
perturbative and non-perturbative phenomena of the strong interaction.

2.1 Introduction to Group Theory

Symmetry principles belong to the most fundamental tools of physics. Especially in particle
physics they play a major role in the construction of quantum field theories, as they are
based on local (gauge) symmetries. At the classical level, a symmetry of a field theory can
be understood as an invariance of the action with respect to certain transformations of the
fields. These transformations can be identified with elements of a group. Thus, symmetries
are studied within the mathematical field of group theory.

Generally speaking, a group is a set G of elements together with an operation · such
that two elements of the set are mapped to a third one. The set and operation (G, ·) must
satisfy the following conditions [15]:

• For all g1, g2 ∈ G, the operation satisfies g1 · g2 = g3 with g3 ∈ G (closure) and
(g1 · g2) · g3 = g1 · (g2 · g3) (associative),

• there is an identity element 1 ∈ G with 1 · g = g · 1 = g for all g ∈ G and

• for every g ∈ G there exists a unique inverse element g−1 ∈ G, with g ·g−1 = g−1g = 1.

If additionally the group elements commute i. e. g1 · g2 = g2 · g1 for all g1, g2 ∈ G, the
group is Abelian.
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2.1. INTRODUCTION TO GROUP THEORY

2.1.1 Lie Groups and Lie Algebras

In theoretical particle physics, particular emphasis is put to Lie groups which is a special
class of groups with an infinite number of elements, ordered continuously and smoothly
[16]. These characteristics make them perfectly suited to describe gauge symmetries and
continuous global symmetries. Especially the Lie groups U(1), SU(2) and SU(3) are of
importance, as they provide a successful description of the electroweak -and the strong force.
Hereafter, we will give a general overview on the basic properties of Lie groups frequently
referring to the specific example of SU(N).

An element of a compact Lie group can be represented by the Hermitian group generators
T i , i = 1, ..., n via

U(~α) = exp

(
−i

n∑

i=1

αiT i
)
≡ exp

(
−iαiT i

)
, (2.1)

with n continuous parameters αi that label the group elements [15]. The generators fulfill
the commutation relation

[T i, T j ] = if ijkT k , (2.2)

where f ijk denotes the structure constant of the group which is totally antisymmetric under
index exchange. Together with the commutation relation (2.2), the generators form the
according Lie algebra associated to a Lie group. The underlying vector space of the algebra
can be identified with the tangent space of the Lie group at the identity [16]. This is why
it is possible to describe elements of the group near the identity element (infinitesimal
transformations) by the corresponding algebra.
Up to now, the generators T i are simply abstract operators. If a specific set of d × d

dimensional matrices T iR with i = 1, ..n fulfills the commutation relation in Eq. (2.2), this
is called a d dimensional representation of the algebra [16]. In analogue, a representation
for an element of the group is given by the explicit expression U(~α) = exp(−iαiT iR).
Throughout this thesis we use the normalization convention

Tr[T iRT
j
R] = T (R)δij , (2.3)

where T (R) is the Dynkin index. A real number that characterizes a representation.
Furthermore, two d dimensional representations T iR and T ′iR are equivalent if there exists
a unitary d× d dimensional matrix O (common for all generators) which relates the two
representations by T ′iR = OT iRO

†.
If under such a transformation all generators can simultaneously be block diagonalized, the
representation is named reducible. If this is not the case, it is an irreducible representation.
The latter play an important role within the Standard Model, since particles transform
under irreducible representations of the gauge group.
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CHAPTER 2. CONCEPTS AND METHODS OF QUANTUM CHROMODYNAMICS

The above definition yields that reducible representations can be decomposed into irreducible
ones under a unitary transformation [17]

T ireducible → OT ireducibleO
† =




T iirrep1
0

. . .

0 T iirrep2

. . .

. . . . . . . . .




. (2.4)

This process is called Clebsch-Gordan decomposition and we will make use of this property
at a later point, when we consider tensor products of representations [15].
Finally, within this context it is useful to define the rank of a Lie group as the number of
generators which are simultaneously diagonalizable. In case of the group SU(N), the rank
is given by N − 1.

2.1.2 Casimir Invariants

In general, Casimir invariants are sets of operators which commute with all generators of
the group. Therefore, the number of Casimir operators corresponds to the rank of the
group and their eigenvalues are suitable to label irreducible representations 1.
The group SU(N) has N − 1 Casimir operators. Conclusively, an irreducible representation
can be described by N − 1 quantum numbers [18].
In the subsequent, we are especially interested in the characteristics of the quadratic Casimir
operator that is defined by

C2(R)1 =

n∑

i=1

T iRT
i
R , (2.5)

a quantity being proportional to the identity matrix by Schur’s lemma [17].
The quadratic Casimir operator and the Dynkin index of a representation are related by
[16]

T (R)n = C2(R)d(R) , (2.6)

where n is the number of generators of the group and d(R) is the dimension of the
representation. For SU(N), the number of generators is given by N2 − 1.
At this point we remark that for every representation R there exits a complex conjugate
representation R, whose generators are given by

T iR = −
(
T iR

)∗
. (2.7)

1This concept is also applied for spin and angular momentum, where the Casimir operator ~J2
=

∑
i J

i
J
i

commutes with all generators J i of the underlying SU(2) and its eigenvalue j(j + 1) labels an irreducible
representation.
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2.1. INTRODUCTION TO GROUP THEORY

In the next section it will be evident that there is need for such conjugate representations
in order to describe adjoint fields (see Sec. 2.2).
With regard to the different representations of a Lie Algebra we highlight the two most
common ones. This is the fundamental or defining representation and the adjoint repre-
sentation [16]. The former is the smallest representation which is non-trivial. For SU(N),
generators in the fundamental representation are given by N2 − 1 Hermitian and traceless
matrices of dimension N ×N .
Contrary, the adjoint representation acts on the vector space which is spanned by the
generators themselves. Hence, in case of SU(N) with N2 − 1 generators, it is a N2 − 1

dimensional representation which can be defined via the structure constants according to
[17]

(T iadj)
jk = −if ijk . (2.8)

Within the standard model these two representations play a major role, since fermions
which are charged under some SU(N) gauge group, transform according to the fundamental
representation, while the corresponding gauge bosons transform in the adjoint representation.
To give an explicit example we consider the group SU(2). In the fundamental representation
the three generators of the group are proportional to the Pauli matrices ~σ = (σ1, σ2, σ3).
Typically, one uses the normalization convention T ifund ≡ σi/2 so that the Dynkin index
for the fundamental representation is 1/2. From the commutation relation of the Pauli
matrices one can deduce that the structure constants are given by the Levi-Civita tensor
f ijk = εijk. Therefore, the adjoint representation is provided by the three 3× 3 dimensional
matrices whose entries can be written like (T iadj)

jk = −iεijk.
As a second example, attention is put to the group SU(3). Its defining representation
is usually provided by the eight 3× 3 Gell-Mann matrices λi through T ifund = λi/2 (see
Appendix A.3) from which the structure constants can be calculated. The Gell-Mann
matrices are traceless and two of them (conventionally λ3 and λ8) are simultaneously
diagonalizable. Thus, the group has rank two.

2.1.3 Representations of SU(3)

The aforementioned representations play an important role within the Standard Model.
However for this study, we are especially interested in exotic irreducible representations of
the color gauge group. Their characterization in terms of the quadratic Casimir constant
and Dynkin index is of particular importance for our investigation. Therefore, we calculate
these specific quantities for the ten lowest dimensional representations in the subsequent.
We will use the common convention to label representations by their dimension. The
existence of two representations with same dimension but different Casimir constant will
be indicated by a prime.
Since the group SU(3) has rank two, an irreducible representation can be described by two
quantum numbers (p, q) with p, q = 0, 1, 2, ... .
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CHAPTER 2. CONCEPTS AND METHODS OF QUANTUM CHROMODYNAMICS

Not going into mathematical details of a derivation, the dimension of a SU(3) representation
can then be calculated using [18]

d(R) =
1

2
(p+ 1)(q + 1)(p+ q + 2) , (2.9)

and the quadratic Casimir constant is given by [19]

C2(R) =
1

3

(
p2 + q3 + 3p+ 3q + pq

)
. (2.10)

Together with the relationship in Eq. (2.6), one can calculate the Dynkin index. For the
lowest dimensional irreducible representations the resulting values are listed in Tab. 2.1.
For a representation R with quantum numbers (p, q), the complex conjugated representation
R is characterized by (q, p). The formula in Eq. (2.10) yields that the Casimir constant is
symmetrical under the exchange p↔ q and therefore C2(R) = C2(R). Analogously this
also applies to the Dynkin index.

Rep (R) (p, q) C2(R) T (R)

1 (0, 0) 0 0
3 (1, 0) 4/3 1/2
6 (2, 0) 10/3 5/2
8 (1, 1) 3 3
10 (3, 0) 6 15/2
15 (2, 1) 16/3 10
15’ (4, 0) 28/3 35/2
21 (0, 5) 40/3 35
24 (1, 3) 25/3 25
27 (2, 2) 8 27

Table 2.1 List of lowest dimensional SU(3) representations with their according Casimir constant
and Dynkin index, following the conventions from [20].

2.2 Introduction to Quantum Chromodynamics

The theory of strong interaction is described by QCD which bases on the color gauge group
SU(Nc) with Nc = 3 [16]. Fermions that carry color charge experience the strong force and
interact with the gauge bosons, called gluons. In the Standard Model, there are nF = 6

different flavors of strongly interacting spin-1/2 particles that are named quarks. They
transform in the fundamental representation R = 3, while their anti-particles transform in
the anti-fundamental representation R = 3. Hence, the quark fields can be seen as three
component vectors in color space. Contrary, the gauge bosons transform in the adjoint
representation R = 8. Thus, there are eight gluon fields Ai, i = 1, ..., 8.
In the subsequent, we elaborate how the interaction between quarks and gluons is described
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2.2. INTRODUCTION TO QUANTUM CHROMODYNAMICS

within the Standard Model. Nevertheless, we emphasize that the following concepts can
also be applied to fermions in general representations.

2.2.1 QCD Lagrangian

As in other field theories, the interaction between gauge bosons and fermions is described
by a Lagrangian which is invariant under local gauge transformations [21]. For QCD the
Lagrangian is given by 2

LQCD =

nF∑

f=1

ψf
(
i /D −m0f

)
ψf −

1

4
F iµνF

µν
i . (2.11)

In our notation ψf is the Dirac spinor, which represents the quark field of flavor f , and
ψf ≡ ψ†fγ0 is the Dirac adjoint. Together, this spinor structure guarantees Lorentz invariance
of the first part of the Lagrangian. We note that for simplicity the Dirac indices of the
quark spinors as well as the quark color indices are omitted. The current quark mass m0f

is actually generated by spontaneous symmetry breaking in the full Standard Model [7, 8].
Nonetheless, considering QCD alone it can be seen as an explicit mass term. The gauge
covariant derivative is defined as

Dµ = ∂µ + ig0T
iAµi , (2.12)

where the T i are the generators of SU(3) and g0 is the strong coupling constant.
The dynamics of the gluon field are described by the last term of the Lagrangian, where
the field strength tensor of the gluon field is given by

Fµνi = ∂µAνi − ∂νAµi − g0fijkA
µ iAν k , (2.13)

with the structure constant fijk defined in Eq. (2.2). In a short hand notation, we can
write Aµ ≡ Aµi T

i and equivalently Fµν ≡ Fµνi T i, where the sum over index i is implicit.
Considering the trace identities that are satisfied by the SU(3) generators (see Appendix
A.3) the last term of the Lagrangian can be rewritten by

1

4
F iµνF

µν
i =

1

2
Tr[FµνF

µν ] . (2.14)

Together, the covariant derivative and the field strength tensor fulfill the commutation
relation −(i/g0)[Dµ, Dν ] = Fµν .

2The QCD Lagrangian in principle contains a further term allowed by gauge symmetry and renor-
malizability that is ∼ θQCDF

i
µν F̃

µν
i . Here, F̃ µν

i ≡ (1/2)εµνρσF
ρσ
i denotes the dual field strength tensor.

Contrary to the other terms in Eq. (2.11), it violates P (parity), T (time reversal) and CP (charge-parity)
symmetry for θQCD 6= 0 which is also referred to as the strong CP problem. Nevertheless, since this term
has no impact on the following discussion, we will neglect in the succeeding [16].
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CHAPTER 2. CONCEPTS AND METHODS OF QUANTUM CHROMODYNAMICS

2.2.2 Gauge Invariance and Gauge Fixing

The requirement for all terms of the Lagrangian in Eq. (2.11) is to be gauge invariant under
SU(3) transformations. Therefore, we will investigate how the different fields transform in
order to demonstrate that gauge invariance is fulfilled.

Under a gauge transformation, the fermion field transforms as

ψ(x) −→ ψ′(x) = U(x)ψ(x) , (2.15)

where U(x) ∈ SU(3) is a local, unitary transformation that is given by U(x) = exp
(
−ig0αi(x)T i

)

and the αi(x) denote space-time dependent functions that characterize the transformation.
Then, following from the definition of the adjoint fermion field, ψ(x) transforms as

ψ(x) −→ ψ
′
(x) = ψ(x)U †(x) . (2.16)

Since U(x) is unitary, the explicit mass term for fermions is evidently invariant under SU(3)

transformations.
Considering that part of the Lagrangian which includes the covariant derivative, gauge
invariance is not instantly obvious. This is due to the fact that the derivative also acts on
the local transformation U(x) itself. Though, with the gluon field transforming according
to

Aµ(x) −→ Aµ
′
(x) = U(x)

(
Aµ(x)− i

g0
∂µ
)
U−1(x) , (2.17)

it can be shown that the covariant derivative fulfills the transformation rule

Dµψ(x) −→ D′µψ
′(x) = U(x)(Dµψ(x)) , (2.18)

Thus, the term ψ(x) /Dψ(x) is gauge invariant as well. With regard to the definition of the
field strength tensor, Eq. (2.17) yields the transformation property

Fµν(x) −→ Fµν
′
(x) = U(x)Fµν(x)U−1(x) . (2.19)

Hence, following from the cyclicity of the trace operator, Eq. (2.14) is invariant and
therefore the complete Lagrangian of QCD exhibits invariance under gauge transformations.

Proceeding from that, we define the action

SQCD(A,ψ, ψ) =

∫
d4xLQCD . (2.20)

By construction, the action is invariant along the gauge orbit, which is the set of all possible
gauge transformations of a given field configuration O(A,ψ, ψ) = {(A′, ψ′, ψ′)|U(x) ∈
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SU(3)}. In the path integral formalism, the gauge theory is defined by the generating
functional [21]

Z(j, η, η, σ, σ) =

∫
D[A,ψ, ψ, c, c] exp

(
−SQCD(A,ψ, ψ)− SGF (A, c, c) + SC

)
, (2.21)

where SC is the source term that contains the local sources j, η, η, σ and σ

SC =

∫
d4x

[
Aµi j

i
µ + ηψ + ψη + σc+ cσ

]
. (2.22)

To avoid the integration over physically equivalent field configurations within one gauge
orbit, the gauge fixing term

SGF (A, c, c) =

∫
d4x

[
−(∂µA

µ
i )2

2ξ
+ (∂µc

i)(Dµ
ijc

j)

]
(2.23)

is added to classical action [22]. This introduces unphysical auxiliary fields c i and c i that
are anti-commuting spin-0 fields, named ghosts. The covariant derivative in the adjoint
representation is given by Dµ

ij = δij∂
µ + g0fijkA

µk and ξ denotes the gauge parameter
which in principle can be selected freely.
There are two widely spread choices for ξ. These are first of all Feynman gauge where ξ → 1

and secondly, Landau gauge with ξ → 0. In the following we will use the latter, since the
calculations of the next sections will be more simple [11]. The according gauge condition
for Landau gauge is given by ∂µA

µ
i = 0. Hence, gluon fields are purely transverse.

Putting all together, the gauge fixed QCD Lagrangian reads

Lfull = LQCD −
(∂µA

µ
i )2

2ξ
+ (∂µc

i)(Dµ
ijc

j) . (2.24)

Evidently, it does no longer possess local gauge invariance, but it has a BRST symmetry
[23, 24] which ensures that physical observables are independent of the gauge.

2.2.3 Phenomenological Aspects

Before we proceed, we want to mention several interesting aspects that characterize the
strong interaction. As we have outlined, QCD bases on the non-Abelian gauge group SU(3)

and is therefore usually called a non-Abelian gauge theory. A consequence of this property
is that the vacuum polarization of the gluon propagator does not only receive contributions
by fermion loops but also by gauge boson self-interactions and interactions with ghosts (see
Fig. 2.1). The absorption of these vacuum polarization diagrams into the coupling constant
leads to an effective running coupling that depends on the considered momentum scale [25].
As a result, the various contributions have a different impact on the effective coupling [26].
Simply speaking, the contributions of the fermion loop have a screening effect on the color
charge at long distances that makes the effective force weaker. Contrary, the gluon loops

12
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(a) (b)

(c) (d)

Figure 2.1 Feynman graphs that contribute at one-loop to the gauge boson self-energy in QCD
by a fermion loop a), gauge boson loop b), c) and ghost loop d).

have an anti-screening character. Therefore, the basic behavior of the running coupling
depends on the number as well as on the representation of the fermions that participate in
the strong interaction. We will elaborate details on this in Sec. 2.6.1 . For now we note that
within the Standard Model the anti-screening effect of the gluons is dominant. Therefore,
the strong force becomes weak at high momentum (asymptotic freedom) and grows strong
at low momentum (confinement) [11]. This leads to a complete different phenomenology
then in Abelian theories such as quantum electrodynamics (QED), where only the first
diagram in Fig. 2.1 contributes to the one-loop vacuum polarization of the gauge boson.
The non-perturbative growing of the strong coupling constant sets a characteristic energy
scale ΛQCD ∼ 200 MeV [27] where the coupling becomes non-perturbative. This mechanism
is also called dimensional transmutation, since the scale is dynamically generated from the
(logarithmic) running of a dimensionless coupling.
We will focus now on the symmetry aspects. Ignoring the bare quark masses, the QCD
Lagrangian is not only invariant under the gauge group but exhibits a further symmetry,
namely a global chiral flavor symmetry U(nF )L× U(nF )R

3. Since in the Standard Model
the quarks have non-zero masses, this global symmetry is broken. In particular, the masses
of the four heaviest quarks break this symmetry badly, while the two lightest quarks can
be considered as almost massless. This is why we can resort to the useful approximate
U(2)L× U(2)R symmetry, which can be further decomposed into a product of groups, so
that the continuous symmetries of LQCD are given by

SU(3)C︸ ︷︷ ︸
gauge

×SU(2)L× SU(2)R × U(1)B × U(1)A︸ ︷︷ ︸
global

. (2.25)

In the above, the two U(1) factors represent Baryon number and axial Baryon number,
respectively 4.
It is now due to the non-perturbative growing of the strong coupling that in QCD at long

3The indices L and R denote independent transformations for fields of left -and right-handed chirality.
4Baryon number is an accidental symmetry that is conserved by QCD, while the axial Baryon number

is broken by non-perturbative effects related to the triangle anomaly [28].
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distances, the vacuum rearranges and a condensate forms which is a non-zero vacuum
expectation value (VEV) of the composite operator

〈ψψ〉 6= 0 . (2.26)

Decomposing the Dirac fields into left -and right handed Weyl fields by the usual projection
operators ψL = PLψ and ψR = PRψ reveals that the condensate decomposes as

〈ψψ〉 = 〈ψLψR + ψRψL〉 . (2.27)

Thus, it becomes clear that a non-zero VEV breaks the approximate chiral symmetry. This
process is also called dynamical chiral symmetry breaking [29].

2.3 Color Potential

Before going into the details of the dynamics of chiral symmetry breaking, we want to
investigate the question what can be said from a purely group theoretical point of view
about the color force between two fermions. To raise the discussion on more general grounds,
we consider fermions that transform under a general irreducible representation of the color
gauge group in the following.
From the Lagrangian in Eq. (2.11) one can deduce the Feynman rule which corresponds to
the interaction of a gluon with a fermion in representation R of SU(3). This is given by

i;µ ∼ g0γ
µT iR ,

(2.28)

where we indicate the color index i of the gluon as well as the Dirac index µ of the vertex.
In the most simple approach to study the force between two fermions in representations R1

and R2, we assume that they interact by the exchange of a single gluon. Then, according
to the Feynman rule in Eq. (2.28) the diagram that is shown in Fig. 2.2 is proportional to
the factor ∼ g2

0T
i
R1
T iR2

(where no sum over i is assumed) and the sum over the exchange of
all eight possible gluons ultimately leads to a color potential being proportional to

V ∼ g2
0

8∑

i=1

T iR1
T iR2

. (2.29)

Before we evaluate this expression further, it is necessary to take a short look on the tensor
product R1 ⊗R2 of the two representations. In this way we can consider all possible color
combinations of the two initial fermions to a single state.

14
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Ai
g0T

i
R1

g0T
i
R2

Figure 2.2 Feynman graph which creates the color potential between two fermions in SU(3)
representations R1 and R2 in the one gluon exchange approximation.

To give an example, the tensor product of a 3 and a 3 representation of SU(3) can be
decomposed into the irreducible representations 3⊗ 3 = 1⊕ 8 [20].
From the group theoretical point of view, this means that a quark in fundamental repre-
sentation and an anti-quark in anti-fundamental representation can combine to an object
that either transforms as a singlet (not feeling the strong force anymore) or an 8-plet.
Apparently, it is of great importance, which color state is selected. Going back to the
general case, the generators of a tensor product are given by the sum of generators of the
single representations [30]

T iR1⊗R2
= T iR1

⊗ 1R2
+ 1R1

⊗ T iR2
. (2.30)

In a short notation we write T iR1⊗R2
= T iR1

+ T iR2
in a sense that T iR1

only acts on R1

indices and the same for R2 .
With this knowledge we can evaluate Eq. (2.29) in terms of the Casimir constants of the
representations [31]

∑

i

T iR1
T iR2

=
1

2

∑

i

[(
T iR1⊗R2

)2
−
(
T iR1

)2
−
(
T iR2

)2
]

=
1

2
[C2(R1 ⊗R2)c − C2(R1)− C2(R2)] ,

(2.31)

where C2(R1 ⊗R2)c is the Casimir constant of the irreducible representation that the two
fermions are combined to.
To continue with the above example of the fermions being in fundamental and anti-
fundamental representation, we can calculate the color potential for the two possible cases
that are [25]

• ψψ form a singlet: V ∼
(

1

2
C2(1)− C2(3)− C2(3)

)
= −4

3
,

• ψψ form an 8-plet: V ∼
(

1

2
C2(8)− C2(3)− C2(3)

)
= +

1

6
.

The chosen conventions are such that a minus sign indicates an attractive potential. There-
fore, a quark and an anti-quark can form an uncolored bound state (singlet). Meanwhile,
there cannot be a bound 8-plet state, due to the repulsive nature of the color potential.
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R1 R2 (R1 ⊗R2)c V ∝

6 6 1 −10
3

6 6 8 −11
6

6 6 27 +4
3

6 6 6 −5
3

6 6 15 −2
3

6 6 15′ +4
3

6 3 3 −5
3

6 3 15 +1
3

6 3 8 −5
6

6 3 10 +2
3

Table 2.2 Evaluation of the color potential in Eq. (2.31) for all possible interaction channels
between fermions in 6-plet and triplet representations. In our convention a negative potential
denotes an attractive force.

What can be concluded from Eq. (2.31) is that the force becomes the more attractive the
more the color is reduced by the combined state.
We can now ask the question what happens if we add an additional vector-like fermion,
such as for example a 6-plet, to the particle content of the Standard Model. This newly
introduced particle could then interact by exchange of a gluon with an other 6-plet fermion
(anti-fermion) or with an ordinary triplet quark (anti-quark). The according tensor product
decomposition then yields the following possible color combinations for the combined state

6⊗ 6 = 1⊕ 8⊕ 27 ,

6⊗ 6 = 6⊕ 15⊕ 15′ ,

6⊗ 3 = 3⊕ 15 ,

6⊗ 3 = 8⊕ 10 .

(2.32)

The evaluation of the color potential for all these possible combinations5 can be found in
Tab. 2.2. It appears that there are multiple attractive channels. Therefore naturally the
question arises which channel would form a condensate if the strong interaction becomes
non-perturbative.
An answer to this question is suggested by Raby et al. [31]. They proposed that a condensate
forms in the most attractive channel (MAC) when the coupling of the theory grows strong.
In the given example this means that a 6-plet and anti-6-plet form a condensate which is a
color singlet state. Hence, the condensate does not carry color charge and therefore cannot

5The tensor product decomposition was performed using the mathematica package LieART.
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break the color gauge group. This is a necessary requirement to the proposed model, since
a breaking of the gauge group would render massive gluons.
Luckily, the preceding statement is true for all higher dimensional representations that are
considered within this thesis. Therefore, we can assume that a condensate of a high color
fermion is a singlet. Thus, the gauge group SU(3) is not broken.

2.4 Effective Action for Composite Operators

Properties of a quantum field theory can be described by its correlation functions (Green’s
functions). Thus, it is important to have a formalism which allow their derivation.
Many methods in field theories are based on perturbative expansions. Nevertheless, there
are effects which cannot be described in perturbation theory as for instance dynamical
chiral symmetry breaking. Therefore it is necessary to find a method that additionally
include the non-linear characteristics of a quantum field theory.
Such a technique is provided by the effective action formalism. Here, one introduces a
generating functional Γ(φc) for the one-particle irreducible n-point functions, which depend
on the expectation value φc of some quantum field φ [11, 32].
However, within the process of dynamical chiral symmetry breaking, it is not a single
field that obtains an expectation value, but the composite operator of two fields. This is
why it is convenient to introduce an effective action for composite operators Γ(φc, G) that
also depends on the propagator G(x, y), which is the expectation value of the operator
Tφ(x)φ(y). Originally, this idea was introduced by Cornwall, Jackiw and Tomboulis [33],
thereby providing a generalization of the generating functional Γ(φc).
We will introduce the basic principles of the effective action formalism for composite
operators in the following. For the sake of simplicity, we consider a spinless field φ for the
following discussion and comment on the generalization to fermion and gauge boson fields
later.
We begin with the generating functional Z, which is already familiar from Sec. 2.2.2, but
is now extended to include not only local sources J(x) but also bilocal sources I(x, y)

Z(J, I) = exp(iW(J, I))

=

∫
D[φ] exp

(
−S(φ) +

∫
d4xφ(x)J(x) +

∫
d4xd4yφ(x)φ(y)I(x, y)

)
.

(2.33)

In this definition W(J, I) is the generating functional for connected Green’s functions and
the whole expression is normalized to Z[0, 0] = 1. The action of the theory S(φ), can be
written as

S(φ) = −
∫
d4xd4yφ(x)G−1

0 (x− y)φ(y) + Sint(φ) , (2.34)
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with the free propagator G0(x− y) and the interacting part Sint of the action. Furthermore,
defining

δW(J, I)

δJ(x)
= φc(x) ,

δW(J, I)

δI(x, y)
= φc(x)φc(y)− iG(x, y) ,

(2.35)

the effective action is given by a double Legendre transform of W(J, I)

Γ(φc, G) =W(J, I)−
∫
d4xφc(x)J(x)−

∫
d4xd4yφc(x)φc(y)I(x, y)

+ i

∫
d4xd4yG(x, y)I(x, y) .

(2.36)

Eq. (2.35) together with Eq. (2.36) imply that the variation of the effective action with
respect to φc and G is given by

δΓ(φc, G)

δφc(x)
= −J(x)− 2

∫
d4yφc(y)I(x, y) ,

δΓ(φc, G)

δG(x, y)
= iI(x, y) .

(2.37)

Since the physical state corresponds to vanishing sources, one arrives at the stationary
conditions

δΓ(φc, G)

δφc(x)
= 0 ,

δΓ(φc, G)

δG(x, y)
= 0 . (2.38)

Since the effective action Γ(φc, G) is the generating functional for two-particle irreducible
Green’s functions6, it can be derived by a series expansion. The result of the expansion is
given by

Γ(φc, G) = S(φc)−
i

2
Tr lnG−1

0 G+
i

2
TrG−1(φc)G−

i

2
Tr 1 + Γ2(φc, G) , (2.39)

where G−1(φc) is the functional operator

G−1(φc) = − δ2S(φc)

δφc(x)φc(y)
= G−1

0 (x− y)− δ2Sint(φc)

δφc(x)φc(y)
, (2.40)

and Γ2(φc, G) is the sum of all two and higher loop two-particle irreducible vacuum diagrams.
For a proof of Eq. (2.39), we refer the reader to [32, 33].

6A two-particle irreducible Feynman diagram is one which cannot be divided into two separate diagrams
by cutting two lines.
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Usually, one is only interested in translation invariant solutions where φc is a constant and
G(x, y) is merely a function of x− y. Thus, one can define the effective potential

Γ(φc, G) = −V (φc, G)

∫
d4x , (2.41)

for which the stationary conditions of Eq. (2.38) are valid as well. Finally, carrying out a
Fourier transform yields the following expression

V (φc, G) =U(φc) +
i

2

∫
d4p

(2π)4 Tr lnG−1
0 (p)G(p)

− i

2

∫
d4p

(2π)4 Tr
[
G−1(φc, p)G(p)− 1

]
+ V2(φc, G) ,

(2.42)

with the classical potential U(φc) and the sum of all two-particle irreducible vacuum graphs
V2(φc, G), containing the full propagator G. This is also known as the CJT effective
potential [33].
Coming back to QCD, it has to be considered how this result changes in a theory with
fermions and gauge bosons. The contributions from gauge bosons are of the same kind as
shown in Eq. (2.42), but additionally include the Lorentz indices µ and ν. In the case of
fermions, one has to consider Fermi statistics. Thus, all factors 1/2 have to be replaced by
−1.
In the following, the full fermion and gauge boson propagators are denoted by S(p) and
Dµν
ij (p) = δijD

µν(p), respectively and the free propagators are labeled by an index 0. In
the process of dynamical chiral symmetry breaking, one does not expect any of the single
fields to obtain a vacuum expectation value in the absence of sources.
Due to this, the CJT effective potential depends only on the propagators and is given by

V (S,D) = −i
∫

d4p

(2π)4 Tr
[
ln
(
S−1

0 (p)S(p)
)
− S−1

0 (p)S(p) + 1
]

− i

2

∫
d4p

(2π)4 Tr
[
− ln

(
D−1

0, µσ(p)Dσν(p)
)

+D−1
0, µσ(p)Dσν(p)− gµν

]
+ V2(S,D) .

(2.43)

With this result, the basic principle of the formalism is the following. The CJT potential is
an effective potential that depends on the propagators of the theory. The variation with
respect to a propagator yields the corresponding Dyson-Schwinger equation, which is the
quantum equation of motion. Though, the Dyson-Schwinger equation can have multiple
solutions. By the insertion of these solutions into the effective potential it is possible to
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γµ Γν

S

Dµν

S

Figure 2.3 The only 2-PI vacuum bubble, contributing to the variation of V2(S,D) with respect
to S. The thick circles represent full propagators and vertices, respectively.

determine the stable minimum, i.e. the true physical solution.
In the considered case, the two stationary conditions are given by

δV (S,D)

δS
= 0

δV (S,D)

δD
= 0 .

(2.44)

For the beginning, we focus on the first stationary condition. To evaluate the functional
derivative with respect to S, one first needs to know the 2-PI vacuum graphs which give
contributions to δV2(S,D)/δS. Simply speaking, a derivative with respect to S can be
visualized by the process of cutting a fermion line in a Feynman diagram. If there is no
such line in the diagram, the derivative vanishes. Therefore, one only needs to regard those
graphs including at least one propagator S.
Since it is not possible to include all 2-PI vacuum bubbles in the analysis, one has to stick
to some approximation scheme. In this case, the Hartree-Fock approximation is applied
which means only retaining those contributions to V2(S,D) that are lowest order in the
coupling constant [33, 34].
Putting all together, there is only one Feynman graph, which contributes within the chosen
approximation. Its illustration can be seen in Fig.2.3 . The full propagators S and D are
explicitly highlighted by thick black circles, while free propagators will be indicated by bare
lines in the succeeding. Furthermore, the diagram has one bare vertex (black dot) and one
full vertex Γν(white circle) to prevent double counting of diagrams[34]. The contribution
from this diagram is given by

V2(S,D) = i
g2

2

∫
d4p

(2π)4

d4k

(2π)4 Tr
[
γµT

i
RS(p)Γjν(k, p)S(k)Dµν

ij (p− k)
]
. (2.45)

Following from the Feynman rule in Eq. (2.28), each vertex includes a generator of the
representation. Therefore, we introduce the condensed notation Γjν = ΓνT

j
R for the full
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vertex. Ultimately, demanding that V (S,D) is stationary against variations of S yields the
equation

S−1(p) = S−1
0 (p) + ig2C2(R)

∫
d4k

(2π)4γµS(k)Γν(k, p)Dµν(p− k) . (2.46)

The Casimir invariant in above equation arises due to the given color structure of vertices
and gluon propagator

δijT
i
RT

j
R =

8∑

i=1

T iRT
i
R = C2(R) . (2.47)

It should be emphasized that by this, Eq. (2.46) explicitly depends on the representation
R of the participating fermion. The obtained equation is known as the Dyson-Schwinger
equation for the fermion propagator. Its pictographic representation can be seen in Fig. 2.4.
Besides the fermion DSE, an equation for the gluon propagator can as well be derived using
the second stationary condition in Eq.(2.44). In its simplest form, the presented formalism
only includes a functional dependence on the gluon and fermion propagator. Though
in general, within the generating functional formalism one can derive Dyson-Schwinger
equations for every n-point correlation function. Together, they build an infinite tower
of coupled differential equations which relate the correlation functions of a theory with
each other. This is a remarkably powerful tool, since not only the perturbative effects of
QCD are incorporated but also the non-perturbative ones. Nevertheless, in studying the
equations one always has to stick to some truncation scheme.

−1
=

−1
+ γµ Γν

S

Dµν

Figure 2.4 Graphical illustration of the Dyson-Schwinger equation for the fermion propagator.

2.5 Renormalization

During the evaluation of specific Feynman diagrams one encounters divergent integrals
which need to be regularized. This can be done by introducing a regularization parameter
Λ such as for example a momentum cut-off. As a consequence, correlation functions that
are calculated from the regularized expressions artificially depend on this parameter Λ.
However, physical quantities should not depend on the specific regularization procedure.

21



2.5. RENORMALIZATION

In renormalizable theories such as QCD [35], this problem can be cured by introducing
a finite number of renormalization constants Zi which absorb the occurring divergences.
By this, dependencies on Λ are removed and physical quantities are instead defined at the
renormalization scale µ. Therefore, the Zi are generally functions of the regularization
parameter Λ and the renormalization point µ.
For the renormalization of QCD the bare fields, coupling constant and mass are rescaled
according to

ψ =
√
Z2ψR , Gµ =

√
Z3G

µ
R , c =

√
Z̃3 cR ,

g0 = ZggR , m0 = ZmmR ,
(2.48)

where the index R labels renormalized quantities [21]. Additionally, there are the renor-
malization constants Z1F , Z1, Z4 and Z̃1 for the quark-gluon, three-gluon, four-gluon and
ghost-gluon vertices. These quantities are related, by the Slavnov-Taylor identities (STI)
[36], which can be derived from BRST invariance [23, 24]:

Z1F = ZgZ2Z
1/2
3 , Z1 = ZgZ

3/2
3 , Z4 = Z2

gZ
2
3 , Z̃1 = ZgZ̃3 Z

1/2
3 . (2.49)

Since in Landau gauge Z̃1 = 1 , the quark-gluon vertex renormalization factor simplifies to
Z1F = Z2/Z̃3 [36]. The renormalization constants also transfer to the propagators of the
theory. In terms of the bare propagators, they are expressed as

SR(p) = Z−1
2 S(p) ,

Dµν
R (p) = Z−1

3 Dµν(p) ,

Dghost
R (p) = Z̃−1

3 Dghost(p) ,

(2.50)

where Dghost denotes the bare ghost propagator. Since from now on all quantities will solely
denote the renormlized ones, we suspend with the R from now.
From Eq. (2.46) and the above definitions, we finally arrive at the renormalized DSE for
the fermion propagator

S−1(p) = Z2

(
/p− Zmm

)
− Σ′(p) , (2.51)

with Σ′ given by

Σ′(p) ≡ iC2(R)Z1F g
2
∫

d4k

(2π)4γµS(k)Γν(k, p)Dµν(p− k) . (2.52)

For the following, it is convenient to parameterize the full quark propagator in terms of the
Dirac scalar and vector components by

S−1(p) = /p−m− Σ(p)

≡ A(p2)/p−B(p2)

≡ Z−1(p2)
[
/p−M(p2)

]
,

(2.53)
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where Σ(p) is the fermion self-energy, not to be confused with Σ′(p).
Besides, it is common to introduce the vector and scalar dressing functions A(p2) and B(p2).
From these, one can define the quark wave function renormalization Z(p2) ≡ 1/A(p2) and
the mass function M(p2) ≡ B(p2)/A(p2).
The full gluon propagator in Landau gauge is given by

Dµν(p) =
1

p2

(
gµν − pµpν

p2

)
1

1 + Π(p2)
, (2.54)

where Π(p2) is the gluon self-energy and the factor 1/(1 + Π(p2) is usually called the
gluon dressing function. At the renormalization point µ, the boundary (renormalization)
conditions are given by

S−1(p) |p=µ ' /p−m

Dµν(p) |p=µ '
1

p2

(
gµν − pµpν

p2

)
.

(2.55)

Thus, at the scale p = µ the fermion and gluon self-energies both vanish, i.e. Σ(p = µ) = 0

and Π(p = µ) = 0.

2.6 Perturbative Methods in QCD

The DSEs are a suitable tool for investigating both non-perturbative and perturbative
effects of QCD. Nonetheless, in the following we will turn to a method that provides a
description of the perturbative dynamics of QCD alone. Namely, we will examine the
renormalization group equations (RGEs) for the coupling constant and explicit mass. This
should provide a better understanding of the large momentum behaviour of these quantities.

2.6.1 Running Coupling Constant

The RGE for the coupling constant originates from the starting assumption that the bare
coupling g0 must be independent of the renormalization point µ and hence

0 = µ
∂g0

∂ µ
. (2.56)

From this general ansatz one can deduce a differential equation for the renormalized coupling
g that is commonly known as the β-function. To one-loop order, the derivation of the β-
function includes the evaluation of the vacuum polarization graphs shown in Fig. 2.1. With
these, the one-loop running coupling is described by [32, 26]

β(g) ≡ µ ∂g
∂ µ

= − b
2
g3 , (2.57)
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where b is the first coefficient in the expansion in powers of the coupling. Solving this
equation yields

g2(p2) =
2

b ln
(
p2/Λ2

QCD

) , (2.58)

with Λ2
QCD the IR scale parameter of QCD that can be calculated from a reference scale

M2, where the coupling is known according to

Λ2
QCD = M2 exp

(
− 2

bg2(M2)

)
. (2.59)

In the Standard Model, the coefficient b is given by

b =
1

8π2

(
11

3
C2(8)− 2

3
nF

)
, (2.60)

where nF denotes the number of active quarks7. This yields b = 7/(8π2) for nF = 6 active
quark flavors. Since b > 0, Eq. (2.58) demonstrates that the coupling constant decreases
with increasing momentum. Hence, the theory is asymptotic free. Furthermore, we notice
that the maximum number of triplet quarks which could be added without destroying the
asymptotic freedom is nF = 16.
We want to turn now to the question, how fermions in a high color representation contribute
to the running coupling constant. Generally, at one loop the additional contribution of a
vector-like fermion in representation R is described by [37]

bR = − 1

8π2


4

3
T (R)

∏

i=1,2

di(R)


 , (2.61)

with the Dynkin index T (R) of the SU(3) representation and the index i = 1, 2 symbolizing
the U(1)Y and SU(2)L gauge group. Thus, di(R) labels the dimension of the representation
in U(1)Y and SU(2)L space, respectively. We note that this expression is generally valid if
the factor 4

3 is substituted by −11
3 for gauge bosons, 2

3 for chiral fermions and 1
3 for complex

scalars. Following from this, the addition of nV active vector-like fermions that are singlets
under the electroweak gauge group leads to the new coefficient

bnew =
1

8π2

(
11

3
C2(8)− 2

3
nF −

4

3
T (R)nV

)
. (2.62)

Using the Dynkin indices from Tab. 2.1, we find the coefficients bnew listed in Tab. 2.3 for
the lowest dimensional representations. As a result of the rapidly increasing Dynkin indices,

7A quark contributes to the running coupling for momenta higher than the threshold of pair production,
i.e. (2m)

2
< p

2 (see Fig. 2.1a)
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Figure 2.5 The one-loop running coupling α(p2) for the case of the Standard Model particle
content (blue line) and for the case of one additional vector-like fermion with an exemplary mass of
1 TeV in a higher dimesional representation of SU(3).

asymptotic freedom is already lost by adding an additional 10-plet fermion. However, the
supplement of one 8-plet or up to two 6-plets would not destroy this characteristic feature
of QCD.
For our following analysis, we calculate the perturbative running coupling at one-loop for
the Standard Model particle content. For this, we explicitly include the changing value of b
at the thresholds of the three heaviest quarks charm, bottom and top8. The threshold of
the three lightest quarks are of minor significance for our later studies and are therefore
not included. As a reference point for our calculation, we use the coupling at the mass
of the Z boson α(M2

Z) = 0.118 with MZ = 91.2 GeV [27]. Within this calculation, the IR
divergence is located at ΛQCD = 0.157 GeV.
An illustration of the behavior of α(p2) ≡ 4πg2(p2) within the Standard Model is given
by the blue line in Fig. 2.5. Additionally, we show the changed behaviour of the running
coupling if we include the additional contribution of one vector-like fermion in a high color
representation with an exemplary mass of 1 TeV.

8At the particle thresholds, one faces discontinuities in the slope of the running coupling. Therefore,
Λ

2
QCD is promoted to a variable that depends on the number of active particles, in order to make g2(p

2
) a

smooth function of p2
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8π2bnew

Rep (R) T (R) nV = 1 nV = 2

6 5/2 11/3 1/3
8 3 3 −1
10 15/2 −3 −13
15 10 −19/3 −59/3

Table 2.3 First coefficient bnew of the beta function for the strong coupling constant, including
the effects of nV additional vector-like fermions in representation R of SU(3). In our convention, a
negative value indicates loss of asymptotic freedom.

2.6.2 Running Mass

Until now, a clear description of the running coupling in the one-loop approximation was
developed. We will adopt this knowledge to investigate the pure perturbative running of an
explicit chiral symmetry breaking mass. As a reminder from the previous section, the bare
mass m0 is related to the renormalized mass by the renormalization constant

m0 = Zm(Λ2, µ2)m(µ2) , (2.63)

where for clearness all dependencies on the cut-off scale Λ and the renormalization scale µ
are indicated explicitly. Proceeding in a similar way as before, we start by introducing the
anomalous mass dimension

γm(g2) ≡ µ∂ lnZm(Λ2, µ2)

∂µ
. (2.64)

To one-loop order, the derivation of γm includes the evaluation of the fermion self energy,

illustrated in Fig. 2.6, which yields γm(g2) = cg2 with c =
3

8π2C2(R) [38]. With this

knowledge and additionally taking into account the β-function for the running coupling in
Eq. (2.57), we can solve Eq. (2.64) to obtain an expression for the renormalization constant

Zm(Λ2, µ2) =




ln
(
µ2/Λ2

QCD

)

ln
(

Λ2/Λ2
QCD

)



dm

, (2.65)

where we defined the quantity

dm ≡
c

b
=

3C2(R)
11
3 C2(8)− 2

3nF − 4
3T (R)nV

. (2.66)

As outlined in the previous section, this includes only the contributions of active particles
within the considered momentum range.

26



CHAPTER 2. CONCEPTS AND METHODS OF QUANTUM CHROMODYNAMICS

Figure 2.6 Graphical illustration of the one-loop self-energy of the fermion propagator in QCD.

Since the left side of Eq. (2.63) is independent of µ, we can relate the masses at two scales
by the ratio of the renormalization constants which finally yields

m(p2) = m(µ2)




ln
(
µ2/Λ2

QCD

)

ln
(
p2/Λ2

QCD

)



dm

. (2.67)

This analysis demonstrates that the explicit chiral symmetry breaking mass is subject to
a logarithmic running in the UV that is determined by the behavior of the perturbative
running coupling. Since this equation applies to all scales the expression

m̂ ≡ m(µ2)
[
ln
(
µ2/Λ2

QCD

)]dm
, (2.68)

denotes a renormalization group invariant quantity which can be understood as the mass
analogue to ΛQCD.

2.7 Operator Product Expansion

In the previous section, we considered perturbative methods which provide a description
for the large momentum behaviour of the explicit chiral symmetry breaking mass m. We
will now investigate what can be said about the UV asymptotics of the complete dynamical
mass function M(p2). In order to do so, we start by introducing the formal definition of
the fermion condensate.

Rigorously, the bare fermion condensate is defined as the expectation value of the normal-
ordered local operator product with respect to the full non-perturbative vacuum |vac〉
[29]

〈ψψ〉0 ≡ − lim
x→0

Tr〈vac| : ψ(0)ψ(x) : |vac〉 , (2.69)

where exceptionally the fermion fields in above equation should denote the bare ones
and the trace is over both color and Dirac space9. We note that the normal-ordering in
above equation should be understood with respect to the perturbative vacuum |0〉. Then
by definition the fermion condensate vanishes to all orders in perturbation theory, i.e.
〈0| : ψ(0)ψ(x) : |0〉 = 0. Thus, it is purely the result of the non-perturbative dynamics of

9Note, that we chose a different sign convention than the one used in [29] so that the value of the chiral
condensate is positive.
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QCD.
Since the renormalization constant for the composite operator is given by [39]

(ψψ)0 = Z−1
m (Λ2, µ2) (ψψ)µ , (2.70)

Eq. (2.69) can be rewritten in terms of renormalized operators and fields, which leads to
an expressions for the renormalized condensate, given by

〈ψψ〉µ = −Z2(Λ2, µ2)Zm(Λ2, µ2) lim
x→0

Tr〈vac| : ψ(0)ψ(x) : |vac〉 . (2.71)

Though we note, the factor Z2 can be neglected when considering the large momentum
behavior, since the perturbative one-loop calculation in Landau gauge yields Z2(Λ2, µ2) = 1.

A suitable tool to describe the short distance behavior of composite operators is the
operator product expansion which was originally introduced by Wilson [40].
The general concept starts from the fact that the time-ordered product of two local operators
A and B can be expanded by a sum

TA(x)B(y) =
∑

i

Ci

(
(x− y)2

)
Ni(x, y) , (2.72)

where Ci
(

(x− y)2
)
are the Wilson coefficients that are singular in x→ y and Ni(x, y) are

bilocal normal-ordered operators which are regular in the limit x→ y [29]. To explore the
above expression in the limit x→ y it is sufficient to consider a basis for the Ni which is
given by all operators that have the same transformation properties and quantum numbers
as the product A(x)B(y). Hence, with respect to the composite operator of two fermion
fields, a basis is given by gauge invariant and scalar operators such as for example

1 , : ψ(0)ψ(x) : , : ψ(0) /Dψ(x) : , ... . (2.73)

We will apply this to investigate the large momentum behavior of the fermion propagator
that is defined by S(x) ≡ −i〈vac|Tψ(x)ψ(0)|vac〉.
Following the considerations of Lane and Politzer [38, 41], the expansion in the two lowest
dimensional operators 1 and : ψ(0)ψ(x) : is given by

〈vac|Tψ(x)ψ(0)|vac〉 x→0'
[
iγµ∂µC0(x2) +m(µ2)C1(x2)

]
〈1〉+ C2(x2)〈ψψ〉µ + ... , (2.74)

where we applied the definition of the condensate. The Fourier transform of above equation
can now be compared to the expansion of the fermion propagator in Eq. (2.53) for large
momenta

S(p)
p→∞' 1

A(p2)

[
/p

p2 +
1

p2M(p2) + ...

]
. (2.75)
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This leads to the following identifications

−i
p2A(p2)

= C0(p2) , (2.76)

i

p2A(p2)
M(p2) = m(µ2)C1(p2) + 〈ψψ〉µC2(p2) , (2.77)

with the Fourier transformed Wilson coefficients Ci(p
2) =

∫
d4xeipxCi(x

2). At present, from
purely dimensional analysis we already expect the momentum dependencies C1(p2) ∼ 1/p2

and C2(p2) ∼ 1/(p2)2. The exact behavior of the Wilson coefficients can be obtained by the
analysis of the corresponding renormalization group equations with boundary conditions
that originate from the evaluation of the short distance limit x→ 0 in the Green’s function
〈vac|Tψ(x)ψ(0)ψ(y)ψ(z)|vac〉. For details on the derivation, we refer to [32, 41] and quote
here the resulting large momentum behaviour of the dynamical mass function in the lowest
order approximation

M(p2)
p→∞' m(µ2)




ln
(
µ2/Λ2

QCD

)

ln
(
p2/Λ2

QCD

)



dm

︸ ︷︷ ︸
perturbative

+
4π2dm
d(R)

〈ψψ〉inv
1

p2

[
ln
(
p2/Λ2

QCD

)]dm−1

︸ ︷︷ ︸
non−perturbative

, (2.78)

with the renormalization group invariant condensate defined in analogy to the renormaliza-
tion group invariant mass by

〈ψψ〉inv ≡
〈ψψ〉µ[

ln
(
µ2/Λ2

QCD

)]dm , (2.79)

and A(p2)→ 1 for large momenta. Since in the upcoming section, we will always denote
the explicit mass at the renormalization point µ, we suspend with the explicit notation and
simply write m ≡ m(µ2).
To close this section, the following concluding remarks are in order. First of all, it is
important to stress that the derivation of the OPE does not proof that spontaneous chiral
symmetry breaking takes places. It merely provides an expression for the behavior of the
dynamical mass function at large momenta if 〈ψψ〉inv 6= 0.
Secondly, we recognize an essential difference between the two terms contributing to Eq.
(2.78). While at large momenta, the perturbative running mass is logarithmically decreasing,
the non-perturbative condensate decays much more rapidly by 1/p2. We will use this key
observation in Chapter 4, in order to extract the condensate from the dynamical mass
function M(p2) systematically.
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Chapter 3

Truncation of the Fermion
Dyson-Schwinger Equation

In the last chapter, the renormalized form of the fermion DSE was derived. Our aim is now
to solve this equation and find a solution for the full fermion propagator. Especially, we
are interested in the dynamical mass function M(p2), in order to ascertain the value of the
fermion condensate.
As a reminder, we quote here the full form of the fermion DSE as derived in the previous
chapter

S−1(p) = Z2

(
/p− Zmm

)
− iC2(R)Z1F g

2
∫

d4k

(2π)4γµS(k)Γν(k, p)Dµν(p− k) . (3.1)

From this expression it is evident that the fermion propagator S(p) is part of both sides of
the equation. Thus, one needs to solve the equation self-consistently.
The problem in doing so resides in the fact that there are further unknown quantities.
This is on the one hand the full gluon propagator Dµν(p− k) and on the other hand the
dressed quark-gluon vertex Γν(k, p).
As a matter of fact, it is the inherent structure of a DSE for a n-point correlation function,
that it depends on a (n+1)-point correlation function, which itself is subject to its own
DSE. This infinite tower of coupled equations cannot be solved analytically. Thus, it needs
to be truncated in some suitable way, which we will elaborate in this chapter.

3.1 Truncation Scheme

First of all we notice that apart from the renormalization constants, Eq. (3.1) has no
explicit dependence on ghosts. There is rather an indirect contribution through the dressing
function of the gluon propagator and the quark-gluon vertex. The latter is in general
constrained by a STI which includes the ghost dressing function and the ghost-quark
scattering kernel [11].
In a first attempt to simplify the DSE, we will neglect the contributions of ghosts. This
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is a common starting point for the truncation as presumably the effects of ghost can be
included by adjusting the phenomenology in the gluon sector [42, 11].
Ignoring the ghost contributions, the STI for the full quark-gluon vertex becomes equal to
the Ward-Takahashi identity (WTI) of quantum electrodynamics that is given by [42]

qµΓµ(k, p) = S−1(k)− S−1(p) , qµ = pµ − kµ . (3.2)

From studies of the DSE in abelian theories there are ansätze for the dressed quark-gluon
vertex which satisfy above WTI. These are for example the Ball-Chiu vertex [43] or the
Curtis-Pennington vertex [44].
However, we will stick to an even more simplified ansatz and take the bare vertex approxi-
mation

Γµ(k, p) = γµ , (3.3)

commonly also referred to as the "rainbow approximation" (see e.g. [45]). One should keep
in mind that this ansatz does not respect the WTI. Though, investigating the impact of
more advanced vertex structure is beyond the scope of this thesis and will be left for future
work.
In going on with the truncation, we apply a further approximation which is often named
the "abelian approximation" [42, 45]. Here, one replaces the factor

Z1F g
2Dµν(p− k) −→ 4παeff

(
(p− k)2

)
Dµν

0 (p− k) , (3.4)

where Dµν
0 is the free gluon propagator that is given by

Dµν
0 (p) =

1

p2

(
gµν − pµpν

p2

)
. (3.5)

In doing so, it is assumed that the non-perturbative effects of the dressed gluon propagator
are completely incorporated by an effective running coupling constant, which is phenomeno-
logically motivated1 . We will give more details on this at a later point.
For now, the fermion DSE can be decoupled from the gluon DSE and solved in its final
closed form:

S−1(p) = Z2

(
/p− Zmm

)
− Σ′(p) ,

Σ′(p) = iC2(R)4π

∫
d4k

(2π)4αeff((p− k)2)γµS(k)γνD
µν
0 (p− k) .

(3.6)

Recalling from the last chapter, we assume that the fermion propagator can be described
by its Dirac vector and scalar dressing functions S−1(p) = A(p2)/p−B(p2). Thus, in order
to gain knowledge about the full fermion propagator we have to solve Eq. (3.6) for the two
dressing functions A(p2) and B(p2). To do so it is necessary to evaluate the Dirac structure

1Note that in our notation g indicated the coupling at the renormalization scale µ, i.e. g ≡ g(p
2
) |
p
2
=µ

2=

4πα(p
2
) |
p
2
=µ

2 .
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of the right hand side of the equation.
Suppose, there is a similar decomposition of Σ′(p) into a vector and a scalar component

Σ′(p) ≡ Σ′v(p2)/p+ Σ′s(p
2) . (3.7)

Then, putting this decomposition into Eq. (3.6) yields

A(p2)/p−B(p2) =
[
Z2 − Σ′v(p2)

]
/p−

[
Z2Zmm+ Σ′s(p

2)
]
. (3.8)

As a result, we are able to identify the vector and scalar parts of each side of the equation
from which the following system of coupled equations can be obtained

A(p2) = Z2 − Σ′v(p2) ,

B(p2) = Z2Zmm+ Σ′s(p
2) .

(3.9)

The functions Σ′v(p2) and Σ′s(p
2) can be extracted from the whole expression Σ′ by projecting

out the two different components under usage of a Dirac trace

Σ′v(p2) =
1

4p2 TrD
[
/pΣ
′(p)
]
,

Σ′s(p
2) =

1

4
TrD

[
Σ′(p)

]
,

(3.10)

where the factor 1/4 is a normalization factor.
Then, using the standard identities for Dirac matrices that are summarized in Appendix
A.2, the two relevant traces are given by

TrD
[
/pγµS(k)γνD

µν
0 (p− k)

]
=− 4

(p− k)2

A(k2)

A2(k2)k2 −B2(k2)

×
[

3(p · k)− 2

(p− k)2

(
p2k2 − (p · k)2

)]
,

TrD
[
γµS(k)γνD

µν
0 (p− k)

]
=

4

(p− k)2

3B(k2)

A2(k2)k2 −B2(k2)
,

(3.11)

exploiting frequently the relation

p · k =
k2 + p2 − (p− k)2

2
. (3.12)

Next, we have to evaluate the integral over momentum k in Eq. (3.6).
As a start, we perform a Wick rotation to go from Minkowski metric to Euclidean space
(see Appendix A.4). Furthermore, reminding that the dressing functions depend solely on
p2 it is convenient to introduce spherical coordinates.
Generally, the integration in d-dimensional space can be rewritten by introducing spherical
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angles φ and βj , j = 1, .., d−2. Using these new coordinates, the integral can be substituted
according to

∫
ddk =

∫
kd−2

2
dk2dφ

d−2∏

j=1

sink
(
βj
)
dβj

= Ωd

∫
kd−2

2
dk2 sind−2(βd−2)dβd−2 ,

(3.13)

where in the second line the trivial angular dependencies are integrated out and merged
together to the quantity Ωd.
For d = 4 one has Ωd=4 = 4π so that the overall integration measure becomes

∫
ddk =

2π
∫
k2dk2 sin2(β)dβ, where β is defined as the angle between the four vectors k and p

cos(β) =
p · k√
p2k2

. (3.14)

We note that p · k denotes now the Euclidean inner product. Finally, putting all together
we arrive at the two coupled equations

A(p2) = Z2 +
C2(R)

2π2p2

∫
dk2 k2A(k2)

A2(k2)k2 +B2(k2)

∫ π

0
dβ sin2(β)

×
αeff

(
(p− k)2

)

(p− k)2

[
3(p · k)− 2

(p− k)2

(
p2k2 − (p · k)2

)]
,

(3.15)

B(p2) = Z2Zmm+
C2(R)

2π2

∫
dk2k2 3B(k2)

A2(k2)k2 +B2(k2)

∫ π

0
dβ sin2(β)

αeff

(
(p− k)2

)

(p− k)2 ,

(3.16)

which can be solved numerically to find the dressing functions A(p2) and B(p2).

3.2 Numerical Treatment

Before starting the evaluation of Eqs. (3.15) and (3.16), we have to introduce an infrared
(IR) cut-off η and an ultraviolet (UV) cut-off Λ for the integration in radial direction

∫ Λ
2

η
2
dk2 . (3.17)

The IR cut-off is chosen sufficiently small so that we assume its effect will be of no signifi-
cance compared to the whole integral. The UV cut-off Λ is the regularizing parameter of
the divergent integral. Its dependence should however drop out later when we apply the
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renormalization conditions. Within our analysis we use [η2,Λ2] = [10−4 GeV2, 1024 GeV2].

For the numerical implementation we rewrite the angular part of the integral by a coordinate
transformation ∫ π

0
dβ sin2(β) =

∫ 1

−1
dz

√
1− z2 , z ≡ cos(β) . (3.18)

With Eqs. (3.12) and (3.14) it is now possible to express the integrals by the variables z, p2

and k2 only:

A(p2) =Z2 +
C2(R)

2π2p2

∫ Λ
2

0
dk2 k2A(k2)

A2(k2)k2 +B2(k2)

∫ 1

−1
dz

√
1− z2

×
αeff

(
p2 + k2 − 2z

√
p2 k2

)

p2 + k2 − 2z

√
p2 k2

√
p2 k2


z +

2(z

√
p2 −

√
k2)(

√
p2 − z

√
k2)

p2 + k2 − 2z

√
p2 k2


 ,

(3.19)

B(p2) = Z2Zmm+
C2(R)

2π2

∫ Λ
2

0
dk2 3 k2B(k2)

A2(k2)k2 +B2(k2)

∫ 1

−1
dz

√
1− z2

αeff

(
p2 + k2 − 2z

√
p2 k2

)

p2 + k2 − 2z

√
p2 k2

.

(3.20)

Furthermore, we use Gaussian quadrature rules to carry out the numerical integration.
They are based on the idea of representing an integral on the interval [−1, 1] by a weighted
sum of function values at N specific points

∫ 1

−1
W (x)g(x)dx '

N∑

i=1

wig(xi) . (3.21)

Depending on the occurring weighting function, we use different quadrature rules which
determine the weigts wi and evaluation points xi for some chosen N . The accuracy of this
numerical method is increased, the higher the number of evaluation points N . For the
study within this thesis, we evaluated the angular integral with Nz = 100, whereas for the
radial integral we take NR = 500 evaluation points.
Precisely, in case of the radial part of the integral the Gauss-Legendre quadrature is applied,
whereas for the angular integral we use the Chebyshev-Gauss quadrature. More details
on this including the shift of the integration interval for the radial part can be found in
Appendix B.
Conclusively, we discretize the functions A and B on a momentum grid. Since we are
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interested in a wide range of momenta, it is convenient to chose a logarithmic spacing for
the analysis. To this end, all technical procedures are prepared to find a solution for the
fermion DSE by an iteration process adopted from [46]:

1. Start by an initial guess for the discretized dressing functions A(p2) and B(p2).

2. Put these into the right hand side of Eqs. (3.19) and (3.20) in order to calculate the
left hand side .

3. Calculate the discrepancy between the new values obtained for A(p2) and B(p2) and
the old values.

4. If the discrepancy is below some requested accuracy, stop iterating. If it is not, go
back to the second step and continue with the new obtained values for A(p2) and
B(p2), till the desired accuracy is achieved.

In order not to bias the results by distinct initial guesses, the starting point of the iteration
is always chosen the same, i.e. A(p2) = 1 and B(p2) = 0.1 GeV and the iteration is stopped
at an accuracy of one part in 1024.
It is worth to mention that in the chiral limit m = 0, Eq. (3.20) always has the trivial
solution B(p2) = 0 GeV. If the integrated strength of the effective strong coupling is high
enough, there is a second solution with B(p2) 6= 0 GeV. However, using above iteration
procedure one only finds the zero solution if the initial guess of B(p2) is exactly zero.
Starting from a non-zero initial guess, the iteration will always find the chiral symmetry
breaking solution.

3.3 Boundary Conditions

At this point, we want to explain how the renormalization constants Z2 and Zm can be
determined in order to realize the boundary conditions of Eq. (2.55).
Again, setting equal the fermion DSE in Eq. (2.51) with the definition of the full fermion
propagator of Eq. (2.53) yields

Z2

(
/p− Zmm

)
− Σ′(p) = /p−m− Σ(p) . (3.22)

To evaluate this equation further, the Dirac structure of Σ(p) is decomposed by the same
ansatz as done for Σ′(p) in Eq. (3.7) .
Plugging this decomposition back in above equation leads to

[
Z2 − Σ′v(p2)

]
/p−

[
Z2Zmm+ Σ′s(p

2)
]

=
[
1− Σv(p2)

]
/p−

[
m+ Σs(p

2)
]
, (3.23)
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where we can identify the scalar and vector parts of each side of the equation

Σv(p2) = 1− Z2 + Σ′v(p2) ,

Σs(p
2) = Z2Zmm−m+ Σ′s(p

2)

= m [Z2Zm − 1] + Σ′s(p
2) .

(3.24)

Now employing the boundary conditions from Eq. (2.55) at p2 = µ2, we obtain two
expressions for the renormalization constants

Z2 = 1 + Σ′v(µ2) , Zm =
1

Z2
− Σ′s(µ

2)

Z2m
. (3.25)

Throughout our analysis, we use the renormalization point µ2 = 1024 GeV2. Physical
quantities are fixed at this energy scale and thereby dependencies on the cut-off Λ drop out
completely.

3.4 Effective Strong Coupling

Finally, we are left with the question which αeff should be used for the solution of the
fermion Dyson-Schwinger equation.
What is known so far is the behavior of the perturbative running coupling of QCD as
discussed in Sec. 2.6.1. For sure, the effective coupling αeff should behave like the per-
turbative running coupling at large momenta. However, we cannot say much about the
low momentum regime, where QCD confines and passes over to an effective theory of
bound states of fermions. Thus, we are left with the purely phenomenological motivation of
providing sufficient strength in the IR for dynamical chiral symmetry breaking to happen.
This will be done by simply setting the perturbative running coupling to a constant if some
value αmax is reached in the IR. Exemplary, the low momentum behavior is illustrated
in Fig. 3.1 for the one-loop Standard Model running. Note however, that we employ the
same IR truncation if we include the contribution of the new high color fermion to the
perturbative running.
For a massless triplet fermion, it is possible to find a chiral symmetry breaking solution
if αmax & 1. Furthermore, we observe that the dynamically generated mass grows with
an increasing αmax. Thus, we adjust this value so that the generated dynamical mass of
a triplet fermion in the chiral limit is roughly at the order of ∼ 100 − 200 MeV. This is
achieved for αmax = 12.
Other proposals for the effective running coupling are suggested in e.g. [47, 48]. These are
explicitly fine tuned to reproduce the pion decay constant and mass. However, since we
are interested in the investigation of basic properties of a new mechanism, we stick to the
simplest approximation for the beginning.
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Figure 3.1 Effective running coupling αeff(p2) that is cut at a maximum value αmax = 12 in the
IR.
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Chapter 4

Solution of the Fermion
Dyson-Schwinger Equation

In the following chapter, we present the solutions of the DSE that we obtained within the
truncation scheme described in the previous chapter.
We start by considering the chiral limit with fermions in different representations and
show two methods to calculate the expectation value of the condensate. Afterwards, we
investigate the characteristics of solutions for massive fermions and propose a method, in
order to extract a lower bound for the condensate from the dynamical mass function M(p2).
This is illustrated by the example of a triplet representation. Finally, we generalize the
acquired knowledge to massive fermions in higher representations of the color gauge group.

4.1 Solution in the Chiral Limit

To get an impression of the impact of the chosen representation, we start by considering
the chiral limit m = 0 for a fermion in representation R ∈ {3,6,8,10,15} of the color
gauge group, which experiences the effective running coupling, shown in Fig. 3.1.
Remembering from Eq. (3.16), there exist two solutions, one with M(p2) = 0 and one with
M(p2) 6= 0. Nevertheless, investigations of the CJT effective potential in [42] (and references
therein) have shown, that the ground state with M(p2) 6= 0 is dynamically favored. Thus,
what is shown in the following is always the non-zero solution of the Dyson-Schwinger
equation.
The wave function renormalization Z(p2) = 1/A(p2) and the mass function M(p2) =

B(p2)/A(p2) acquired from Eqs. (3.19) and (3.20) can be seen in Fig. 4.1 for the considered
representations.
The solution shows a dynamically generated mass with a non-trivial momentum dependence.
It has its maximum in the IR and rapidly decreases to zero for higher momenta. Again, we
emphasize the fact that although starting from a massless theory, the fermion acquires a
mass. Evidently this shows, that dynamical chiral symmetry breaking is present within the
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Figure 4.1 Fermion wave function renormalization Z(p2) (left) and mass function M(p2) (right)
for the chiral limit m = 0 with fermions in different representations.

employed truncation. Furthermore, one realizes, that the wave function renormalization
Z(p2)→ 1 for large momenta. This is what is expected, since QCD is asymptotic free in
the UV and perturbation theory predicts Z(p2) = 1.
Regarding the differences between the representations, the wave function renormalization
for higher dimensional representations converges much slower towards the UV limit.
Furthermore the results show, that the dynamically generated mass in the IR increases with
increasing Casimir constant. One should remember however, that the Casimir constant
is not linearly growing with the dimension of the representation. In particular, the mass
function of the 10-plet exceeds that of the 15-plet, due to its higher Casimir constant and
the same is true for the 6-plet and 8-plet representation (see Table 2.1).
Additionally we recognize that the mass function for a triplet starts to drop off for momenta
p2 & 10−2 GeV2, while for the 10-plet, the decrease starts at slightly higher scales of roughly
p2 & 10−1 GeV2. Conclusively, chiral symmetry is already broken at higher scales for exotic
representations.

4.1.1 Chiral Condensate

With these solutions at hand, the next step is to determine the expectation value of the
condensate.
In Sec. 2.7, we gave a formal definition for the renormalization point dependent condensate
which we repeat here as a reminder

〈ψψ〉µ = −Z2Zm lim
x→0

Tr〈vac| : ψ(0)ψ(x) : |vac〉 . (4.1)
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In the chiral limit, where the explicit mass is zero, the above expression can be evaluated
further using Wicks theorem

: ψ(0)ψ(x) : = Tψ(0)ψ(x)− 〈0|Tψ(0)ψ(x)|0〉 , (4.2)

and applying the definition of the full, non-perturbative fermion propagator S(x) ≡
−i〈vac|Tψ(x)ψ(0)|vac〉 [49]. The quantity Spert(x) ≡ −i〈0|Tψ(x)ψ(0)|0〉 should be under-
stood, as the perturbative propagator, i.e. a propagator with a mass function M(p2) equal
to zero. Hence, its Dirac trace vanishes and one is left with [11, 50]

〈ψψ〉µ = iZ2Zm lim
x→0

TrS(x) . (4.3)

It is important to keep in mind, that this is only true in the chiral limit. The perturbative
propagator of a massive fermion generally has a non-vanishing mass function.
After performing a Fourier transform, Eq. (4.3) turns into

〈ψψ〉µ = iZ2Zm

∫
d4k

(2π)4 TrS(k) . (4.4)

This expression can now be evaluated for the propagator, which was obtained by the
solution of the DSE. Evaluating the trace and performing a Wick rotation, the angular part
of the integral can be carried out and we finally arrive at

〈ψψ〉µ = Z2Zm
d(R)

4π2

∫
dk2 k

2 Z(k2)M(k2)

k2 +M2(k2)
. (4.5)

The dimension of the representation d(R) enters due to the trace over the color space.
The integrand in the above equation vanishes sufficiently fast for large momenta, so that the
integral is finite. An illustration of this can be seen in Fig. 4.2, where a double logarithmic
display is chosen, in order to highlight the 1/k2 behavior for large momenta. Besides, it is
made evident that the dominant contribution to the condensate originates from the small
momentum regime. Though for the higher representations, the maximum of the integrand
is slightly shifted towards larger momenta.
For the explicit calculation of Eq. (4.5), we extracted the product of renormalization

constants Z2Zm from a massive solution. The renormalization group invariant condensate
can then be calculated from its definition in Eq. (2.79). The results of our calculation are
summarized in Table 4.1.
As can be seen, we found the value 〈ψψ〉1/3inv = 0.049 GeV for the chiral condensate of a
triplet fermion. This value is smaller than the expected order ∼ 0.2 GeV that is found also in
other studies [51]. Presumably, the reason for this lower value is the applied approximation
for the effective coupling αeff . Within our study, it is based on the one-loop perturbative
running coupling, whose IR pole position was calculated to be ΛQCD = 0.157 GeV (see Sec.
2.6.1). Studies, which explicitly fine tune their effective coupling in order to reproduce the
low energy pion and kaon properties, typically apply larger scales of ΛQCD ' 0.250 GeV
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Figure 4.2 Behaviour of the integrand Iferm(k2) ≡ k2 Z(k2)M(k2)/(k2 +M2(k2)) in the calcula-
tion of the chiral condensate 〈ψψ〉µ for different representations.

[50].
Nevertheless, the obtained result for the triplet is at the expected order of magnitude. Thus
we assume, the relative behavior of different representations can be extracted from the
acquired solution. We observe, that the value of the condensate generally increases for
higher dimensional representations. Though, the result does not confirm the assumption
of Lust et al. [10], who claimed that condensates of strongly interacting fermions in high
dimensional representations could generate considerably larger scales than the triplet sector.

Rep (R) Z2Zm dm 〈ψψ〉1/3µ 〈ψψ〉1/3inv

3 0.990 12/21 0.107 GeV 0.049 GeV

6 0.976 30/21 0.467 GeV 0.067 GeV

8 0.978 27/21 0.426 GeV 0.074 GeV

10 0.956 54/21 2.372 GeV 0.072 GeV

15 0.961 48/21 1.885 GeV 0.084 GeV

Table 4.1 Chiral condensate 〈ψψ〉inv obtained from Eqs. (4.5) and (2.79) for fermions in different
representations of the color gauge group.
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Next, we will take the point of view of the operator product expansion and see, if the results
obtained so far are consistent with this approach. As derived in Sec. 2.7, in the chiral limit,
we expect the large momentum behavior of the dynamical mass to be

M(p2)
p→∞' 4π2dm

d(R)
〈ψψ〉inv

1

p2

[
ln
(
p2/Λ2

QCD

)]dm−1
. (4.6)

Using this ansatz, we can do a fit of Eq. (4.6) to the high momentum region of our numerical
solution for M(p2). In order to do so, we used the expectation value of the condensate as
a single fit parameter, with fixed values for dm and ΛQCD = 0.157 GeV and included a
momentum region of p2 ≥ 200 GeV2 to be savely in the perturbative region.
The obtained results for the condensate are shown in Tab. 4.2 and demonstrate a good
agreement to the values, which we calculated before (see Tab. 4.1). This confirms the
consistency with the operator product expansion and simultaneously allows us to estimate
the uncertainty of our calculation.
A graphical illustration of the resulting fit function is shown by the black dashed line in
Fig. 4.3, being in good agreement to our numerical solution. Again, to explicitly highlight
the momentum behavior, we selected a double logarithmic depiction in this plot, where the
1/p2 dependence appears as a straight line.
Meanwhile, the logarithm in Eq. (4.6) is of minor importance and does not contribute
significantly in the large momentum region. Notice that if we include ΛQCD as a second
free fit parameter, the values for the condensates are almost unchanged.
On the other hand, we find a mild dependence of the results on the chosen fit interval.
However, we see this method as a cross check of the preceding calculation and refrain from
further evaluations of the fitting method.

Rep (R) 〈ψψ〉1/3inv

3 0.049 GeV

6 0.070 GeV

8 0.077 GeV

10 0.080 GeV

15 0.093 GeV

Table 4.2 Chiral condensate 〈ψψ〉inv obtained from a fit of the operator product expansion in
Eq. (4.6) to the numerical solution for the dynamical mass function M(p2).

To this end, we have described two methods to obtain the expectation value of the fermion
condensate in the chiral limit. This is on the one hand a direct calculation from the integral
in Eq. (4.5) and on the other hand from the asymptotic behavior, as described by the
operator product expansion. We will now go on and consider the case, where fermions have
explicit chiral symmetry breaking masses.
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Figure 4.3 Fit of the operator product expansion to the large momentum behavior of the
dynamical mass function M(p2). The obtained results for the fit parameter 〈ψψ〉inv can be found
in Tab. 4.2

4.2 Solution for Massive Fermions

Our analysis begins by considering a triplet fermion with an explicit mass m 6= 0, which
experiences the one-loop Standard Model running, as illustrated in Fig. 3.1. We use this
basic setting throughout this section, in order to illustrate the basic characteristics inherent
to massive solutions. Also, we exemplify the extraction method of a lower bound for the
condensate by a triplet fermion. The generalization to higher representations will then be
subject of the next section.

Starting from this, the solution of the Dyson-Schwinger equation for different values
of m can be found in complete analogy to the chiral case. The obtained results for the
wave function renormalization and the mass function are shown in Fig. 4.4 for a selection
of masses in a range between 1 MeV to 1 TeV. For comparison, the chiral limit is illustrated
as well. The result shows, that the wave function renormalization is almost identical for
all solutions in the UV, where the explicit mass is comparatively small to the considered
momentum scale m2 � p2. Though in the IR, we see significant differences and the wave
function renormalization takes lower values for smaller masses.
Concerning the mass function, our result does now include contributions from both the
perturbative running of the explicit mass and a contribution from the non-perturbative
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Figure 4.4 Wave function renormalization Z(p2) (left) and mass function M(p2) (right) for
fermions in a triplet representation with different explicit masses m defined at the scale µ2 =
1024 GeV2. For comparison, the chiral limit m = 0 is depicted as well (blue line).

condensate. Besides, we should remember that the explicit masses are defined at the
renormalization point µ2 = 1024 GeV2, where we applied the renormalization condition
M(p2 = µ2) = m (see Sec. 2.5).
The solution for a light triplet fermion with m = 10−3 GeV is almost identical to the

chiral solution in the IR. For momenta p2 & 10−2 GeV2, we see a decrease of the mass
function that follows the powers law 1/p2 and then passes over smoothly to a logarithmic
running. This behavior illustrates the transition from the low momentum region, where the
non-perturbative effects dominate the mass function, to the perturbative regime in the UV.
The solutions for higher masses show in principle the same behavior. In the IR, the mass
function is enhanced and drops off to lower values in the UV. Though, with growing mass,
it is increasingly difficult to distinguish the perturbative and non-perturbative region.
We remark additionally, that while the mass function of the m = 100 GeV fermion starts
to decrease at momenta p2 & 101 GeV2, the solution with m = 102 GeV only falls off for
values p2 & 105 GeV2. Our first illustrative explanation for this observation is that the
mass scale of the fermion, running in the loop of Fig. 2.4, suppresses contributions from
relatively lower momenta. Therefore, the solution is insensitive to contributions from these
lower scales. Nonetheless, this observation will be investigated further in the next section,
where we will study the dominant contributions of the loop integral.
Finally, to provide a better view on the increase of the mass function for low momenta, we
have a look at the quantity

σ(m) ≡M(p2 = 10−4 GeV2)−m, (4.7)
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which reflects the absolute enhancement of the mass function in the IR with respect to the
explicit mass. The left plot of Fig. 4.5 shows, that σ(m) increases with growing mass m.
On the contrary, the relative enhancement σ(m)/m (right plot) decreases for larger masses.
Before we will turn to the question how the condensate can be extracted from the massive
solution, we will try to understand the behavior of these solutions better. In order to
do so, it is useful to take a look on the integrand of the loop integral, being part of the
Dyson-Schwinger equation.
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Figure 4.5 The absolute IR enhancement of the mass function σ(m) defined in Eq. (4.7) (left)
and the relative enhancement σ(m)/m (right), obtained from the solution of the Dyson-Schwinger
equation for a triplet fermion with different explicit masses m.

4.2.1 Analysis of the Loop Integral

The self-consistent solution of the DSE in Eq. (3.16) includes an integral over the loop
momentum k that arises from the last Feynman diagram in Fig. 2.4. As a reminder, in
Euclidean spherical coordinates it is given by

I(p2) ≡
∫
dk2 k2B(k2)

A2(k2)k2 +B2(k2)
︸ ︷︷ ︸

Iferm(k2)

∫ π

0
dβ sin2(β)

αeff

(
(p− k)2

)

(p− k)2

︸ ︷︷ ︸
Iang(p2, k2)

,
(4.8)

where p denotes the external momentum of the incoming fermion and the angle β is defined

by cos(β) = p · k/
√
p2k2. Since the first part of the above integrand originates from the

fermion propagator, we will refer to this as fermionic part Iferm(k2).
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Figure 4.6 Behaviour of the angular integral Iang(p2, k2) defined in Eq. (4.8) as a function of
the loop momentum k2 for two fixed values of the external momentum p2. The vertical dashed line
indicates the position, where k2 = p2.

The second term of the integrand Iang(p2, k2), arising due to the vertices and the gluon
propagator, includes the only non-trivial angular integration.
It is evident from the definition that the angular part of the integrand decouples except for
its k dependence from the fermionic part, as in our current approximation we employ the
same αeff for all solutions. Thus in the following, we can consider the two parts by their
own. Fig. 4.6 shows the result of the numerical calculation of Iang(p2, k2) as a function of k2

for two fixed exemplary values of p2. This general behavior can be understood, considering
the following approximations

∫ π

0
dβ sin2(β)

αeff((p− k)2)

(p− k)2 ≈





π

2

αeff(p2)

p2 , p2 > k2

π

2

αeff(k2)

k2 , p2 < k2 ,

(4.9)

where the integration over the angle β became trivial. Thus, we expect a constant behavior
in the region p2 > k2 (left side of the vertical dashed line) and a decrease, dominated by
1/k2, for the region p2 < k2 (right side of the vertical dashed line). The largest contribution
to the angular integral arises when the four-vectors p and k are identical, i.e. for

p2 = k2 and z = cos(β) = 1 . (4.10)
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Though, as our αeff is chosen finite also in the IR, the integral is convergent. Summarising,
the angular part of the integrand receives the largest contributions from the region k2 ≤ p2.
We will continue with the second part of the integrand Iferm(k2). Fig. 4.7 shows its behavior
for different explicit masses. What we see, is a suppression of this part of the integrand for
momenta k2 < m2, while the dominant contributions come from the region k2 > m2. In
contrast, the chiral case obtains the largest contributions from the IR at around 10−2 GeV2

and afterwards decreases immediately. This result can also be understood from the formula
itself. Iferm(k2) can be rewritten in terms of the wave function renormalization and the
mass function as

Iferm(k2) =
k2B(k2)

A2(k2)k2 +B2(k2)
=
k2 Z(k2)M(k2)

k2 +M2(k2)
. (4.11)

From the right plot of Fig. 4.5 it can be seen that for large m, the mass function is domi-
nated by the contribution of the explicit mass. Thus, we can use the rough approximation
M(p2) ≈ m, which yields

k2 Z(k2)M(k2)

k2 +M2(k2)
≈ k2m

k2 +m2 , (4.12)

using also the observation that Z(p2) ≈ 1 for large masses. The resulting equation gives a
good approximation of the general behavior found in Fig. 4.7.
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Figure 4.7 Behaviour of the fermionic part of the integrand Iferm(k2) defined in Eq. (4.8) for
different values of m and the chiral limit.
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It is clear that the full integrand consists of the product of the two parts Iferm(k2) and
Iang(p2, k2). However, since the angular part of the integrand is common for all masses,
we can conclude the following relative behavior. For small momenta, the contributions to
the integrand are the more suppressed, the higher the explicit mass. Contrary in the UV,
the larger the mass, the higher the contributions to the integrand. This verifies also our
initial observation, that the mass function is insensitive to contributions from momenta
lower than m.
Finally, we want to say a little more on the term Iferm(k2) on its own. As seen in Sec. 4.1.1,
this integrand also appears in the calculation of the chiral condensate in Eq. (4.5).
If we would apply this equation naively for the massive case as well, we could estimate the
integral to be

∫
d4k

(2π)2 TrDS(k) =
1

4π2

∫
dk2k

2 Z(k2)M(k2)

k2 +M2(k2)

∼
∫
dk2 k2m

k2 +m2

∼ mΛ2 +m3 ln

(
1 +

Λ2

m2

)
.

(4.13)

Here the UV cut-off Λ is introduced in the last line, to explicitly indicate the emerging
quadratic and logarithmic divergences due to the explicit mass term.
This small calculation should only clarify that the formula in Eq. (4.5) cannot be applied
to calculate the condensate of a massive fermion. In doing so, one would include divergent
contributions from the explicit mass that are not connected to non-perturbative effects.
Hence, the question of the next section will be how one can consistently separate the
non-perturbative contributions to the mass function from the perturbative ones.

4.2.2 Extraction of the Condensate

Apparently, the operator product expansion provides a good starting point for our aim
to separate the contribution of the condensate from the mass function. This is because it
already includes the different behavior of the two terms connected to explicit and dynamical
chiral symmetry breaking. As a reminder, we quote here the result of the derivation in Sec.
2.7 for the case of a massive fermion:

M(p2)
p→∞' m




ln
(
µ2/Λ2

QCD

)

ln
(
p2/Λ2

QCD

)



dm

+
4π2dm
d(R)

〈ψψ〉inv

p2

[
ln

(
p2

Λ2
QCD

)]dm−1

+ ... . (4.14)

Note, that this expansion includes only the two lowest dimensional operators and the Wilson
coefficients are calculated from the one-loop renormalization group equations.
In the chiral limit we have seen that the operator product expansion provides an excellent
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tool to obtain the condensate, by fitting the high momentum behavior of the mass function.
In continuing with the massive case, one could hope that this procedure might also work
including the explicit mass term. However, as it turns out, this is a delicate task. Already
for small masses, we see an extreme dependence of the result on the selected fit region and
for larger masses it is almost impossible to capture the rapidly decreasing non-perturbative
contribution in the presence of the dominating explicit mass term.
There are attempts to define an ambiguity free fit algorithm from the existence of unphysical
negative solutions to the Dyson-Schwinger equation [52, 53]. However these are only
successful in a small mass range.
This is the reason why we propose an alternative method to extract the condensate,
motivated by a definition, which is commonly used in lattice calculations [51, 54, 55].
Starting point is the observation, that to the given order, the operator product expansion
is linear in the explicit mass. Hence, if we consider the ratio M(p2)/m, the perturbative
part of the operator product expansion is the same for every solution, and it is possible
to get rid of this term, by subtracting two distinct solutions from each other. This is the
principle idea behind our method.
In a mathematically rigorous way, this can be implemented in form of derivatives with
respect to m. Thus, we promote M(p2) to be not only a function of momentum, but also
of mass M(p2)→M(p2, m). Considering Eq. (4.14), this manifests itself not only by an
explicit dependence, but also by a dependence of the condensate 〈ψψ〉inv → 〈ψψ〉inv(m),
which we assume in the following. Ultimately, it is the function 〈ψψ〉inv(m) we want to
obtain.
Hereafter, the derivative of some general function F with respect to m will be indicated by
a prime d

dmF (m) ≡ F ′(m). With this at hand, we define the quantity

∆M(p2, m) ≡ M(p2, m)−m ·M ′(p2, m)
p→∞' C(p2, m)−m · C ′(p2, m) ,

(4.15)

where the function C(p2, m) is given by the non-perturbative contribution to the operator
product expansion

C(p2, m) ≡ 4π2dm
d(R)

〈ψψ〉inv(m)

p2

[
ln

(
p2

Λ2
QCD

)]dm−1

, (4.16)

and the second equality in Eq. (4.15) assumes the further terms of the expansion to be
negligible. We highlight that the function C(p2,m) has the same momentum dependence
as the derivative C ′(p2,m).
For the numerical determination of M ′(p2, m), we solved the Dyson-Schwinger equation
for 90 different masses in a range between m = 10−5 GeV − 103GeV and calculated the
derivative from the difference quotient. Fig. 4.8 shows the momentum behavior of the
resulting function ∆M(p2,m) for a selection of values m, in case of a triplet fermion. To
have a comparison, the mass functionM(p2) for the chiral limit (blue line) is plotted as well.
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Figure 4.8 Behaviour of ∆M(p2, m) defined in Eq. (4.15) as a function of p2 for a triplet fermion
with different values of m. For comparison, the mass function M(p2) of the chiral limit (blue line)
is shown as well.

We see, that ∆M(p2,m) has qualitatively the same momentum behavior as the chiral case,
characterized by a rapid decrease in powers of 1/p2. The typical logarithmic tail, which is
present for massive fermions in the mass function M(p2), has vanished. Based on that we
assume that this procedure has successfully eliminated the first term of Eq. (4.14). Also,
at first sight the large momentum dependence of ∆M(p2,m) agrees with our expectation of
that of the non-perturbative part of the operator product expansion C(p2, m).
In order to check whether the extracted function has truly the expected momentum behavior,
we have a look at the quantity

∆〈ψψ〉(p
2, m) ≡ ∆M(p2, m) · p2 d(R)

4π2dm

[
ln

(
p2

Λ2
QCD

)]−(dm−1)

p→∞' 〈ψψ〉inv(m)−m · 〈ψψ〉′inv(m) .

(4.17)

On the basis of the operator product expansion, this should be independent of p2 in the
UV. The result for a selection of masses and the chiral case, is depicted in Fig. 4.9 . Note
that we chose a different y-scale in each plot, in order to show only the relevant scale.
In case of the two smallest masses (second and third plot in Fig. 4.9) we see an almost
constant behavior in the large momentum regime. This verifies that the approximation in
the second line of Eq. (4.15) is reasonable and the two first terms of the operator product
expansion are sufficient to describe the small mass range.
However, already for a mass of m = 100 GeV (fourth plot in Fig. 4.9), we see a mild
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Figure 4.9 Behaviour of ∆〈ψψ〉(p
2, m) defined in Eq. (4.17) as a function of p2 for a triplet

fermion with different values of m and the chiral limit. The vertical dashed line in the first three
plots indicates, where we read off the constant UV value for masses up to m ≤ 10−1 GeV.

logarithmic running in the UV. An effect which strengthens with increasing mass. We
believe that this is due to higher order corrections to the operator product expansion
which are not negligible for large masses. Actually, our method eliminates terms linear
in m. However, the example calculation in Eq. (4.13) has revealed also a cubic mass
dependence that is inherent to the integration over the massive fermion propagator. Thus
we believe that additional terms of the order ∼ O(m3/p2) might contribute significantly to
the operator product expansion for large m.
For this reason, we restrict the further analysis to masses up to m ≤ 10−1 GeV, where we
verified from Fig. 4.9 that the next order terms are of minor importance.
We emphasize that this is also consistent with the observation that for approximately
m & 10−1 GeV, the term m3 becomes larger than the chiral condensate.
As a next step, we can read off the value

[
〈ψψ〉inv(m)−m · 〈ψψ〉′inv(m)

]
from the UV

behavior of the function ∆〈ψψ〉(p
2, m). The dashed vertical line in the upper two plots of

Fig. 4.9 indicates that we extracted this value at p2 = 1014 GeV2 for all solutions. This
guarantees to be safely in the constant region.

52



CHAPTER 4. SOLUTION OF THE FERMION DYSON-SCHWINGER EQUATION

10−5 10−4 10−3 10−2 10−1

m [GeV]

10−4

10−3

10−2

[ 〈
ψ
ψ
〉 in

v
(m

)
−

m
·
d d
m
〈ψ
ψ
〉 in

v
(m

)]
[G

eV
3
]

10−5 10−4 10−3 10−2 10−1

m [GeV]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

d d
m
〈ψ
ψ
〉 in

v
(m

)
[G

eV
2
]

Figure 4.10 Extracted value
[
〈ψψ〉inv(m)−m · 〈ψψ〉′inv(m)

]
as a function ofm (left plot) and the

behavior of 〈ψψ〉′inv(m) (right plot) which is only known up to the constant C1. In this illustration,
we chose the arbitrary value C1 = 0 GeV2.

As shown in the left plot of Fig. 4.10, the extracted value increases with m. Additionally
we see, that in the limit m→ 0, the extracted value coincides with the chiral condensate of
a triplet fermion, calculated in Sec. 4.1.1. This provides a consistency check for our method.
Note that the minor kinks within the graph are simply an effect of the finite discretization
in m.
In order to disentangle 〈ψψ〉inv(m) and its derivative, we differentiate one more time and
arrive at an expression for the second derivative

− 1

m
· d
dm

[
〈ψψ〉inv(m)−m · 〈ψψ〉′inv(m)

]
= 〈ψψ〉′′inv(m) , (4.18)

This can subsequently be integrated to find
∫ m

0
〈ψψ〉′′inv(m)dm = 〈ψψ〉′inv(m)− C1 . (4.19)

Though, the derivative 〈ψψ〉′inv(m) is only known up to an integration constant C1, which
has the physical interpretation of the slope at mass zero, i.e.

C1 = 〈ψψ〉′inv(0) . (4.20)

We show the extracted derivative 〈ψψ〉′inv(m) in the left plot of Fig. 4.10 for an exem-
plary value of C1 = 0 GeV2. Irrespective of this unknown constant, which only shifts the
whole graph in y-direction, we observe a decrease in 〈ψψ〉′inv(m) for an increasing value of m.
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Figure 4.11 Condensate 〈ψψ〉inv(m) of a triplet fermion as a function of the explicit mass m,
for a selection of different integration constants C1 = 〈ψψ〉′inv(0). The self-consistency requirement
of having no change in sign within the considered mass region demands a minimum value C1 =
+2.0 GeV2 (blue line).

For now, we take C1 as a new variable, being an artifact of our reparameterization of the
non-perturbative contributions and see how our final result depends on this value. Fig.
4.11 shows the extracted value of the condensate 〈ψψ〉inv(m) for a choice of three different
values of C1. For C1 = 0 GeV2 (red line ), we find an almost constant behavior for small
masses which starts to drop off at around m = 10−3 GeV and becomes negative for masses
higher than m ≥ 5 · 10−3 GeV. The decrease of the value of the condensate is even faster,
if we would choose C1 to be negative. In contrast to that, a positive value of C1 represents
a positive slope at m = 0. Therefore, the decrease to negative values takes places at higher
masses (black line in 4.11).
The fundamental question is, whether it is possible that the condensate changes from
positive to negative values at some scale. In principle, there is no physical reason to assume
that the condensate changes its sign. In doing so, an exceptional mass scale would be
created, where the value of the condensate crosses zero. Hence, for self-consistency reasons
we assume there should be no sign change within the mass range we believe our extraction
method to be valid.
Under this assumption we can constrain the possible value of C1. The minimum value,
which fulfill this requirement up to masses m ≤ 10−1 GeV, is given by C1 = +2.0 GeV2.
This should provide at least a lower bound for the value of 〈ψψ〉inv(m).
Under these assumptions, we see that the lower bound of the condensate increases with
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growing mass. To give a concrete example, for a triplet fermion with m = 10−3 GeV, we
find a boundary value of

〈ψψ〉1/3inv ≥ 0.170 GeV . (4.21)

This is roughly three times higher than what we found for the chiral condensate and agrees
with values found in lattice simulations [51].
Finally we emphasize that in the case of C1 = +2 GeV2 the value of the condensate grows
linearly in m. Hence, we expect the ratio 〈ψψ〉inv(m)/m to be convergent. This is in
agreement with the relative enhancement of the complete dynamical mass function that
was found in Fig. 4.5.

4.2.3 Generalization to Higher Representations

Now, that we have examined the massive solutions for triplet fermions, we want to turn to
higher representations. The basic properties of these solutions are in principle similar to
the fundamental representation. Therefore, we will not go through the whole extraction
method in the same detail as before. Instead, we highlight the main intermediate steps and
focus on the differences between the representations.
To provide insight in a more realistic model, we want to include the effect of the high colour
fermion to the UV behavior of the running coupling. The calculation in Sec. 2.6.1 revealed
that the asymptotic freedom of QCD is lost by the inclusion of an additional 10-plet fermion
or a higher representation. For this reason, we restrict the following analysis to 6-plets and
8-plets 1. Furthermore, since we are ultimately interested in a theory that includes a high
color fermion with a mass of the order TeV, we use a running coupling, where we have
included the contribution of a one TeV fermion for momenta p2 > (2m)2. The resulting
UV behavior is illustrated in Fig. 2.5 .
We emphasize that this is an approximation. Ideally, one should include the contribution
of each considered mass individually. For small masses this approximation leads to an
error, as the contribution of a light additional 6-plet or 8-plet fermion2 would shift the pole
of the running coupling to lower values. However, if the mass threshold is high enough,
the additional contribution only concerns the UV tail of the running coupling and our
approximation has a minor effect.
Within the described approach, we show the wave function renormalization Z(p2) and the
dynamical mass function M(p2) for a 6-plet and an 8-plet fermion with an exemplary mass
of m = 10−1 GeV in Fig. 4.12. In order to provide a better comparison, we present the
results for the 3-plet fermion from the last section as well.
We find that the mass function of the 6 -and 8-plet representation is significantly enhanced
in the IR. This is nothing unexpected, as we already observed this behavior for the chiral

1The possible existence of multiple solutions to the DSE, due to a non-perturbative growing strong
coupling in the UV would be an interesting investigation on its own.

2This is the case if the mass threshold is lower than ΛQCD, i.e. in our calculation for 2m < ΛQCD =
0.157 GeV (see details in Sec. 2.6.1)
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Figure 4.12 Wave function renormalization Z(p2) (left) and mass function M(p2) (right) for
fermions in representations 3,6 and 8 with an explicit mass m = 10−1 GeV.

case. Thereby, the mass function of the 6-plet exceeds that of the 8-plet, due to its higher
Casimir constant (see Tab. 2.1).
Additionally, the mass functions shows a much stronger decrease for large momenta. This
is owing to the anomalous dimension dm, which is larger for higher representations (see
Eq. (2.66)). Therefore, the perturbative running explicit mass, which dominates the UV
behavior of the mass function, shows a steeper descent.
After we have applied our method to eliminate the first term of the operator product
expansion in Eq. (4.14), the surviving non-perturbative contribution ∆M(p2, m) shows a
higher value for the 6 -and 8-plet representation than for the triplet (see left plot Fig. 4.13).
Subsequently, we extract the assumed momentum behavior of the function ∆M(p2, m) to
arrive at ∆〈ψψ〉(p

2, m), which is shown in the left plot of Fig. 4.13 for a fermion of mass
m = 10−1 GeV.
The plot illustrates, that also for higher representations, the quantity ∆〈ψψ〉(p

2, m) is
independent of p2 for large momentum. Thus, we can read off the constant value[
〈ψψ〉inv(m)−m · 〈ψψ〉′inv(m)

]
from the plateau region.

Note that the interchanged ordering between the 6-plet and 8-plet representation stems
from the fact, that the dimension d(R) enters in ∆〈ψψ〉(p

2, m). For masses higher than
10−1 GeV, our results indicate that the next order terms in the operator product expansion
are necessary for a reliable description. Therefore, we proceed similar to the triplet case
and extract a lower bound for the condensate, by constraining the unknown value of
C1 = 〈ψψ〉′inv(0) in a way that there is no change in sign up to m ≤ 10−1 GeV. In other
words, we request the results to be self-consistent up to a certain mass scale.
For the 6-plet fermion we find a minimal value C1 = 25 GeV2 and for the 8-plet C1 =
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Figure 4.13 Momentum dependence of the functions ∆M(p2, m) (left) and ∆〈ψψ〉(p
2, m) (right),

defined in Eqs. 4.15 and 4.17, for fermions in representations 3,6 and 8 with an explicit mass
m = 10−1 GeV. The vertical dashed line in the right plot indicates, where we read off the momentum
independent value

[
〈ψψ〉inv(m)−m · 〈ψψ〉′inv(m)

]
.

35 GeV2. The result of this approach is illustrated by the solid lines in Fig. 4.14, where we
find a linear increase with mass for all representations. Furthermore, our procedure yields
that the resulting lower bound is higher for the 6-plet and 8-plet representations as for the
triplet.
We want to discuss now, whether this result allows conclusions for the higher mass range.
Until now, we do not know if the occurrence of a sign change in the condensate is a feasible
scenario or not. Nevertheless, starting from the fundamental assumption that this should
not be the case, our analysis in the small mass regime has shown that it is always possible to
find a minimal value C1 for which there is no sign change up to a certain mass scale. If we
assume that the general behaviour for masses larger thanm = 10−1 GeV does not drastically
change, then it should in principle also be possible to find a minimal value C1 which fulfills
this requirement up to higher masses. In particular our analysis indicates that this would
demand a larger value of C1 which raise the lower bound for the condensate to higher values
(see Fig. 4.11). On the basis of these assumptions we believe the linear extrapolation of
the lower bound we found by requesting self-consistency up to m = 10−1 GeV should in
particular also be a lower bound for higher masses. An illustration of this extrapolation is
shown by the dashed line in Fig. (4.14).
Nonetheless, we want to stress that this bases on the one hand on the assumption that
there exits a minimal value C1 for which there is no change in sign of the condensate up
to the TeV scale and secondly that this value is equal or higher than that we found by
requesting consistency up to m = 10−1 GeV.
To answer whether these assumptions are correct, it would be necessary to extend our
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Figure 4.14 Lower bound for the condensate 〈ψψ〉inv(m) of massive fermions in representations
3,6 and 8 (solid lines), where the minimum value of the unknown constant C1 = 〈ψψ〉′inv(0) is
chosen for each representation such that there is no change in sign for m ≤ 10−1 GeV. The dashed
lines indicates a linear extrapolation of the found behavior to higher masses.

extraction method of the non-perturbative part of the dynamical mass function to higher
explicit masses by including the next order term of the operator product expansion. Then,
we could examine what particular choice of C1 would be necessary to guarantee that the
condensate is positive up to larger masses. We note also that for the triplet case this result
then needs to be cross checked not to be in conflict with the known condensates of the
lightest quarks.
Nonetheless, under these assumption the extrapolation shown in Fig. 4.14 suggest that a
6-plet or 8-plet fermion with a mass of roughly around ∼ 10 TeV could have a condensate
at the order of the electroweak scale

〈ψψ〉1/3inv & 100 GeV . (4.22)

We will give a short overview in the next chapter how this scale could be transmitted to
the Standard Model in order to induce a VEV of the Higgs boson.
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Chapter 5

Outlook to the Model

In this chapter we will give a short outlook on the possible realization of a model that
includes a fermion in a high color representation. With this we mainly intend to outline an
approach how the scale of chiral symmetry breaking in the new fermion sector could be
transmitted to the Standard Model.

In summary, the principle idea of our study is to introduce a vector-like fermion in a
high representation of the color gauge group. Due to non-perturbative effects of the running
coupling, the new fermion forms a condensate and therefore dynamically breaks chiral
symmetry. The question is how the scale that is generated by the condensate can be
transmitted to the Standard Model in order to induce EWSB. In the original proposal by
Lüst, Papantonopoulos and Zoupanos, the high color fermion itself carries the charge of the
electroweak gauge group [9, 10]. Hence, electroweak symmetry is directly broken by the
condensate. Since nowadays the electroweak precision observables severely constrain new
physics in the electroweak sector, we refrain from this approach. Instead, we propose an
indirect scale transmission by a singlet scalar mediator S which couples to both the new
fermion and the Standard Model Higgs boson φ. In more detail, this works as follows.
With the assigned charges given in Tab. 5.1, the high color fermion can be coupled to the
scalar S by a Yukawa interaction. Then the Lagrangian of the vector-like fermion sector is
given by

LVLF = ψ
(
i /D −m− yS

)
ψ , (5.1)

with the first two terms describing the dynamics and explicit mass of the fermion and the
last term denoting the Yukawa interaction with the dimensionless coupling y.
We highlight that the high representation of the new fermion forbids a direct coupling
to ordinary triplet quarks. Therefore, there are no further constraints from mixing with
Standard Model particles at tree level.
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Particle SU(3)c SU(2)L U(1)Y

ψ R 1 0

S 1 1 0

Table 5.1 Representations of the newly added fermion ψ and scalar S under the Standard Model
gauge group with R ∈ {6,8}.

In our model, we assume classical scale invariance of the scalar sector and the explicit mass
of the high color fermion constitutes the only emerging energy scale. Therefore, the scalar
potential is given by

V (φ, S) = λφ(φ†φ)2 +
1

4
λSS

4 − 1

2
λφSS

2(φ†φ) , (5.2)

with the quartic couplings λφ and λS and the scalar portal coupling λφS . We emphasize that
classical scale invariance forbids explicit mass terms for S and φ which would in principle
be allowed by gauge invariance under the Standard Model gauge group.
Next, the formation of the high color fermion condensate acts as a source term that
introduces a scale to the potential in form of a tadpole term that is generated for S. In
terms of a tree level effective potential, this can be written as

Veff(φ, S) = λφ(φ†φ)2 +
1

4
λSS

4 − 1

2
λφSS

2(φ†φ)− y〈ψψ〉invS . (5.3)

By this, the scalar S can acquire a VEV which is subsequently transmitted to the Higgs
boson by the scalar portal term, thus triggering EWSB.
For the successful development of non-zero expectation values of both scalars, the potential
must satisfies the stability condition 4λφλS > λ2

φS and additionally λφ > 0 and λS > 0.
Then using the notation in unitary gauge for φ, the scalar fields can be expanded around
their minima

φ(x) =
1√
2

(
0

v + h(x)

)
, S(x) = w + s(x) , (5.4)

where v and w denote the VEV’s of the two scalars. From minimization of Eq. (5.3) we
find that the ratio of their VEV’s is given by

v2

w2 =
λφS
2λφ

, (5.5)

with

w2 =

(
4yλφ〈ψψ〉inv

4λφλS − λ2
φS

) 2
3

, (5.6)

yielding a Higgs VEV of

v2 =
λφS
2λφ

(
4yλφ〈ψψ〉inv

4λφλS − λ2
φS

) 2
3

. (5.7)
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Our study in the previous chapter suggests that the condensate of a 6-plet or 8-plet fermion
with a mass of ∼ 10 TeV could be at least of the scale 〈ψψ〉1/3inv & 100 GeV. If we use the
lower bound, the exemplary selection of couplings

y = 1 , λφ = 0.18 , λS = 0.02 , λφS = 0.09 , (5.8)

leads to the VEV’s of the two scalars

v = 243 GeV ,

w = 485 GeV .
(5.9)

This example calculation demonstrates that with a suitable choice of parameters we can
induce a VEV of the Higgs boson that is at the correct order to trigger EWSB in the
Standard Model. In particular from Eq. (5.7) we realize that by adjusting the couplings
of the scalar potential, the scale of the VEV’s can be larger than the original scale of the
condensate. Although this requires an explicit fine tuning of the parameters.
To close this Chapter, we stress that this should only provide an outlook on the possible
scale transmission. A detailed study of the parameter space and the according scalar mass
spectrum is beyond the scope of this thesis and will be left for future work.
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Chapter 6

Summary and Conclusion

From a theoretical point of view, the origin of the electroweak scale and its smallness
compared to the Planck scale is one of the intriguing puzzles of the Standard Model. In this
thesis we studied a mechanism which attempts to provide a dynamical explanation for the
generation of the electroweak scale. Namely, we investigated whether a vector-like fermion
in a high representation of the color gauge group can form a chiral symmetry breaking
condensate of the order of the electroweak scale which indirectly triggers EWSB.
The main part of this thesis was dedicated to explore the impact of the representation on
the condensate and to answer the question in what sense a vector-like explicit mass of the
fermion influences dynamical chiral symmetry breaking.
To address these questions, we solved the Dyson-Schwinger equation for the fermion propa-
gator. We used a truncation scheme where the full fermion-gluon vertex was replaced by the
bare one (rainbow-approximation) and applied a phenomenologically motivated effective
running coupling to incorporate the non-perturbative effects of the unknown dressed gluon
propagator (see Chapter 3).
We found that if the applied effective running coupling provides sufficient integrated strength
in the IR, there are two distinct solutions to the Dyson-Schwinger equation in the chiral
limit. Precisely, there is one chiral symmetry preserving solution, where the mass is exactly
zero, and one solution with a dynamically generated mass breaking chiral symmetry.
This manifests that dynamical chiral symmetry breaking is present within the applied
truncation.
Our analysis started by considering the simplified model of a high color fermion in the chiral
limit that experiences the one-loop perturbative running coupling of the Standard Model.
From the chiral symmetry breaking solution of the DSE, we calculated the expectation
value of the condensate up to the 15-plet representation. For this purpose, we used two
different methods. The first one bases on the formal definition of the chiral condensate in
Eq. (4.1) and the second method uses a fit of the OPE to the large momentum behavior
of our numerical solution. The obtained results are summarized in Tabs. 4.1 and 4.2
and show a good agreement that validated the consistency of the two approaches. For a
chiral triplet condensate we found 〈ψψ〉1/3inv = 0.049 GeV which is lower than the expected
order ∼ 0.2 GeV [51]. We believe this to be a consequence of our applied approximation
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for the effective running coupling providing too little integrated strength in the IR (see
Sec. 4.1.1). Within our approximation, we found a generally increasing condensate for
higher representations. For example, our analysis yielded 〈ψψ〉1/3inv = 0.067 GeV for a 6-plet
fermion which is around 30% higher than the triplet condensate. Nevertheless, we did not
observe the generation of significantly larger scales solely due to the higher representation
as suggested by Lüst et al. [9, 10].
Next, we considered fermions with an explicit symmetry breaking mass. In this case, the
dynamical mass function shows a qualitatively different behavior since it includes not only
non-perturbative contributions connected to dynamical chiral symmetry breaking but also
the perturbatively running explicit mass (see Fig. 4.4). We proposed a method to extract
the non-perturbative contributions under usage of the first two terms of the OPE (see Sec.
4.2.2). From our studies, we believe this approach to be reliable for explicit masses up to
approximately m = 10−1 GeV as higher order corrections to the OPE become significant
for larger masses. Remnant of our extraction method is the appearance of the variable
C1 ≡ d

dm〈ψψ〉inv(m = 0) that is the slope of the condensate at zero mass. We considered
this unknown quantity as a new parameter and calculated the condensate for different C1

(see Fig. 4.11). Our study revealed that if C1 is chosen too small, the expectation value of
the condensate changes from positive to negative values within the considered mass range.
Since there is no physical reason to assume that this should be the case, we constrained the
parameter space and found the minimum value C1 which fulfills the requirement of having
no change in sign up to the mass scale we believe our extraction method to be valid. This
yielded a lower bound for the condensate that increases linearly with the explicit mass.
Our analysis in the small mass regime showed that it is always possible to find a minimum
value for C1 such that the expectation value of the condensate does not change its sign
up to a certain mass scale. As we do not expect a fundamental change in the behavior
for larger masses, we assumed that this should also be the case for the higher mass range.
Our study indicated that this requires a larger value C1 which lifts the lower bound for the
condensate. Hence, in a first approximation the linear extrapolation of the lower bound we
found by requesting consistency up to m = 10−1 GeV should in particular also be a lower
bound for higher masses.
Basing on the described assumptions we carried out our analysis for massive 6-plet and
8-plet representations as these do not destroy the asymptotic freedom of QCD by their
additional contribution to the running coupling constant. We compared our results to the
triplet case and found that the lower bound for the condensate is higher for 6-plet and
8-plet representations (see Fig. 4.14). Furthermore, our study suggests that a 6-plet or
8-plet fermion with an explicit mass of ∼ 10 TeV could have a condensate of the order of the
electroweak scale 〈ψψ〉1/3inv & 100 GeV. With this result we gave an outlook for a possible
scale transmissions to the Standard Model by a singlet scalar mediator that induces a VEV
for the Higgs boson and thereby indirectly causes EWSB (see Chap. 5).
These initial results motivate to study the suggested mechanism in more detail. For this
purpose, our method to extract the non-perturbative contribution to the dynamical mass
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function constitutes a useful starting point that can be extended to include the next order
term of the OPE. This would make a further analysis of the high mass range to an interesting
work for future studies.
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Appendix A

Conventions

A.1 Units

Throughout the whole thesis, we use natural units, i.e.

~ = c = 1 . (A.1)

A.2 Dirac Algebra

The chosen convention for the metric gµν is

gµν = diag(1, −1, −1, −1) . (A.2)

The Dirac matrices fulfill the anti-commutation relation

{γµ, γν} = 2gµν . (A.3)

During the calculations carried out within this thesis, the following identities have frequently
been used:

gµνgµν = 4 , (A.4)

γµg
µνγν = γνγν = 4 , (A.5)

γµγνγµ = −2γν . (A.6)

Additionally, there are useful trace identities

TrD [γµ] = TrD [γµγνγσ] = TrD [uneven number of γ−matrices ] = 0 (A.7)

TrD [γµγν ] = 4gµν . (A.8)
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A Conventions

Einstein summation convention is used throughout the whole thesis. Furthermore, the
Dirac slash notation is used, defined by

Aµγ
µ ≡ /A , (A.9)

where Aµ is some covariant vector. In analogy, we define

γµDµ ≡ /D . (A.10)

A.3 Fundamental Representation of SU(2) and SU(3)

Commonly, the generators of the fundamental representation of SU(2) are expressed in
terms of the Pauli matrices which are given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.11)

and fulfill the relation
σiσj = δij12×2 + iεijkσk . (A.12)

In case of the group SU(3), a description of the generators of the fundamental representation
is provided by the eight Gell-Mann matrices

λi =



σi 0

0

0 0 0


 , λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i
0 0 0

i 0 0


 ,

λ6 =




0 0 0

0 0 1

0 1 0


 , λ7 =




0 0 0

0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 ,

(A.13)

which fulfill the relation Tr

[
λiλj

4

]
=

1

2
δij and have vanishing trace Tr

[
λi
]

= 0 [16].

A.4 Wick Rotation

In order to change integration variables from Minkowski to Euclidean space, we use the
following convention for a Wick rotation

k0 −→ ik0
E ,

ki −→ kiE , i = 1, 2, 3 ,
(A.14)

where the index E labels momenta in Euclidean space. Thus, the integration measure
changes as d4k −→ id4kE and k2 −→ −k2

E.
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Appendix B

Numerical Integration Methods

In order to solve the Dyson-Schwinger equation for the fermion propagator, it is necessary
to determine the occurring integrals numerically.
The chosen method within this thesis is the Gaussian quadrature rule [56]. It refers to a
tool of numerical analysis to calculate the definite integral over the function f(x) on the
interval [−1, 1].
Within this numerical approach, the function f(x) is first of all approximated by a weighting
function W (x) times a polinomial approximable function g(x).
The integral can then be estimated by a weighted sum of function values at specific points

∫ 1

−1
f(x)dx =

∫ 1

−1
W (x)g(x)dx '

N∑

i=1

wig(xi) , (B.1)

where xi with i = 1, ..., N are the N evaluation points, called nodes, and wi are the
according weights.
In the case of f being a polynomial of degree 2N − 1 or less, Eq. (B.1) is exact.

The calculation of the quadrature nodes and weights depend on the weighting function
W (x).
In this thesis we use the common weighting functions W (x) = 1 (Gauss-Legendre Quadra-
ture) and W (x) =

√
1− x2 (Chebyshev-Gauss Quadrature).

B.1 Gauss- Legendre Quadrature

In the case of W (x) = 1, the N nodes xi are given by the roots of the N -th Legendre
Polynomial PN (x)and the according weights are [56]

wi =
2(

1− x2
i

) (
P ′N (xi)

)2 . (B.2)
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B Numerical Integration Methods

The N -th Legendre Polynomial is defined recursively by

P0(x) = 1 ,

P1(x) = x ,

(N + 1)PN+1(x) = (2N + 1)xPN (x) +NPN−1(x) , .

(B.3)

For a Gauss-Legendre quadrature on a logarithmic scale over a general finite interval [a, b]

we first have to substitute the integration variable ey = t and afterwards change the bounds

of integration to [−1, 1] by a second substitution y =
1

2
ln

(
b

a

)
x+

1

2
ln(ab).

This yields finally:

∫ b

a
f(t)dt =

∫ ln b

ln a
f(ey)eydy , y = ln(t)

=
1

2
ln

(
b

a

)∫ 1

−1
f

(
exp

[
1

2
ln

(
b

a

)
x+

1

2
ln(ab)

])
exp

[
1

2
ln

(
b

a

)
x+

1

2
ln(ab)

]
dx

≈ 1

2
ln

(
b

a

) N∑

i=1

wif

(
exp

[
1

2
ln

(
b

a

)
xi +

1

2
ln(ab)

])
exp

[
1

2
ln

(
b

a

)
xi +

1

2
ln(ab)

]
.

(B.4)

B.2 Chebyshev-Gauss Quadrature

For the angular part of the considered integrals, the weighting function in Eq. (B.1) is
given by W (x) =

√
1− x2.

In this case, the Chebyshev-Gauss Quadrature is applied where the nodes and weights take
the simple form [57]

xi = cos

(
i

N + 1
π

)
,

wi =
π

N + 1
sin2

(
i

N + 1
π

)
, i = 1, ..., N .

(B.5)

Thus, the complete integral is estimated by

∫ 1

−1
f(x)dx =

∫ 1

−1

√
1− x2g(x)dx '

N∑

i=1

wig(xi) . (B.6)
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