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Aharonov-Bohm ring with fluctuating flux
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We consider a noninteracting system of electrons on a clean one-channel Aharonov-Bohm ring that is
threaded by a fluctuating magnetic flux. The flux derives from a Caldeira-Leggett bath of harmonic oscillators.
We address the influence of the bath on the following properties: one- and two-particle Green’s functions,
dephasing, persistent current, and visibility of the Aharonov-Bohm effect in cotunneling transport through the
ring. For the bath spectra considered h@neluding Nyquist noise of an external cpilve find no dephasing
in the linear transport regime aterotemperature.
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[. INTRODUCTION [see the discussion after E&8)]. The possibility ofsponta-
neouspersistent currents was investigaigad ruled outin

In the present work, we consider a simple, theoreticaRef. 5, using a Luttinger liquid picture for the electrons and
model system of noninteracting spinless electrons that artking into account their electromagnetic self-interaction.
restricted to move in one dimension around the circumferDephasing of a single electron going around the two arms of
ence of a clean, one-channel Aharonov-Bohm ring. The ring" Aharonov-Bohm ring has been considered both in Ref. 6,
is threaded by a magnetic flux that fluctuates around som#sing the influence functional, and in Ref. 7, using a semi-
average valugsee Fig. 1 This may lead to dephasing of the classical picture. In the latter paper, the connection between
electron motion on the ring, apart from other effects such afhase fluctuations and the trace left by the system in the
renormalization of the electron masses and introduction of agnvironment was emphasized. More recently, the question of
effective coupling between the electrons. We treat the fuldephasing in mesoscopic systems has received renewed at-
dynamics of the fluctuating flux coupled to the electron Syslention due to a set of weak-localization measurements that
tem in a self-consistent manner, rather than prescribing aR@ve shown a saturation of the dephasing time at low
external stochastic time-dependent classical field. In order tEmperature&? Motivated in part by these puzzling findings,
achieve this, the flux is taken to be the sum of the normathe authors of Refs. 10-12 considered a ring containing a
coordinates of a Caldeira-Leggett-type bath of harmoni@ingle quantum dot with fluctuating gate voltage and ob-
oscillators>? The fluctuations couple to the electrons via thetained the properties of the quantum-mechanical ground state
vector-potential term in the kinetic energy. As an important(in particular the persistent curreniA strong influence of
Special case for the bath spectrum we treat the Nyqu|st noiS%Xtemalnonequilibl‘iumnOise on the persistent current in a
that may be due to the equilibrium current fluctuations in thedisordered quasone-dimensional ring has been found re-
external coil producing the flux. cently in Ref. 13. The effects of a phase-breaking scatterer in

Equilibrium and transport properties of this model systemthe many-particle situation, where the Pauli principle be-
are analyzed for the cases of zero and finite temperature§omes important, have been discussed in Ref. 14. Very re-
taking into account the coupling to the bath and the Paulfently, dephasing in a mesoscopic Mach-Zehnder-type inter-
principle with respect to the electron system. In particularference setup has been analyzed in Ref. 15.
we discuss the single-particle and two-particle Green’s func- In the following section, we will define the model and
tions, level widths, energy shifts, and dephasing times, andiscuss some simple consequences as well as some features
the reduction of the persistent current due to the fluctuationghat cannot be included in this system easily. Then we give a
In each case, the dependence on the Coup“ng Strength béhort qualitative discussion of dephasing for the Slmpllfled
tween system and bath and on the low-frequency spectr@@se of a classical fluctuating flrepresented by a random
properties of the bath is examined. Aharonov-Bohm interferProcess Similar considerations are applied to the calcula-
ence observed in cotunneling through the ring is discussed in
order to analyze the coherence properties of the electrons on N
the ring under the influence of the fluctuating flux in a trans- ¢
port situation. As a result of our calculation, we find that the
fluctuations donot lead to dephasing in thinear transport A
regime atzerotemperature. Q T

The single-particle version of this model has been consid- : :
ered before in Ref. 3 in order to determine whether persistent
currents in a normal metal ring may be destroyed by cou-
pling to an Ohmic bath. Whereas the authors of Ref. 3 used
the Feynman-Vernon influence functiofalve will apply a FIG. 1. The model situation. A fluctuating flux leads, via a time-
different and more direct approach. We emphasize that oulependent vector potential, to a fluctuating force for the electrons
analysis is restricted to baths weaker than the Ohmic bathn the Aharonov-Bohm ring.
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tion of the Green’s function for a single electron on the ring,which is the only quantity that affects the dissipative-system
both with classical and quantum fluctuations. The resultinglynamics in this model. Note as well that the coupling of the
energy shifts and level shapes are analyzed in some detailelocity to a vector potential assumed in Ed) has been
since these results can be taken over to the many-partickhowrt® to be equivalent to a Caldeira-Leggett model with
calculation of the single-particle and two-particle Green’sthe usual coordinate-type coupling for a particle moving on
functions that is presented in Sec. IV together with the evaluan infinite line. Physically, the coupling used here is the natu-
ation of the grand canonical partition sum and the persistermal choice for a situation in which the vector potential is
current. After discussing the physical meaning of the dephadinearly related to the fluctuating current in an external coil.
ing produced by the Nyquist noise at low temperatures, w&he fluctuations(and linear respongeof the current then
turn to an analysis of Aharonov-Bohm interference in a co-determine the bath correlator discussed in the following sec-

tunneling transport measurement. tion.
The correlator ofp will determine the dephasing rate and
Il. THE MODEL other important quantities via its low-frequency properties.

For the discrete set of oscillators and for the continuum limit,
respectively, it is given by the following expressions, where
the averagd - ) is taken with respect to the unperturbed set
” of oscillators,

_ 2
A=3 1P 9 e, i

The Hamiltonian of the system of electrons on the ring is
given by

@i

cotl‘( ﬁ) cog wjt)

osc |

A A 1 1
(@OHO)={— 2 o5

whereﬂbath is the Hamiltonian of the set of uncoupled os-

cillators representing the bath
Nose [ B2 (o2 —isin(w;t)
" _ j iA2
Hbath= jgl ZM + 2 QJ J . (2) o w o
zf dwC(w)| cot >T coq wt) —isin(wt) |.
0

The possible values of the electron momentprare
quantized due to the finite circumferenteof the ring, p (4
=2mn/L with an integem. (Note that here and in the fol- . _ _ .
lowing, we will puti=ks=1) The termg¢ in the kinetic This deflnes the spectral functid®(w) that we W|[I use
energy of the electrons is due to the coupling to the vectof® characterize the bath spectrum. In term_slof the discrete set
potential that is proportional to the fluctuating fluk.repre- of frequencies, it is given byC(w)=Nosc2;d(w—w))

. _1 i
sents this fluXup to a constant factpand is assumed to be Xr(]ZMwJ) i NtﬁteBthat Itzhe ththd!st 9qu:§| t?nz“t’.)+11’_h
given by the sum over the oscillator normal coordinates, w er_en(w) IS the Bose-Linsten distribution function. 1he
special case of Nyquist noige obtained by the requirement

that for high temperatures, the spectrum of fluctuations of the
E Qj . (3 magnetic flux (i.e., of @) is white. Since coth¢/2T)
J =2T/w for T> w, this mean(w)*w (for small w).
Before we proceed to the calculations, we will point out
me simplifying features of this situation as well as some

,\ 1
- VNosc

The prefactor in this definition has been chosen such thag;o

the autocorrelation functioi(t) ¢(0)) of ¢ has a well-  important aspects of the dephasing problem in degenerate
defined limit if the numbeN, of oscillators tends to infin-  Fermion systems that are beyond the scope of this model.
ity while the spacing of frequencies tends to zero &&,4/. The magnetic flux is assumed to thread the ring in such a

This is the “thermodynamic limit” of an infinite bath that is \ay that the situation is axially symmetric with respect to the
necessary to describe truly irreverSible, diSSipative dynamic%xis that goes through the center of the ring and is perpen-
The quantityg is the coupling strength between bath anddicular to its plane. In this case, we can choose the gauge
electrons. It incorporates the electron charge and the circungych that the vector potential is everywhere tangential to the
ference of the ring, since the line integral of the vector po+ing and of constant magnitude around the whole circumfer-
tential around the ring gives the flux. Any exterrethtic  ence. The same holds for the electric field, which is given by
magnetic fluxd has to be added in the kinetic-energy ex- the time derivative of the vector potential. This is analogous
pression. to the Caldeira-Leggett treatment of one-dimensional quan-
We assume the interaction between system and bath to Bgm Brownian motion of a free particle, with the formal dif-

sufficiently weak, such that the bath may be treated as linegerence that in our case the force is derived from a vector
in a good approximatiofas it is usually done in the theory potential instead of a scalar potentidf It is the choice ap-

of quantum dissipative systems, see Ref. 1 for a more degyropriate for a system with periodic boundary conditions,
tailed discussion Apart from this assumption, the expres- where the quantization of momenta, the Aharonov-Bohm ef-
sion Eq.(3) used for the fluctuating flux is still completely fect and persistent currents play a role. Note that under dif-
general. We are free to choose the frequencies of the batarent circumstances the assumption of a force that is con-
oscillators to obtain any desired correlation functiondaf  stant in space is only valid within the dipole approximation
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for a particle that is restricted to move in a well-localized . SINGLE-PARTICLE PROBLEM
region of space, because otherwise the finite wavelength of

theSt_)ath n;]odesphcl)_noné etg.becomes |mp0(;tabnt.h is via th article on the ring, both semiclassically and quantum me-
ince the coupling between system and bath is Via th@p,nically. The results can support the understanding of the

momentum, which commutes with the electron Hamiltoniany\qing section, which is devoted to the many-particle situ-
and therefore is a constant of the motion for the originalysion.

uncoupled electron systeffdiagonal coupling”), some fea-
tures of this model are very simple. In spite of the interaction
with the bath, the momentum of a particle will stay constant, ] ] ]
only its velocity and kinetic energy can fluctuate. This sim- Consider two wave packets traversing the left and right
plifies the many-electron problem as well. Although the fluc-&rm of the Aharonov-Bohm ring with constant veloaityand

tuating force influences the center-of-mass motion of thd"€€ting again after some time=L/(2v) at the opposite
electrons and introduces some kind of “effective interaction”€Nd- The resulting interference pattern depends on the total

between them, the occupation of differgnstates cannot be EgiiTaggLerﬁ]lcehgi?g;fgrtfc;wig pr%tgj'cég g ;;r;]g:rﬁssmal

changed by the bath. Note that this simplification would be » (e p ; produced by
o . ) " .in the Lagrangian of the particle, and it is given by

spoiled if one takes into account impurities and/or a coupling

that depends on the position. For example, the latter would e [t

arise if one considered an arbitrary fluctuating electromag- ¢:26f0v A(t")dt’. (5

netic field or the electric field between the plates of a capaci-

tor, whigh is a constant_ vector. fie!d in space but _is npt CON-  The factor 2 arises because the phases are equal up to a

stant with respect to its projection onto the d!recuon Ofchange in signA(t') gives the time dependence of the fluc-

motion of the electrons on the ring. Other situations wherquatmg vector potential that is assumed to be a classical

the coupling depends on position include interaction withgayssian random process with zero mean in the high-

phonons or a localized spin on the ring. temperature limit considered here. The visibility of the inter-
In its single-particle version, the Hamiltonian given aboveference pattern will be suppressed due to the fluctuations in

also arises in the discussion of dephasing for a charged ishe phaseg. Since ¢ is a Gaussian random variable, we

land, if the coupling to the batte.g., a fluctuating gate volt- obtain for the suppression factor

age is purely diagonal in the system’s eigenbasis and can . 5

only lead to fluctuations in the energy levels. Note, however, (el¥)y=e (¢ (6)

that questions of interest here such as tunneling into the ring ] .

or features of the many-particle system have no natural coun- N our modeleA/c is equal tog¢, where we will treat)

terpart in that rather simple situation. as a classical fluctuatlng field by taking into account (_)nly the
Although in our model all electrons are coupled to thef®@! (Symmetrig part of the C(_)”elatfr("') in the high-

same flux, which introduces a kind of effective interactiont€Mperature limit. Then the varian¢e®) of the phase be-

between them, the decay rates of Green’s functions will nof©Mes

show any dependence on the distance to the Fermi surface, in ; ;

contrast to the usuallbehawor of interacting Fermi systems. <¢2>:49202f dtlf dt(p(t1) P(t)). 7

This is due to the diagonal coupling between system and 0 0

bath, which means that there are no energy-relaxation pro- ) ] i

cesses that change the occupation numbers of the electrons!f the traversal timet is much larger than the correlation

and that would feel the restriction by the Pauli principle. Atime of the fluctuations inp, we may apply the following

related question arises in the study of dephasing in degeneptandard approximation:

ate Fermion systems. If the coupling is not diagonal in the o

electrons’(single-particle eigenstates, the system variable <‘P2>%t492v2f dt’(p(t") $(0))

that couples to the battin our case the momentynearries —o

out fluctuations itself. In a semiclassical single-particle cal-

culation, these fluctuations pick out the high—fr_equency com- ~t4g% 2477T( C(“’)) _ @)

ponents of the bath spectrutitherefore, according to such a 0]

calculation, there is dephasing even in the case of a bath

spectrum that vanishes at low frequencies and this implies This means that in the case of Nyquist noisex(w) we

that at low temperatures, the high-frequency zero-point flucebtain a finite “dephasing rate” that grows linearly with tem-

tuations of the bath contribute heavily to dephasimghis  perature. Note, however, that the tirmtroduced here can-

picture. However, if the electron system is nearly degeneratenot grow without bounds but is fixed by the circumfereihce

many of its transitions will be blocked by the Pauli principle and the velocityv. This calculation already shows that the

so that such an effect will be strongly suppressed. Althougtiephasing rate will vanish far—0 or T—0. For a bath that

we cannot investigate this point in our model, related conis weaker at low frequencieCfcw® with a>1) we do not

siderations will occur in our discussion of the cotunnelingobtain a suppression factor that decays exponentially with

setup in Sec. V. time, hence the dephasing rate is always zero. We defer a

In this section, we will discuss the problem of a single

A. Semiclassical analysis

w—0
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more detailed discussion of the various cases to the fulstates. Therefore, we only have to take into account that the
guantum-mechanical treatment below. time evolution between creation and destruction of the elec-
The physical interpretation of this result is clear. The fluc-tron is governed by the Hamiltonian that contains the kinetic-

tuating electric field proportional té leads to a fluctuating energy term that couples to the bath via the fixThrough
velocity proportional toA, so that the random shift in the this coupling, the introduction of the particle into the ring
interference pattern idxo« fA(t')dt’. The interference pat- perturbs the bath oscillators. In anticipation of the many-

tern will be completely washed out once the spreadiin  electron case, we will denote B{{p;}] the Hamiltonian for
becomes comparable to the wavelengthl/v. This coin- 3 fixed number of occupied momentum states, given by the
cides with the criteriof{¢?)~1. set{p;}. This operator only acts on the bath. Then the matrix
Very similar considerations arise in the calculation of theelement of the time-evolution operator with respect to the
Green’s function of a single electron on the ring. The re-electron system is given by the following expression, for a

tarded Green's function may be approximated semiclassis|ater determinant belonging to the configurat{qg},
cally by averaging the amplitude for propagation of the elec-

tron under the influence of the fluctuating flux ({pj}|e‘“q‘|{pj})=exp(—iﬁ[{pj}]t). (12
iIGR()= o) ({Wo(1), F(0)}) In particular, without any electrons we hatf 0]1=Hy .
o For the Green’s function considered here, this leads to
~( ex _iftw(jt’ (9) A A . ~
o 2m ' (V¥ o) = (e Mexp —iH[{p}]1))
The exponential contains a quadratic tergpj? that R —ip—2t+i%ftdt’<}(t’)
does not represent a Gaussian random variable, so that for- 2m m Jo '

mula (6) cannot be applied to perform the averaging. Here
and in the following quantum-mechanical calculation, we (13
will neglect this term, which does not couple to the momen-This expectation value can be interpreted as(thermally
tum (cf. discussion in Sec. IV E With this approximation, averagefloverlap between the initial bath state evolved once
the Green's function is given by an expression that agaiwith and once without presence of a patrticle on the ring. In
involves the correlation function ap the second line, we have introduced the interaction picture

with respect toH,,,, and dropped the term quadratic drb
from the kinetic energy(compare the discussion abgve

Sincefb is a bosonic variabldi.e., linear in the oscillator
1/gp\? [t t normal coordinatgs Wick’s theorem can be applied to the
Xex;{ ( ) fodtlfodb((ﬁ(tl)(ﬁ(tz))}

2

Ry b
|Gp(t)~exp{ |2mt

2

m evaluation of this time-ordered thermal average, using a

linked-cluster expansion. It leads to an expression com-
(10)  pletely analogous to the one used above for the classical
Gaussian random process, see Efsand(10). The differ-

_ At this point, the discussion given above applies. In pargnce consists in the replacement of the classical correlator by
ticular, for Nyquist noise and finite temperatures, the Green'she thermal time-ordered expectation value:

function decays exponentially with a rate proportional to

242 t
op°T. <?exp[i,<f dt’ ¢(t")
B. Single-particle Green’s function: Quantum case °
. . . K2 [t t
In the following, we will calculate and discuss the =exr{ - _f dtlj dtz('?&(tl)?p(tz))}

guantum-mechanical Green'’s function ogiagleelectron on 2 J)o 0
the ring. The extension to the many-particle case will be (14)
given in the following section. The single-particle density of
states(DOS), which is given by the imaginary part of the At present,x=gp/m, but the same formula will be used
Fourier transform ofGR, is a measurable quantity, as it can pelow with other values fok. In contrast to the classical

be revealed by tunneling into the ring. correlator, (Té(t,) $(t,)) is complex and will lead to an

~We imagine a situation where the ring is empty and 8gnergy shift in addition to a decay of the Green’s function.
single electron is inserted, so that the retarded Green’s funcClsing

tion is

iGR(t) = a(t) (Wb To) = at)(etb e iy (1) (To(t)p(0))= f:dwC(w)[{Zn(wH 1}cog wt)

The average is a thermal expectation value with respect to —isin(wl[t])] (15)
the unperturbed bath of oscillators, corresponding to the situ-
ation without any particle on the ring. Obviously the bathto evaluate the double time integral, we obtain for the expo-
cannot change the occupation of the different momentunment of Eq.(14),
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o=4 o=3
N(e) N(®)
01 r 02 - — T =0
o : ---- Tio=01
Rty S SN ——- Tiw=05
/,/ , ‘\\ \\ ’/ \ —-— Tioz=2 ]
;o RN TR AN FIG. 2. The density of states
I RNERN N for different bath spectra and tem-
N / // \\ 04 L peratures. The quantityN(w)
e \.\ i ) =Im K(w)/, which corresponds
’ W/ — to the single-particle DOS ob-
_ Vi T tained from the retarded Green's
I - function, is plotted vs frequency
05 o > wlw,, for different exponentsy
/o of the bath spectrum at low fre-
’ quencies[ C(w)xw*exp(—w/w)]
N(®) 0=25 N(w) - and for different temperatures. At
i i T=0, the DOS goes a®* 2 at
0.2 I':' ‘i‘\ T 02} '1: ll'\,‘ —Tex low w and vanishes fow<O0. In
il ) s HAW - l;mi:g.s all cases displayed here, there is a
A —= Tios2 TR 2 5 peak atw=0, except fora=2
i 5 at T>0. In the limit T—o the
il ; level shape becomes symmetric in
0.1 ¢ ," ) : all cases and the strength of the
/ // peak vanishes.
/'/I // :':
L7 // /
P
-2 0 2 4
/o
= Clw) +o  C(|o|) momentum—dep?ndept shift into the oscillator potential ener-
itszo dwT+K2f_m do———[n(|w])+ (w)] gies of Eq.(2), Q;—Q;—gp(mMwNys) ~*. The result-
@ ing term quadratic inp must be compensated for, which
X(e"iet—1). (16)  Vields the change in mass,
The step functiond(w) corresponds to the zero-point )
fluctuations. In the remainder of this section, we will discuss i: i 1— 9 1 E i (18)
the behavior of the Green'’s function derived from ELp) at m* m MM Ngsc w2’

short and long times, for different bath spectra.

At short times, the integral in the second line compensates
the first integral, so that the exponent begins to grovi’as Since we have neglected the terg&()2 in the preceding
instead oft. Physically, this means that at short times thederivation, the effective mass displayed here is only correct
particle has not yet influenced the bath and its energy is stilin lowest order with respect tg?. A full calculation yields
given by the bare energp?/2m. At later times, the bath m*=m(1+§&).
oscillators have been shifted by the presence of the particle, The real part of the second integral in E46) gives a
so the overlap between initial and final bath state is diminnegative contribution, corresponding to a suppression in
ished and the Green’s function decays. The first integral promagnitude of the Green’s function. If the bath is relatively
duces a negative energy shift, corresponding to the formatiofeak at low frequenciesQx w® with a=3), the long-time
of an interacting state of particle and bath. Since this shift isehavior is simple. The decay saturates-ate.
proportional top?, it is equivalent to an enhanced effective  In this case, the Fourier transform of the Green’s function,
massm*.

Combining the energy shift with the initial kinetic energy

2 : ) . S
p</2m, we obtain the following expression fon*, G:}(w):f dte"”tG?(t), (19)
0
1 1 g’ (> C(w)| 1
=== 1—2—J do——|=—(1-§. 19 - _ |
m* m mJo ® m still has a “quasiparticle”s peak in the density of states

. _ IMGR(w)/ 7, but of a reduced magnitude. It is superimposed
Alternatively, the effective mass can be calculated frompn an “incoherent backgroundisee Fig. 2
the initial Ham”tonian(for a Single par'[ICBE by using the For later use, we define the Fourier transform of the

termgpg/m from the particle’s kinetic energy to introduce a Green's functionwithout the constant energy shift
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“ ) +o _C(|lw o=1
iK(w;K)EJ’ dte'““exr{xzf dow (o)) N(w) — 71—
0

— 2 1+ i

x[n(|o)+0(@) (e “t=1)|. (20

For a bath with a spectrum that is stronger at low frequen-
cies (@=<2), the Green’s function may decay to zero for
—o0, which means that there is ndpeak any more in the
density of states.

The resulting single-particle density of states is presented
in Fig. 2 for different values of the exponemtcharacterizing
the strength of the bath spectrum at low frequencies, both for
zero and finite temperatures. 0—

8

Here, we will analyze in more detail the case of Nyquist
noise, with a linear spectru@(w)=Cyw at small frequen-
cies. FIG. 3. The density of states for Nyquist noise=1) atT

If the temperature is finite, we may sef{w)~T/w for =0, for different values of the power-law exponept At finite
sufficiently low frequencies. The real part of the exponenttemperatureT, this goes over into a Lorentz peak of width propor-
(16) then becomes, in the long-time limit, tional to T, see text.

—27TC0K2T'[. (21 IV. MANY-PARTICLE PROBLEM

The prefactor in this expression defines the decay rate for NOW we consider the situation of many electrons on the
the Green’s function, which determines the width of thefind. in the grand canonical ensemble at a given value of the
Lorentzian that arises in the density of states. che[nllcal potential and at an arbitrary temperature

At zero temperature the thermal excitation of the bath=A
oscillators vanishes, so only the zero-point contribution re-
mains. In that case, we have to specify the behavior of the A Grand canonical partition sum and persistent current
bath spectrum at high frequencies, because it becomes im-
portant even at—o. Choosing either a sharp cutdif(w)
=Cowl(w,—w) or an exponential decayC(w)=Cyw
X exp(—wl/w) results in the same long-time behavior of the
relevant integral

As a preparation for the evaluation of various averages
carried out below, we need the grand canonical partition sum

©

ch(lguu) = Nzo e'BMNtr(e_ﬁﬁN)

fwdwc((:)[cos(wt)—l]z—Coln(wct)+h(t). 22) )
° o =2 eﬁﬂ“{% trg(exp(— BH[{p;}]). (25
j

Here h(t) is a function that saturates to a constant value
for t—o. The logarithm in the exponent leads to a power-

Here we have used the notatigp} (that has been intro-
law decay of the Green’s function oo} (

duced abovefor a given configuration oN particles. tg in
GR(1) - 23 the second line denotes the trace with respect to the bath
p(Dx (@) 7, (23 oscillators. If we introduce an additional static magnetic flux
with an exponenty proportional to the strength of the bath, ¥ this corresponds to a shift of the momerpa—p;
the coupling and the momentum squared, _—_eCI>/Lc in all the formulas given below, such that the par-
tition sum becomes dependent dnas well. Note that we
2 assume the effects of the charging energy of the ring to be
v= choz(—> Co. (24 negligible here, unlike the treatment of cotunneling in Sec. V.
The Hamiltoniarﬂ[{pj}] can be split into a part contain-
The detailed behavior of the line shaf®t only the line-  ing only the momentp; and another one that represents bath
width) then depends or, see Fig. 3. oscillators that are shifteepending orp;) but still have
We will encounter such a power-law decay again in thethe original frequencie&f we neglect theg?¢? term such as
discussion of dephasing for the Nyquist bath. It is similar toabove,
the power-law behavior found in the model of quantum

Brownian motiont1"*8However, there are important differ- N o .
ences between the Nyquist bath considered here and the Pi—29p¢ o

. yq . ' . +Hpatn=TH{P;}H ]+ Hparl {Pj}],  (26)
(strongey Ohmic bath. These will be discussed in Sec. IV D. i=1 2m
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Whereﬂbath[{pj}] is derived from the original bath Hamil- Now we can apply these results to the calculation of the

tonian (2) by a shift in oscillator coordinates persistent current of our system of electrons coupled to the
fluctuating flux.

The average current that flows for a given external mag-

Q—0— + > p, (270 netic flux® is the derivative of the thermodynamic potential
MMoj VNosc Q= —TInZy with respect to the flux itself,
and T[{p;}] is the residual “kinetic-energy” term that only
depends on the set of occupied mom , A J
P P e (=cT51nZqe
1

2
T[{pj}]zﬁ ; pj> } (28)

; pP—¢

T2 {In70 +/3i<(ﬁ>— Ned/cL)?)
FI) 9¢’ Pom 0
Here we have used the constant facfodefined in the e
discussion of the effective mass, see 84). T[{p;}] differs = —(V(1—¢N)),. (32)
from the single-particle case by the appearance of the total L
momentumP =Xp; , which makes it impossible to write this

as a sum over the kinetic energies of individual electrons Here/=[P—Ned/(cL)]/m is the total velocity operator

with renormalized masses. Physically, all the electrons ar T
coupled to one and the same bath and this influences thiOr the electrons. We have replacédin Eq. (31) by the

center-of-mass motion. The dependenceTpfp,}] on the E‘Xpressmn valid in the presence of the external static flux.

total momentum introduces a kind of simple “effective inter- Obviously, the persistent current is reduced by a factor of
um | u ! imp el . about (1- ¢N). The result does not depend on the details of

action” between the electrons, which affects thermodynammthe bath spectrum, only oy which is well behaved also for
averages. For example, the average occupation number fortﬁ\e case of the N),/quist bath. Recall that for valdesi/N

g(')vr?nNrgtc:ﬂﬁ;ufrgr:;ﬁ; ?hoé L?:Z\t,;/thﬁeFrg;[r?p?]raccagI?)tg-bu the approximgtion used here is .invalid, as expllained above.
com.e negative for large total momerfeaif §>11/N How- The magnitude of the reducyon of the persistent current
. i ) . may be understood physically in the following way. If one
ever, th|s.only means that h!gheerrdersgnwouI.d haye to imagines suddenly switching on the external magnetic flux,
be taken into accourineglectingg®¢? becomes invalifl as  an electric-field pulse will be produced, which, at first, freely
discussed already in connection with the effective mass for gccelerates the electrons on the ring, leading to a current that
single particle{see Eq(17)]. _ o is proportional to the numbe\ of electrons. This again pro-
Using this definition, we can rewritgy., taking into ac-  guces a change in the magnetic flux that prompts a reaction
count that the pal’tition sum of the bath of shifted harmoniCOf the bath (e_g_, the external coil producing the Nyqu|st
oscillators is equal to that of the unperturbed bafhy, and  noise. The back action onto the electrons deccelerates them,

therefore does not depend ¢p;}, decreasing the velocity of each electron by an amount pro-
portional toN and depending on the coupling strength be-
7 =7 eBENSY o= BTHPH . 29 twgen the ring and the gxternal coil, which is contained.in
9¢ HO% {%} ] 29 This leads to the reduction factor-1£N obtained above.

Thus, in our model, the reduction of the persistent current
The partition sum without the contribution due to the har-is similar in its origin to the appearance of an effective mass.

monic oscillators will be denoted 1, from now on, This“can ,l’ae seen most clearly by considering the special case
of a “fast” bath, whose spectrum has a lower frequency cut-
_ Zye off or, at least, vanishes quickly with decreasing frequency. It
Zy= (30)  follows the motion of the electrons adiabatically and is not

ZHo able to lead to dephasing on long time scatee the discus-

sion of the two-particle Green’s function below, as well as
the cotunneling setup discussed in the last sertidawever,

it still leads to a reduction of the persistent current, since the
quantity &£ represents an integral ovall frequencies.

We can simplify Eq.(29) further by rewriting?gc in the
following way, using both the averade), and the partition
sumZj. with respect to the system dree electrons

2
eBEPeiZm B. Single-particle Green’s function

zgcz E eXF{_B; (pj2/2m—,u)

N.{pj}

The single-particle Green’s function is defined by

~ a2 ~
= ch< eﬁgP /2m>0% ch

1+B%<|52>o)- (31)
iGp()=(Vp ¥ i) o) — (T oW p)o(—1). (33
Here, we have kept only the lowest nonvanishing order in
¢, since everything else would be inconsistent within the Evaluation of both expectation values proceeds in the
framework of our approximation. same way, so we will only treat the first one here
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N N ~ 2
Vo Ul V=71 efuNir(e AHnelNtgr e~ IHNI T, =71 — P f e
(Wt p0> gc % ( p p) Gplw)=Zy {%} expg — B ; om M 2mP
(34
. . P> € _gp
The trace is evaluated by summing over all configurations XY (1=nl{p; DK| 0= =+ pPi
{p;} of N particles and using the fact that the bath does not 2m

change a given configuration. Therefore it is equal to p2 £ gp
~Npl{P K| o+ 5 (1+8)— —pP; FH :
> (1-ng[{pDtra(exp— BAL{p; D expiH [ {p;}]t)
ipjt (40)
xexp(—iH[{p;}']1)). (35 The sum runs over all configuratior®f any particle

) i . ) . . nhumberN) andP=ZXp; is the total momentum.

Here{p;}" is the configuration with one particle added in  From this result one can see that the line shape of the
statep, and t_he prefactor is zero Whenev_er that _state_is alpos in the many-particle case is derived from the single-
ready occupied. Now we introduce the interaction picturéyayticle resultk (w;«). However, at finite temperatures, it is
with respect taH[{p;}]. Furthermore, we will use the parti- the average over many such curves, each shifted by an

tion sum for a given configuration, amount proportional tg P that depends on the total momen-
R tum of the configuration. Still, the linewidttor line shapg
Z{pj}ztrB(exp(—,BH[{pj}]))=ZHoexp(—ﬂT[{pj}]), does not depend in any essential way on the distance to the

(36) Fermi surface.
) ) ) We will now discuss the temperature dependence of the
in order to define the average over the bath oscillators thafnewidth that results from expressida0). The & peak that

are shifted depending ofp;}, remains inK (o) at w=0 for a “weak bath” (in this case,
= . a>2) is smeared over a certain range due to the average
ooy =Zipptra(exp(— BHIP;HD - - ) over configurations with different total momeraln lowest

. . order with respect t&, we may neglect the dependence of
=Zyotra(exp(— BHpa[{Pj}]) - - ). (37)  the probability distribution on the coupling to the bath. Then,
the linewidth is obviously given by
(See the discussion @, in Sec. IV A for a definition of
the quantitieZyo andHpal {p;}].) €
With these definitions, expressi@B5) becomes dw= Epép’ (42)

where 6P = [(P?), is the spread in total momentum, calcu-

{2} Zipy(1=ngl{p}]) lated for theoriginal free-electron system. We hav@?),
Pi =NmT and therefore a linewidth which increases with the
. P> gp(t. - square root off,
X{ Tex —|—t+|—f dt’ ¢(t') .
2m m Jo
pj} S T, (42)
(38)

Note that the corresponding spredjgl= Sw/v in momen-

In evaluating the average of the exponential, we need th&im space is given by yNmTand can very well exceed the
expectation value ap that does not vanish in this case, sincedistance zr/L of the quantized momenta, in spite of the
the oscillators are shifted by an amount proportional to thdestrictionéN<1 (and also in spite of the restrictiogmT
total momentum of the given configuration, <pg for the degenerate regimerherefore, it is reasonable

to speak of a linewidth, provided one does not resolve the

quantized level structure on the ring.
. (39

gb=9( &){pj}: §( EJ: Pj
C. Dephasing: Two-particle Green’s function

Apart from this, we can proceed exactly as before in the \yhjle the decay of the single-particle Green’s function in
strictly single-particle case, see H@4), in order to arrive at  time is connected with every interaction process that changes
an exponent involving the thermal time-ordered correlator okhe state of the electron or brings about random changes in
¢ for the unperturbed harmonic oscillators. Using this andits phase, it is not sufficient to know about this decay if one
Eqg. (39 to evaluate Eq(38), we have arrived at the desired asks about dephasing. After all, there are situations where an
result for one half of the Green'’s function, E4). Proceed- electron interacts with a bath, such that its Green’s function
ing analogously for the other half and using the definitiondecays quickly but it is still able to show an interference
(20) for K(w; k), the Fourier transform of the Green'’s func- pattern. This will happen whenever the trace left by the par-
tion is given by ticle in the bath is not enough to decide which path it has
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gone, so that the different possibilities still interféréhere-  particle Green’s functions of the individual states are large.
fore, one must ask about the time evolution of the densityThis is an example of the general behavior mentioned above.
matrix (and, in particular, the decay of its off-diagonal ele- It is reasonable that dephasing is strongest whenever the mo-
mentg in order to study dephasing. Given a small initial menta of the two states, whose superposition is examined,
perturbation that creates a nonequilibrium situation, this timeliffer widely. Then, the bath, which couples to the momen-
evolution is determined by the two-particle Green’s functiontum, can easily distinguish between these states even after a
in a linear response calculation. short time.

The following calculation basically proceeds along the The dephasing rate;1 vanishes aff=0. However, even
same lines as that given in the preceding section, so we wilit T=0 the off-diagonal element of a density matrix that
keep it brief. For our purposes, we do not need the twoinitially describes a coherent superposition between momen-
particle Green’s function for arbitrary values of the four time tum statesp and p’ decays to zero completely in the limit
arguments, but only for a perturbation acting at time zero an@— . This decay proceeds with a power law, as we have
a density matrix evaluated at timeFurthermore, since the already observed for the single-particle Green’s function, see
bath does not change the occupation of momentum stategq. (23). In the situation considered here, the expongiis
the only nontrivial contribution arises from the following equal to
product of four-electron operators, in which only two mo-
mentap andp’ appearp refers to the hole that is created by g\?
the perturbation whilg’ belongs to the electron. Y= (E) (p'—p)*Co. (46)

(BL@ Bl ¥ 0 . - _
pt=p't= pro ™ po If the bath is sufficiently weak at low frequencies
At . [C(w)=Cyw® with a>2], the decay of the off-diagonal
=740 D) efNir(e PN N T e ) elements in time saturates at a finite value, in contrast to the
N Nyquist case discussed above. Then the dephasing rate, de-
(43)  fined as the prefactor dfin the exponential decay law, is
) _ ) strictly zero, even at finite temperatures. This behavior is

Inserting an appropriate basis of system stafPg). Us-  related to the diagonal coupling between system and bath. If
ing the interaction picture with respect K[{p;}] and car- a nondiagonal coupling were introduced, there would be
rying out the average of the exponential in the usual way, weransitions from excited electronic states towards lower ones,
arrive at the following result for theéhalf-sided Fourier —accompanied by the spontaneous emission of a bath phonon.

transform of Eq(43), In that case, the decay rate in the single-particle Green'’s
) ; function and the dephasing rate would be nonzero alsb at
~_ P; =0 but strongly dependent on the distance to the Fermi sur-
1 - 0 - 5 p2 _ gly aep
Zg¢ {o} exp( B{ 2 (Zm ) 2m P ] )np[{p,}] face, due to the suppression of the density of final states for

such transitions brought about by the Pauli principle. There-

ot - '2—p? . £ )2 fore, in a simple Golden-rule calculation, these decay rates
( pr P} @ 2m 2m(p P would vanish afT=0 when one approaches the Fermi sur-
, face.
+£( ' p)P: 9(p'—p) (44) For a=2, we find power-law dephasing only at finite
m'P P m ’ temperatures, with an exponent proportionallto

The notation is the same as for E40). The most impor-

tant difference consists in replacipdgoy p’ — p in the factor D. Discussion of dephasing for the “Nyquist bath”

x=gp/m that determines the strength of the decay. The Nyquist bath is characterized by a fluctuation spec-
For the Nyquist case, we thus obtain a finite dephasingrum of flux and vector potential that is linear in (at zero
rate temperaturg therefore leading to a spectrum for the electric

field that behaves a®>. This is exactly the spectrum of the
g\? , ) zero-point fluctuations of the electric field in the vacuum.
r(op) =27TCof ] (P —P)%, (45 The main distinction between those fluctuations and the Ny-
ere quist noise considered here is that the latter leads to a force
which is proportional to the difference in momenta squaredthat is homogeneous around the ring and therefore is com-
the bath, coupling strengths, and the temperature. Thpatible with the translational invariance of our one-
change in phase brought about by the fluctuating flux is prodimensional system of electrons. Furthermore, its magnitude
portional top, so the phase difference, whose variance apdepends on the geometry and resistance of the external cir-
pears in the exponent, goesps- p. To avoid confusion, we cuit producing the equilibrium current noise. Apart from
emphasize that there is no universally applicable definitiorthese differences, we can use our understanding of the elec-
of a “dephasing rate.” In our case, we use this term to refetromagnetic vacuum fluctuations to discuss the effects of the
to the exponential decay of the two-particle Green’s functiorNyquist bath in a qualitative manner.
as introduced above. Note that the dephasing rate can be In particular, free ballistic motion is not affected, since the
small even if the decay rates associated with thiegle- radiation reaction force only acts on an accelerated charge.
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Therefore, the populations of the electronic momentunfront of the expression and the ratio of the Fermi velocity to
eigenstates do not decay, as we have already observed. Thig speed of light render the effect very small under reason-
is in contrast to the effect of a type of bath that leads toable experimental conditions.

velocity-proportional friction, for example. The systemis not  Note that the fluctuations of the vacuumagneticfield
ergodic, since the memory of the initial conditions is not losthaye a weaker power spectrum, which lead&Ad) ,x o> at
completely. In a basis other than the momentum basis, th¢—(  instead of AA), > w. The vacuum fluctuations of the
off-diagonal elements of the density matrix show only partialejectric field, however, do lead to a linear spectrum in the

decay. That therés some decay of the coherences is con-yector.potential fluctuationésee discussion aboneOn the

nected to the smearing of the position of the particle in th%ther hand, the electric fieldt large wavelengthss homo-
course of time. Usually, this effect is neglected in the discus-

sion of dissipative quantum motion of a free particle undergeneous only in free space, not with respect (o its projection
. P q . P -onto the ring, where it has a position dependence eng(2.
the influence of a bath corresponding to electromagneti

vacuum fluctuations, since the ballistic expansion of an iniﬁ—hus’ the coupling is not diagonal in the momentum basis
. . ’ . pe and is not included in our model. If one estimates the order
tially localized ensemble of particles dominatésin our

N ; . f magnitude of the corresponding dephasing (atelastic
case, it is important, since, for example, a superposition of

o ; -1 (a2
two counterpropagating plane waves on the ring will ﬁrst>r<"jms';'0n2 f;?lIEQ S_or_lle | arrives - at t_T<P(etm) th(e /tﬁc) th
form a standing wave pattern, whose visibility then gradually (ve/€)*(ve/L). Similarly, one may estimate the streng

decreases. The fact that, B0, the decay of the visibility o_f fluctuations due to shot noise of the external current. In a

- tuation where the external coil producing a static magnetic
roceeds as a power law can be understood most easily fro L . .
P b y rE\ux on the order of~® is identical with that where the

the results of an old semiclassical analysis of the Lamb shi . . - . . .
due to Weltort®2° The vacuum fluctuations of the electric \Yduist noise originates, this leads to an effective dephasing
rate of 7,50y~ (€%/#C)(ve /)i /L, which may be much

field lead to a jitter of the electron position, such that the o( - : .
variance(éx2) of its coordinate is given by the logarithm larger than that dye to the Nyquist noise. Nptg that shot noise
containing the ratio of an upper cutoff frequer(éyere taken cannot be described by our model, since it is a nonequilib-
to be the Compton frequencand a lower cutofithe char- UM phenomen_on an_d cannot be represented by the usual
acteristic frequency of electron motion around the nugleus bath of harmonic oscillators at low temperatures. However,

In our case, the lower cutoff frequency actually is given bythe effects of shot noise would be _reduced in a Qiﬁerent
the inverse of the observation time, such thaix?) geometry where a larger curreritvith correspondingly

«In(wg). For a superposition of plane waves of momentasmallerrelative magnitude of the shot nois@roduces the

+k on the ring, the density matrix in position space containg®@Me static magnetic flux through the Aharonov-Bohm ring.
cross terms such as exp{x), which, if averaged ovepx,

give rise to a suppression factor ex@k*(ox?)=t~”. This
leads to complete decay of the interference pattern even at
T=0. Note, however, that here we have been considering a In all of the preceding calculations, we have neglected the
superposition of excited states of the system and the decay @frm g2¢? that appears in the kinetic energy of the particle
its coherences. In other problems of dephasing, such as thob@t does not couple to the momentum. This approximation
encountered in weak localization, one usually discusses thgas been necessary to use the well-known formula
limit of zero-frequency response of the system to a smallexp(X))=exp(—(X?)/2) for a Gaussian random variabke
perturbation. A situation that comes closer to this kind ofin the classical case or the analogous expression derived

guestion will be discussed in the following section. from Wick's theorem in the quantum cask? is quadratic in

The goal of the present work has been to analyze thor‘he coordinates of the bath oscillators, wheréais a linear

oughly a model situation that shows some of the featuregosonic variablgGaussian random variable in the classical
important for dephasing at low temperatures, not to propos

some experimental measurement setup. Still, we will nowsase. If the termg?$?/2m is kept in the Hamiltonian, the
briefly discuss the expected magnitude of the effect due t§igenfrequencies and normal coordinates of the bath of har-
Nyquist noise in an external current coil. If the equilibrium Monic oscillators are changed by an amount that depends on
current fluctuations are produced by an external coil whos@ Pbut not on the particle momentum This becomes impor-
circumference is similar to that of the Aharonov-Bohm ring tant at larger values d, where the effective mass turns out
(L) and that is placed about a distaricaway, the dephasing {0 bem*=m(1+¢) instead of the valuen® =m(1- &=t
rate is estimated to be derived without the¢? term, see Eq(17). Note that this
difference persists also in the thermodynamic limigs.
—o0, However, the qualitative behavior of the bath spectrum

h 6_2 2 UE 2kB_T 4 at low frequencies is not changed for the sped@w)

T, \hC c/ RIR¢' (47) «w® with =1 that have been considered here. Therefore,
this term is unimportant for the qualitative conclusions about
dephasing, although it can change quantitative results for

Herevr is the Fermi velocity on the ringR is the resis- largerg and does change the single-particle Green’s function.
tance of the external coil, anlc=h/e? is the quantum of The latter involves a change in particle number, so that an
resistance. Both the square of the fine-structure constant idditional &2 is introduced into the Hamiltonian.

E. Relevance of the term quadratic in the flux
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FIG. 4. The tunneling setup discussed in the text.

V. AHARONOV-BOHM INTERFERENCE IN
COTUNNELING THROUGH THE RING

In the following, we will discuss the influence of the bath

on the Aharonov-BohniAB) effect, i.e., on the flux depen_— FIG. 5. Energy diagram for cotunneling through the AB ring at
dence of the transport current through the ring. We consideg, — ¢ /2. The initial, final, and two possible intermediate states are
tunneling into and out of the ring, taking place at two elec-jngicated(see main tejt The charging energy has to be added to

trodes to the left and right of the ringee Fig. 4 Atunnel-  the single-particle energy of the intermediate state shown here.
ing situation is the appropriate one for our model, since at-

taching current leads would severely alter the system. NOt?eft electrode to be the larger one of the tlamdeV>0). In

that independensequentigl tunneling only propes the den- the final state, an electron has appeared above the right Fermi
sity of states at the two contacts. Therefore, in o.rder to Ob'sea, leaving behind a hole in the left electrode. Although we
serve the AB mterfer_encg effept, we have to con5|der a ?0 want to consider the situation where the electronic state of
lomb blockade situation, in which any electron tunneling Intothe ring has not changed in the end, the final state of the bath
(or out of the ring W|Il_enhanc_e the total energy by th_e may be different. The intermediate state is characterized by
charging energy of the ring that is much larger than the b'a%n extra electroffor extra hole present on the ring and some
voltage vV and_ the. temperature. In S.UCh a cascl-:_‘, transport arbitrary state of the bath. Using standard second-order Fer-
through the ring IS po|s§|ble only V'Ia. cotunng fiigie., a b mi’'s Golden rule, the tunneling rate is obtained by summing
lt(\;vr:)-isr:ept proc((je_?fs mvto vmgba VIr]:EuaI u:terme laiﬁ state :bver all intermediate stateglividing by the proper energy
ging to a dltierent number ot €lectrons on e TiNg. A qqnominator and all final states whose energy equals the
strong dependence of the tunneling current on the eXtem%itial energy
magnetic flux, with a complete suppressionda$/2 due to '
destructive interference, is visible only in the “elastic cotun-
neling” contribution, where the electronic state of the ring is
left unaltered in the process. It is linear in the bias voltage FZZWZ
and will dominate the inelastic contribution at low tempera-
tures and for small bias voltagésee the discussion at the
end of this section and Ref. 21 Here HT=TL+ TR is the sum of the tunneling Hamilto-
Now consider cotunneling at=0 under the influence of nians belonging to the left and the right junction, while the
the bath. The semiclassical analysis of Aharonov-Bohm inenergies and eigenstates refer to the unperturbed Hamil-
terference given in a preceding section is not applicable fotonian that includes everything besides tunneling. In particu-
V—0, since it assumes the electron can emit or absorb afr, it includes the coupling between electrons and the bath,
arbitrary amount of energy. In the quantum-mechanical calas well as the kinetic energies of electrons in the electrodes.
culation, suppression of interference is due to the electron At this point we would like to emphasize that using Fer-
leaving a trace in the bath that permits, at least in principlemi’s Golden rule for the calculation of the cotunneling cur-
to decide which of the two arms of the ring the electron hagent does not in itself mean taking into account the interac-
traveled. This involves a transfer of energy between electrotion between bath and system only in a perturbative way. The
and bath. The bath spectrum determines the amount of bathtermediate states being summed over in &®) are the
oscillators able to absorb the small energy less #drthat  exact eigenstates of the full system of electrons on the ring
can be emitted by the electron. Therefore, it is to be expectedoupled to the fluctuating flux. In this sense, the coherence
that dephasing at zero temperature is suppresself-fo0 properties of the ring as a wholg@ncluding the bath are
due to the energy conservation constraint. This will be contested by the cotunneling process. Applying the Golden rule
firmed by the calculation described in the following, al-in this context is roughly comparable to using the Kubo for-
though there are renormalization effects that change theula in a linear-response calculation of, e.g., the weak-
strength of the tunneling current away from the point of per-ocalization magnetoconductance, which does not automati-
fect destructive interferencd)=® /2. cally imply a perturbative description of the dephasing
The tunneling process starts from a situation in which theprocesses either. Still, there is an important difference. In our
ring is occupied by the equilibrium number of electrdds-  context, we essentially deal with a scattering situation, such
pending on the value of a gate voltagad the Fermi seas in that energy conservation holds at least for the initial and final
the left and right electrode are filled up to Fermi energies thastates of the complete process. This will be seen to be im-
differ by the bias voltageeV, see Fig. 5. Throughout the portant for our conclusions about the stren@habsence of
following discussion, we will assume the Fermi energy in thedephasing. What is neglected in our calculation are any equi-

T
vi

2
O(Ef—Ey). (48)

Hi,
E,—E

v i

>
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librium correlations between the state of the electrons in the C(m)
leads and the state of the ring as a whdélecluding the Boes - - - - - - -~ ;
fluctuating flux.

Before performing the calculation in the presence of the
bath, we will briefly describe how the destructive interfer-
ence aidy/2 appears in this formula, in the situation without
fluctuating flux. In such a case, the intermediate statefers
solely to the electronic stateon the ring, which is occupied
by the additional electron in the course of tunneling. The
final statef is determined both by the stake which is un-
occupied in the left electrode after the tunneling process, and

the statex, where the electron ends up in the right electrode_ /G- 6. Cotunneling in the presence of the fluctuating flux.
(see Fig. 5 Emission of a bath “phonon” of frequenay leads to an incoherent

For simplicity, we will assume tunneling to take place contribution to the tunneling current, where the destructive interfer-

onlv between two boints. for example from a pointat the ence between the two paths shown here is lost. The probability of
. y P ' . P . POy . emission depends on the bath specti@w).
tip of the left electrode to an adjacent poigt on the ring,

briefly denote byA(k), one obtains “classical” probabilities

Ti=t, ¥ T(x)¥(y)+hc., (490 such as|A(k,)|?> but also cross terms of the form

) ) ) ) A*(k;)A(k_). A bath coupling to the electronic motion will

and likewise for the right electrode, is a complex-valued affect these terms differently, if it is able to “distinguish”

tunneling amplitude. Such a description will be appropriatenetween the momenta, andk_. Usually, the cross terms
as long as the extent of the relevant region in which tunnelare suppressed. Then, the different contributions cannot can-
ing can take place is less than a wavelength. cel any more. Note that, away from perfect destructive inter-
The sum over intermediate electronic stetemn the ring  ference, we have to expect an influence of the bath on the
then contains the following contribution that describes ammagnitude of the tunneling current under any circumstances,
electron going onto the ring from the left electrode and leavsince mere renormalization effects such as a change in the

ing through the right electrode, effective mass of the electrons will be important. This is why
we concentrate on the special casedaf/2. Even in that

. W (X)) Pk (X)) situation, the interference minimum could vanish in a rather

tLt’ﬁ‘Px(YL)‘P;(YR)Ek et Eo—e (50) trivial way due to renormalization effects, if one chose a bath

coupling asymmetrically to the two arms of the ririgr
rather to left- and right-going momenjahereby leading to

_ Here the sum ovek is to be taken only over unoccupied jtfarent transmission probabilities. This is not the case in
single-electron states on the ring. refers to single-electron 5, model.

wave functions on the ring and on the electrodes. Apart from At this point, we can give a simple counting argument to
the contribution listed here, there is another, completelyyrrive quickly at the voltage dependence of the “incoherent”
analogous, contribution that belongs to the situation with artontribution to the cotunneling rafé, which is produced by
extrahole on the ring in the intermediate stdfeNote that the fluctuating flux and leads to a nonvanishing current at
for the purposes of our discussion we will not distinguishd /2. The sum over initial electronic states on the left elec-
between the charging energies belonging to the electron artébde is carried out over a region of exte¥. The probabil-
hole processe@ssuming them to be of about the same magity of emission of a bath phonon is proportional to the bath
nitude. spectrumw®, and we have to integrate this from 0 to the
Perfect destructive AB interference at an external statienaximum energy of the electron, which is again of orelgr
magnetic flux ofd = ® /2 arises only for an even number of This yields a voltage dependenEe:V**? of the incoherent
electrons on the ring. In this case, the energies contribution to the tunneling currer(see Figs. 6 and)8
However, we want to analyze this in the following using a
1 20 @ \? different, nonperturbative scheme, thereby making contact to
ek:%< - 3) (51  the Feynman-Vernon influence functional formali$muhich
is the “workhorse” of many dephasing calculations.
of the unoccupied states are pairwise degeneratekfor ~ To evaluate Eq(48) in the presence of the bath, we re-
=n2m/L andk_=(1-n)2x/L, see Fig. 5. Therefore, the Write the sum over intermediate states as a time integral
energy denominators fde, andk_ are the same, while the THT -
wave functions in the numerators produce a phase shift of > —“ :if dt(f|ATexd —i(H—E)t]AT|i)
exdi(k. —k_)L/2]=—1 between the two possibilities, lead- v BE-E o
ing to complete cancellation of all terms in the sum. The w
same applies to the sum over occupied stéi@sthe situa- :if dtz T%(Tkx
tion with an extra hole in the intermediate spate 0 K
Dephasing will, in general, “wash out” this perfect de- B o B
structive interference. After taking the modulus squared of X(Flexd —i(H[k]—Eo)t]|0%)
the sum of amplitudes given above in E&Q), which we X exd —i(Ec— e)t]. (52)

125315-12



AHARONOV-BOHM RING WITH FLUCTUATING FLUX PHYSICAL REVIEW B 65 125315

In the second line, which replaces EfO) in the presence
of the bath, we have split off the contribution due to the
electronic states. This has been possible because only the
tunneling operators can change the electronic state, while the
bath couplegliagonallyto the electronic-momentum eigen-
states. Furthermore, we have confined ourselves to the pro-
cess with an extralectronin the intermediate state, a com-
pletely analogous contribution for an extnale has to be

added.A[k] is the Hamiltonian for a given configuration
consisting of an extra occupied stateover the original . >
Fermi sea on the ring. It only acts on the bath Hilbert space, L AB ring R
where @ refers to the ground state of the bath prior to the FIG. 7. Sch o ime® di howing the Keldvsh
tunneling event and® is an arbitrary final state that the bath - 7. Schematic “space-time” diagram showing the Keldys
goes into after the cotunneling process is finished. In OuFontour that runs from O te and back again. The interaction op-

) erator that couples to the bath is nonvanishing only when there is an

notation, the sum of electronic kinetic energies is included N ira electron on the ringhick lines, either in statd™ or k= (see

H[k] as well, whereas the charging enerfy. has been main texj. Tunneling processes are indicated.
taken into account separately. The matrix elements of the

tunneling Hamiltoniang" R are taken between the electronic contributions to the dephasing rate obtained in a single-

states\, k, and\ [compare Eqs(49) and (50)]. E, is the  particle calculation. The normal influence functional is re-

ground-state energy of the ring, including the bath. covered by integrating over all possible energy transfers and
After taking the modulus squared of the sum given abovesettingr™ = 7=,

we arrive at the following contribution to the tunneling rate

+ o0
I at zero temperature, FLrl=(x~(lx"(7)= f doF[r.r0l. (54
R L R L * ;
ZWA fk2> o< (T Tie) (M= Tis))™ JO drexd —i(Ec If no bath is present or its spectrum has a lower cutoff that

is larger than the energy available to the electron, energy
conservation leads te=0, such that the final and initial
bath states coincidé®=08B. Then,F is a product of a factor
depending only ork” and another one, depending only on
k<. In this case, the sums ovér (<) may be carried out

—e)\—EO)T>]JO dreexgd +i(Ec—e,—Egp) "]

B .
X% (X)) B~ Eo—(ex— &) separately, like before, and the terms will cancel agéin
d/2), provided the bath couples equallyke andk_ (see
X(fIx~ (7)), (53)  discussion aboveAlthough there is definitely no dephasing

~(<) : . in this case, the magnitude of the tunneling current may be
wherek denote unoccupied states on the ring. There are :
S ; thanged foid # /2, due to the afore-mentioned renormal-
three analogous contributions besides the one shown here, JiY ..
) . : . ization effects.
which the tunneling takes place in a different oréex., the The Fourier transforniin w) of the generalized influence
process may start by an electron tunneling out of the ring, 9

leaving a hole behind, ejc.Note that a similar expression nctional may be written as follows:

arises in the derivation of theP(E)” theory of a tunnel e*iEor .
junction coupled to a dissipative bath?® F[r,7,7]= 5 (x~(75)|e MO = (77)).

In the preceding formula, the last line can be viewed as a . (55)
kind of “generalized influence functioriaF[ 7,7, w=€, .
— ). It is equal to the overlap between bath stated™) . It can t;ierepresented as a Keldysh t|me-c;r>der3d expecta-
that have been time evolved out of @nder the action of tion value, ™ apart from a prefactor efpiEq(r"—7")]
H[k>(=)] for some timer” (). In contrast to the usual in- . . .
fluence functional, the time of evolution may be different for <TKeXF{ —I J)devl(s) > : (56)

0B

the two states and the overlap is taken only with respect to

bath states at an excitation energy(that must equal the 4o V,(s)=gka(s)/m+Kk2/(2m), with k=k—27d/
energy emitted by the electrprThis difference is due to the n{‘boL), whered is the additionabtatic flux. V, couples the

fact, that in our problem the energy-conservation constrai o . .
must be taken care of, since the electron cannot transfer a%ddmonal <_alec_tron in state to the batil(gnd_also INcorpo-
ates the kinetic energyWe havek=k~ if sis on the for-

arbitrary amount of energy to the bath. This clearly showd’ ) N Lo 2
why a single-particle calculation using the usual influence\é\’ard time pranch and9s<r '>Wh'|§k_k i S>'S on the
functional must fail when the amount of energy available is?ackward time branch andt 7~ —7s=<s<7+7". For all -
limited due to low temperatures or low bias voltages. Thisother times,V, vanishes. This is represented graphically in
problem has also been discussed in Ref. 9, where the authdfsy. 7. Note thatV, is taken in the interaction picture with

have used physical arguments to drop certain “zero-point’respect to the bath coupled to the original Fermi sea on the
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ring. Once more, we have neglected the tef? that turns

out to be unimportant for the bath spectra considered below.
Using Keldysh time-ordering and a linked-cluster expan-

sion (Wick's theorem, we can represent E§56) as an ex-

ponential containing double time integrals involving the

Keldysh time-ordered correlation function of the bath opera-

tor ¢,

ex;{—i fﬁdeﬁ/,(s))

l ~ A A~
xexr{ -5 ﬁdsl éKdSz<TK5VI(Sl) Vi(s2))

FIG. 8. Schematic behavior of the cotunneling rate as a function
of static magnetic flux and bias voltage. In the ideal situation, the
rate vanishes ab,/2 (dotted ling, while it rises as a power of the
bias voltage due to the incoherent contribution resulting from the
fluctuations of the fluxthick line).

(57) , :
actually measurable under reasonable experimental condi-

T AN T I tions, compare the discussion at the end of Sec. JV D
_We ha\_/e SebV, =V, _<V,)—gk¢/m. The p_rmmpal steps Thus, we see that suppression of destructive interference
involved in the evaluation of this expression are demon-

. . oes not show up in tHaear conductance. In this sense, the
strated in the Appendix, where we show how the usua X A .
. fluctuations do not lead to dephasing in the linear-transport

Caldeira-Leggett influence functional for a bath of harmomcregime at zero temperature. For the Nyquist casel, the

oscillators can be derived very efficiently using this method. . ; ) .
. ; ~ exponent ofV is the same as that for inelastic electronic
The resulting exponential couples the momekitaand k

and may therefore lead to dephasing. cotunneling processes in a system witbaatinuumof inter-

) . mediate electronic statés.Bath spectra witha>1 obvi-
From now on, we again consider baths that are character-

ized by a power-law spectrum at low frequenci€) ously lead to an even weaker decrease in the visibility of the
" y ap P d ! interference minimum at low-bias voltages. Note that for-
xw® with an exponenta=1. Remember that the case

=1 represents fluctuations of the magnetic flux produced bmally insertinga:=—1 in ['erV* 2 would lead to an inco-
=prese 9 P ¥1erent contribution to the linear conductance evei a0.
Nyquist noise of an external current loop. For these bat

e - ) mowever, this case is not of interest here, since it cannot be
spectra, it is sufficient to carry out an expansion of the co-

tunneling rate to leading order in the coupling strength produced by afluqtuating magnetic flux and_ i_t is not covered
The part of the resulting expression that coupésand k= by the approximations made in our calculati@m particular

H 2
is seen to lead, after summation over all electronic states droPPINg the¢* term). It would correspond to the strong

C(w)dw (58

K= A X to an “incoherent” contribution that washes out force fluct_ua}tions of an Ohmic Caldeira—Le_ggett bath used in
de,strtjcti\}e interference but that is suppressed for Iow-biatshe desc_rlptlon of quantum Brownian mot_lon. :

For bias voltagegV smaller than the single-particle en-
voltages, as expected. rgy spacingde on the ring, dephasing is merely due to the
At zero temperature, the ratio of this incoherent current af'9y sP € 'ng, dep 9 y .
®=dy/2 to the normal elastic cotunneling current that ﬂowsCOUp.IIng to the _quctuatmg flux. At hlgher voltages, the in-
at<I>:OO is found to be given by the following approximate elastic cotunneling processes t.Jecomel important. In these,
. one electron tunnels into the ring, whibnother electron
expression(up to a constant of order 1), goes out at the opposite electrode, thus leaving behind a

particle-hole excitation on the rirfd. Since all the corre-
zvzfev< 1— @ L sponding final states are different, their contributions to the
g'ur 0 eV Se2 cotunneling current sum up incoherently. Therefore, similar

to dephasing produced by the bath, they also lead to a non-

The expression inside the brackets can be interpreted as thanishing contribution to the tunneling current @t,/2,
variance of the fluctuating energy of a single-particle levelwhere, ideally, one should have perfect destructive interfer-
on the ring. However, it is to be evaluated taking into ac-ence. The number of possibilities to create a particle-hole
count only the fluctuations up to the frequency correspondexcitation with an energy of at most eVigeV/ 8¢)?, if we
ing to the bias voltage and using a weight factor @/eV ~ assumeeV> Je. In that regime, the ratio of the incoherent
that favors low-energy transfets. We have already pointed current contribution due to the external bath to the electronic
out that the cutoff aeV is a simple consequence of energy inelastic contribution is given by the bracket in E&S8),
conservation. For a power-law bath spectr@fw) = w®, the  multiplied by [Se/(E.eV)]? The electronic inelastic contri-
integral yields a voltage dependence proportionaVtd®,  bution will be the dominant one.
so the incoherent tunneling current goesv4s 2. Note that Finally, let us discuss finite temperaturéthoutthe bath
de=hv /L refers to the single-particle level spacing on theand as long ag <dJe, only the Fermi distributions in the
ring. The qualitative behavior of the cotunneling rate as alectrodes get smeared, which does not affect the tunneling
function of both external static flux and bias voltage iscurrent, if one takes into account that now the tunneling pro-
shown in Fig. 8.(We remark again that the incoherent cur- cesses do not only lead to an electron transport from left to
rent due to external Nyquist noise would be too small to beight but in the other direction as well. The presence of the
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bath will introduce some temperature dependence for the inFurthermore, the electronioelastic contribution is also en-
coherent current contribution in this regime, since at finitehanced at finite temperatures and becomes linear in the
temperatures the tunneling electron will not only emit anvoltage®*
energy quantum into the bath but also absorb a thermal-bath
excitation. Therefore, the energy transferred to the bath
now can be negative as well. There is no restriction on the
amount of energy an electron can absorb, so there is no cut- Since we do not find dephasing in our model at zero tem-
off eV for negativew. At positive energy transfers, the prob- perature (under the circumstances specified abovthe
ability of spontaneous emission into the bp#hC(w) in Eq.  reader may wonder how our result is related to some appar-
(58)] now has to be multiplied by(w)+1, wheren(w) is  ently contradicting conclusions in the literature. First of all,
the Bose distribution functiotinduced emission At nega-  we would like to point out that a comparison between find-
tive w, this is replaced byi(|w|), since only absorption of ings in different physical situations is not straightforward,
thermal excitations(not of vacuum fluctuationss possible.  since there is no general definition of a “dephasing rate.”
Taking into account the thermal smearing of the electrodeE.g., in recent work on an Aharonov-Bohm ring containing a
Fermi distributions, the balance of left and right-going tun-quantum dot capacitively coupled to the Ohmic fluctuations
neling currents and the induced emission/absorption merin a gate'’ the authors found that the coupling suppresses the
tioned just before, we have to perform the following replace-magnitude of the persistent current flowing in the ring and
ments in Eq(58), induces fluctuations of this current. The effect persists even
at T=0 and was interpreted as dephasing at zero tempera-
Y o o ture. Formally, the coupling assumed in the setup of Ref. 10
f dw( 1— _)C(w)._>f do W(B,0,eV)(n(|w|) is nondiagonal in the system’s eigenbasis, whereas it is diag-
0 ev - onal in our case. This may indeed lead to a weaker tendency
towards dephasing in our modédee the discussion at the
end of Sec. ). Still, we also find both a reduction of the
persistent currern(Sec. IV A and fluctuationgcaused by the
Note that the factor multiplyingV in the integral corre- vector-potential fluctuations, since the momentum is con-
sponds directly to the functioR(E) that occurs in the theory served, regardless of the details of the bath spectrum. Nev-
of tunneling in a dissipative environmetit?® The function  ertheless, this apparently does not imply dephasing in our
W itself represents an integral over the average of energies imterference setugicotunneling transport situatipnwhich
the left and right electrodes= (¢, + €,)/2, at a fixed energy has been our main concern here and that has no analogy in
transfero=¢, — €y, the work of Ref. 10. The transport effect depends in an es-
sential way on the long-time dynamics of the system and,
therefore, on the low-frequency behavior of the bath spec-
W(,B,w,e\/)z(eV)‘lJ' def (1—fg) —fr(1—f )e Ae. trum (similarly to the Caldeira-Leggett model or some as-
pects of the spin-boson modelvhile the reduction of the
(60) persistent current does not. Therefore, we have not inter-
preted the reduction of the persistent current in terms of zero-
Here f =fg(e,—eVI2) and fr=Tfgz(ey+eVI2) are the temperature dephasing, although it certainly constitutes a
Fermi distributions in the two electrodes. The factor ofsuppression of an interference-related phenomenon. We be-
exp(—Bw) is due to the fact that for an electron going from lieve that the suppression of interference in a cotunneling
right to left the energy transferred to the bath-is», so the  setup considered here may be more directly related to meso-
ratio between the values of(|w|)+ 8(w) at positive and scopic transport interference experiments.
negative frequencies appears, which is just this factor. Note Our model is certainly quite removed from the discus-
that, in the low-temperature limitd— ), the functionw  sions about low-temperature dephasing in weak localization.
becomes t w/eV for w<eV and vanishes fow>eV. This  There, dephasing by electron-electron interaction in an ex-
reproduces the left-hand side of H§9) as a special case. tended disordered system weakens the coherent backscatter-
Using this formula, the incoherent tunneling current ising effect, which is an interference phenomenon that is ro-

found to be enhanced by a temperature-dependent contrib@ust against both thermal and impurity averaging, in contrast
tion proportional toT¢*1V. to the destructive interference considered in our model. Since

At T= Se, one would have to take into account the ther-the electrons inside the metal interact all the time, it is not
mal averaging over different electronic configurations on theobvious whether that situation is in any way analogous to the
ring (still at a fixed particle number determined by Chargingkin_d of “scattering” situation considered here for the cotun-
energy and gate voltageThe perfect destructive interference neling transport.
at /2 depends on the presence of an electronic configura-
tion that is symmetric in the occupancy of equal-energy
states having<>0 and k<0 (see discussion aboneThe VIl. CONCLUSIONS
thermal average includes other configurations as well and We have analyzed a simple model of a fluctuating mag-
therefore leads to a suppression of the destructive interfenetic flux threading an Aharonov-Bohm ring and discussed
ence in theelastictunneling current, even without the bath. its effects on equilibrium properties, such as persistent cur-

VI. DISCUSSION

+6())C(|w]). (59
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rent and tunneling density of states, as well as transport prop- Here the time-evolution operators depend on the system

erties such as the two-particle Green’s function and the cogajectoryx(-) via the interaction ternV(t)=x(t) in the
tunneling current through the ring. Particular emphasis hagjamiltonian. Using the interaction picture with respect to the
been put on the qugstlon of deph?‘s".‘g ar]d low-temperatur ath HamiltoniarﬂB, we can explicitly write dowrd in the
behavior. There are important qualitative differences depend- ] ] o i A
ing on the low-frequency behavior of the bath power specfollowing form, with (anti-time-ordering symbold" (T),
trum. For the case of Nyquist noise and an arbitrary initial
superposition of momentum states, an exponential decay of
off-diagonal elements of the density matrix in timeTat 0
goes over into “power-law dephasing” at zero temperature.
However, if one probes the coherence properties of the elec- A Y I
tronic motion on the ring by checking for the possible sup- xXTexg —i fox (s)#(s)ds
pression of destructive AB interference in a cotunneling

setup, no such suppression is found in timear-transport A )
regime atT=0. This is because the possibility for the elec- Here Zg=trexp(-pHg). Now we can use Keldysh time
tron to leave a trace in the bath is diminished due to thé®rdering to abbreviate this formally,

energy-conservation constraint. Our calculation serves as an
illustrative example of the difference between the “optics”
type of interference experimentemploying single par-
ticles), in which the semiclassical approximation and/or the
usual Feynman-Vernon influence functional may be applied
to discuss dephasing, and the linear-transport interference &%y
periments encountered in mesoscopic physics, in which sp
cial care has to be taken in the analysis of dephasing at lo
temperatures.

J=2zg'r

e B QBTTexr{ +i Jotx<(s)f1>(s)ds

. (A2)

J=27"r . (A3)

e‘BﬁBfKex%}—i § X () d(s)ds
K

Here xk(s) is equal tox~(s) [or x=(s)] if s lies on the
ward (or backwardl part of the Keldysh contour that runs
§fom 0 tot and back again. The advantage of this formal
Vryearrangement is that the application of Wick’s theorem
(leading to a linked-cluster expansjonow becomes very

simple. We immediately obtain fal,
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The bracketg - ) denote the thermal average with respect

to Hg. Now we can translate back the exponent by taking
into account all four possible combinations of the two times
on the forward or backward time patt{3o keep the notation
short, we use subscripts for the time argumgents

APPENDIX: DERIVATION OF CALDEIRA-LEGGETT
INFLUENCE FUNCTIONAL USING KELDYSH
TIME-ORDERING AND WICK'S THEOREM

The influence functional for a systefvariablex) coupled
linearly to a linear bath f(;) is usually derived in the géa:c‘h— 1 ft .
integral picture, by “integrating out” the bath variables: _ = AN N S ET g\ < <
This can be done because the bath consists of a set of un- 2fodtlfodt2{<-r¢l¢2>xl Xz +({Téada)a %o
coupled harmonic oscillators. However, the calculation is A A
usually quite cumbersome, although the result is simple —(P12)XT X5 —(hap1)XT X5 }. (A5)
enough and involves only the real and imaginary parts of the
bath correlato(&(tl)c%(tz)). Here we present a derivation  This can be simplified further by noting that the real part
based on Keldysh time-ordering and Wick's theorem. Theof all the four different correlators appearing here is the
oscillators of the bath and their action for an external drivingsame, since it is symmetric in the time arguments:
force never have to be considered and therefore this is prob?Re( (},1(},2>:<{(}51,(}52}>_ Therefore, the real part of the ex-
ably the shortest route to the well-known Caldeira-Leggetponent is given by:
influence functional. Modifications of this approach are ap-
plicable in more complicated situations as wetbmpare the 1 [t t
main texj. - EJ dt1J dt, Re(dh1 o) (X7 —X7) (X5 —X5). (AB)

The Feynman-Vernon influence functional is the overlap 0 0
between the two bath states that result from the action of two

different (fixed) system trajectoriex”(-) and x=(-) onto It defines the imaginary part of the influence action
the same initial bath state,. A thermal average ovey, has  Si,;[X~,x~] and describes dephasing and heating due to the
to be performed at finite temperatures, fluctuations of the bath variablg.

Treating the imaginary part is only slightly more difficult.

I X)) =(UOX )Xol U L0 ) xob (AL \we have
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A o 1 .. This defines the real part of the influence action and de-
Im(¢l¢2>=—|m<¢2¢1>=5<[¢1,¢2]> scribes friction and renormalization effects.g., effective
mass$. Note that we can bring the real part of the exponent,
IM(T 1) =sgrt;—to)IM( by hp) = — |m<?|-<}5l(}52>(.A7) (AB), to a similar form by cutting off thé,-integral att; and
dropping the factor 1/2 in front of the expression, since there
In order to get rid of the sgin{—t,), we split the double the integrand is symmetric ify ,t.
time integral into one part wherg,<t; and one witht, In this way we have arrived at the well-known influence
>t,. In the latter part, we interchange integration variablefunctional for a system coupled linearly to a linear bath. As
t; andt,. Then we obtain for the imaginary part of the ex- ysual, a coupling of the formi(x) ¢ just leads to a replace-
ponent: mentx— f(x) in the final expression, and something such as

[t t NN > f.(x)&: leads to a sum of the corresponding influence ac-
S [ty [ Matam( a6 x5 06 +x5). g SO0 e ponding
0 0 tions, if the ¢; are uncorrelated.
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