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Abstract The regional atmospheric chemistry and cli-
mate model REMOTE has been used to conduct
numerical simulations of the atmosphere during the
catastrophic Indonesian fires of 1997. These simula-
tions represent one possible scenario of the event,
utilizing the RETRO wildland fire emission database.
Emissions from the fires dominate the atmospheric
concentrations of O;, CO, NO,, and SO, creating many
possible exceedances of the Indonesian air quality stan-
dards. The scenario described here suggests that urban
anthropogenic emissions contributed to the poor air
quality due primarily to the fires. The urban air pol-
lution may have increased the total number of people
exposed to exceedances of the O5 1-h standard by 17%.
Secondary O from anthropogenic emissions enhanced
the conversion of SO, released by the fires to SO, ™,
demonstrating that the urban pollution actively altered
the atmospheric behavior and lifetime of the fire emis-
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sions. Under the conditions present during the fires,
volcanic SO, emissions had a negligible influence on
surface pollution.
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Introduction

Air pollution is a significant environmental problem
in Indonesia, having an impact on public health and
disrupting the Indonesian economy (Aiken 2004). El-
evated concentrations of lead, particulate matter (PM),
carbon monoxide (CO), hydrocarbons, sulfur dioxide
(SO,), and nitrogen dioxide (NO,) are found in all
large cities in the country. Motor vehicles, fires, and
the industrial sector are the greatest contributors to
the air pollution problem (Energy Information Admin-
istration 2004). Additional sources of air pollution in
Indonesia are volcanoes, as this is the region of the
world with the largest number of historically active
vents (Simkin and Siebert 1994). Large-scale fires set
by people for land conversion contribute greatly during
the dry season, releasing gases and particles referred
to as haze into the atmosphere (Heil and Goldammer
2001). These fires are typically extinguished at the onset
of the north monsoon rains in October-November. In
1997, however, strong El Nifio conditions delayed the
onset of the rains and promoted a drought (Khandekar
et al. 2000), allowing the fires to burn uncontrolled
for a longer time than usual. Between August and
November 1997, land-clearing fires in Kalimantan and
Sumatra grew out of control into wildfires producing
an environmental disaster. The El Nifio conditions also
reduced convective activity in the region, preventing
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the emissions from the fires from mixing upwards
in the atmosphere (Heil and Goldammer 2001). This
had the effect of generating high surface concentra-
tions of the pollutants that were transported over a
large part of Southeast Asia. While Indonesia experi-
enced the brunt of the pollution effects from the fires
(Frankenberg et al. 2004), a multitude of transbound-
ary health and economic problems, significantly in
Malaysia (Sastry 2002; Khandekar et al. 2000) and
Singapore (Koe et al. 2001), were also felt. The 1997
fires and their effects have been studied using several
different methods, including stationary, balloon, and
airplane measurements, satellite observations, illness
and mortality surveys, and numerical modeling of at-
mospheric processes.

The surface and tropospheric concentrations of the
compounds emitted by the fires including PM, SO,,
CH,, CO, NOy, and secondarily produced O; were
enhanced within the region for all observed pollutants
(Davies and Unam 1999; Fujiwara et al. 1999, 2000;
Matsueda et al. 1999; Tsutsumi et al. 1999; Yonemura
et al. 2002a, b). Even measurements performed sev-
eral hundred kilometers from the fires demonstrated
significantly elevated concentrations for all of these
compounds. Satellite observations of this event are im-
portant, as there are very few ground-level observations
of the extent of the area burned and of the dispersion
of the pollution from the fires. The extent of the fires
and associated haze were observed using Advanced
Very High Resolution Radiometer (AVHRR) data
(Wooster et al. 1998; Fang and Huang 1998). Nakajima
et al. (1999) used AVHRR data to study sulfate and
carbonaceous aerosol optical thickness due to the fires,
finding that the peak enhancement occurred in October
and that the smoke from the fires was dominated by
small submicron aerosol particles. The Total Ozone
Mapping Spectrometer (TOMS) was used to observe
tropospheric column O, (TCO) and tropospheric wa-
ter vapor (Chandra et al. 1998) and total atmospheric
O; (Kita et al 2000). TOMS indicated about 10-
20 Dobson Units (DU; 1 DU =2.69 x 10'® mole-
cules cm~2) of increased tropospheric ozone over the
Indonesian region (Chandra et al. 1998) while ground-
based measurements indicated an increase of up to
35 DU (Fujiwara et al. 1999). By comparing AVHRR
and TOMS data, Nakajima et al. (1999) suggest that
sulfate aerosol particles may be observed further from
the fires than carbonaceous aerosol particles because
of the time required for SO, released by the fires
to convert to sulfate aerosol. Increased tropospheric
column concentrations of NO,, O, and H,CO were
observed by the Global Ozone Monitoring Experiment
(GOME) during the fires (Burrows et al. 1999).
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Several studies of the environmental and radiative
effects of the compounds emitted by the fires have been
conducted using climate and aerosol models. A global
chemical transport model with a mean climatological
state rather than the actual meteorological conditions
present during the fires was used by Hauglustaine et al.
(1999) to study the increase in tropospheric O; due
to precursor species released by the fires. A global at-
mospheric chemistry and transport model was applied
by Chandra et al. (2002) who demonstrated a strong
enhancement of TCO over Indonesia and most of the
western Pacific and a decrease in TCO in the eastern
Pacific, concluding that both the emissions from the
fires and El Nifo specific meteorological conditions
contributed to the O; anomaly. Duncan et al. (2003)
expanded on the work of Chandra et al. (2002) using
the same model and gaseous emissions while adding
the radiative effects of black carbon (BC) and organic
carbon (OC) particles from the fires in their study. They
found that the net effect of the fires was to reduce OH
and the oxidizing capacity of the troposphere and to
reduce radiative forcing at the Earth’s surface, predom-
inantly by OC and BC. Podgorny et al. (2003) applied
an aerosol optical model producing results that agree
with those of Duncan et al. (2003) that the aerosol
particles released by the fires generated an enhance-
ment in atmospheric solar heating and a corresponding
decrease in solar flux reaching the surface over the
equatorial region ranging from west of Indonesia to
Papua New Guinea. A large uncertainty in these early
studies is in the emission inventory applied for the
fires, in particular the contribution of peat fires to total
fire emissions. Langmann and Heil (2004) applied a
regional atmospheric chemistry and climate model to
compare different emission scenarios in order to better
constrain how much particulate matter was released
by the fires, and how much the burning of peat forest
contributed to the total pollution.

The present work is a theoretical study that attempts
to capture the complex interactions of the different
emission sources during the Indonesian fires of 1997.
We have conducted the first study of this event that
applies a high-resolution regional model including full
tropospheric chemistry. We have further included a
new improved inventory of anthropogenic and wildfire
emissions- the RETRO database (Schultz et al. 2008;
Schultz 2007). In order to model the event as realisti-
cally as possible, we have also included volcanic SO,
emissions. Due to the scarcity of measurements during
the event, however, this is a theoretical modeling study
that cannot be properly validated. The goal of this
study is to examine the atmospheric concentrations of
trace gases during this event, and to consider how the
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anthropogenic and volcanic emissions in the region may
have participated in the extreme pollution event due
primarily to the fires.

Experimental setup

In this section, we will describe the experiments per-
formed for this study. Firstly, the model will be in-
troduced. Then, the inventories for the anthropogenic,
fire, and volcanic emissions will be described. Finally,
the three experiments performed for this work will be
explained.

Model

The regional atmospheric chemistry model Regional
Model with Tracer Extension (REMOTE; Langmann
2000) has been used for this study. REMOTE combines
the physics of the regional climate model REMO 5.0
with tropospheric chemical equations for 63 chemical
species; 158 gas phase reactions from the RADM II
photochemical mechanism (Stockwell et al. 1990) are
included. The chemical tracer transport mechanisms in-
clude horizontal and vertical advection (Smolarkiewitz
1983), convective up- and down-draft (Tiedtke 1989),
and vertical diffusion (Mellor and Yamada 1974). Trace
species can undergo chemical decay in the atmosphere
or can be removed from the atmosphere by wet and dry
deposition or transport out of the model boundaries.
Forty-three longer-lived chemical species are trans-
ported between grid boxes, and 20 are calculated but
too short-lived to be transported.

The model was applied with 20 vertical layers of
increasing thickness between the Earth’s surface and
the 10 hPa pressure level (approximately 23 km). The
model domain covers Indonesia and northern Australia
(91° E-141° E; 19° S-8° N) with a horizontal resolution
of 0.5° (approximately 55 km). Meteorological analysis
data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) were used as boundary
conditions every 6 h. Results from a global chemical
transport model (MOZART; Horowitz et al. 2003)
simulation for the year 1990 (Granier et al. 2003) were
used as chemical concentration boundary conditions
every 6 h for 14 chemical species including O; and CO.
Background concentrations for 25 other species (Chang
et al. 1987) including SO, and SO;~ were specified at
the lateral model boundaries.

Emission inventories

The emissions have been divided into three categories:
anthropogenic, fire, and volcanic. The fires were set by

people and are hence an anthropogenic source. For the
purposes of this paper, however, the fire emissions are
treated as distinct from the other anthropogenic emis-
sions. The anthropogenic and fire emissions include 18
and 19 species, respectively, including SO,, CO, and
NO,. Some of the anthropogenic species vary monthly
while others are an annual mean in the inventory. The
anthropogenic emissions with monthly values vary lit-
tle, and so these emissions are shown for only October
1997. All fire species have large monthly variations, so
the fire emissions are shown for September, October,
and November 1997. The volcanic inventory was devel-
oped to be a realistic, conservative estimate averaged
over the past century. These emissions are temporally
constant and include only SO, and SO42*. Sea spray
generally contributes less than 20% to atmospheric S in
Indonesia (Kloster 2006), and is not considered in this

paper.
Anthropogenic emissions

The anthropogenic emission inventory (Table 1) was
assembled using data available from the Global

Table 1 Indonesian anthropogenic emissions for October 1997

Species Emissions
Gg
Oct. 1997
Acetaldehyde? 22.3
Alkanes®! 74.0
Aromatics®8 13.0
Black carbon® 43.2
Butane + Propane® 36.2
CO° 2,402.0
Ethane® 27.7
Ethene® 40.5
Formaldehyde? 82
Ketones? 8.4
NH,4 145.8
NO¢ 139.0
NO,°¢ 8.9
Propene® 18.7
SO,°¢ 39.8
SO}~ 2.5
Toluene® 22.1
Xylene® 15.3

AEDGAR V2.0; benchmark year 1990

YGEIA original inventory; benchmark year 1985; Penner et al.
(1993); Dignon et al. (1994)

‘RETRO

JEDGAR V2.0; benchmark year 1990; Bouwman et al. (1997)
¢GEIA original inventory; benchmark year 1985; Benkovitz et al.
(1996)

fHexane and higher

gExcluding benzene, toluene, xylene, methyl benzene, and
trimethyl benzene
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Emissions Inventory Activity (GEIA) website (GEIA
2006). Data was included from the RETRO emission
database (Schultz 2007) and the EDGAR V2.0 emis-
sion database (Olivier et al. 1996; Bouwman et al.
1997). Multiple emission inventories were combined to
include as many trace species as possible in the simula-
tions. The RETRO emissions are available as monthly
data in 0.5° resolution. In the RETRO emissions, a
discontinuity occurs at the equator due to the change in
the seasons between the northern and southern hemi-
spheres. As the equator is significant in the domain
of these model experiments, the RETRO emissions
for the southern hemisphere have been applied with
the northern hemisphere seasonal cycle to avoid this
discontinuity. The data provided from the other sources
are available as annual means for the year 1985 or 1990
in 1.0° resolution and have been interpolated to 0.5° for
the experiments. The Indonesian anthropogenic emis-
sions range from 1-6% of the global total of anthro-
pogenic emissions.

Fire emissions

The fire emission inventory (Table 2) is from the
RETRO emission database (Schultz et al. 2008) and are
provided as monthly data in 0.5° resolution. The species
included within the anthropogenic and fire inventories

Table 2 Indonesian Fire Emissions for September—November

1997
Species Emissions Emissions Emissions
Gg Gg Gg
Sep. 1997 Oct. 1997 Nov. 1997

Acetaldehyde 1,608.1 1,329.3 448.0
Black carbon 3554 266.2 89.8
Formaldehyde 1,151.0 913.6 307.9
CO 134,708.3 108,791.7 36,662.5
Ethane 887.1 689.7 232.0
Ethene 1,994.8 1,589.8 535.4
Isoprene 544.5 461.1 155.4
Ketones? 940.4 760.6 256.4
NH,4 8,408.3 7,065.5 2,380.7
NO, 82.6 63.9 21.6
NO 1,293.5 999.6 338.1
Organic carbon 5,006.8 3,970.4 1,338.0
Propane 629.2 479.7 161.1
Propene 2,010.3 1,634.4 550.2
SO, 1,960.2 1,634.0 550.6
SO;~ 122.5 102.1 34.4
Toluene 730.3 606.4 204.3
TPM 24,790.8 20,572.5 6,935.7
Xylene 69.2 55.6 18.7

All emissions from RETRO

a4 Acetone
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differ in that the fire emissions do not include higher
alkanes or butane (which are oxidized in fires very
quickly) while the anthropogenic emissions do not in-
clude isoprene (which is mainly emitted by vegetation),
OC, or total particulate matter (TPM). All of the fire
emission species increase dramatically in the dry season
(northern hemisphere autumn) compared with the wet
season (northern hemisphere spring). In September
(the peak month of fire emissions), these emissions
range from 62— 95% of the global total of fire emissions.
The Indonesian fires of 1997 are the largest contributor
to global fire emissions contained in the RETRO wild-
land fire database (Schultz et al. 2008). The burning of
peat during the fires contributed greatly to the severity
of the emissions (auxiliary material Schultz et al. 2008).

Volcanic emissions

The amount of SO, released by a volcano is de-
pendent on many factors including activity type and
varies widely from one volcano to another and at
one volcano over time. There are few reported mea-
surements of the degassing rates of the Indonesian
volcanoes. The SO, flux of five mildly erupting and
passively degassing Indonesian volcanoes have been
measured using correlation spectroscopy (COSPEC).
Potentially stratosphere-reaching eruptive plumes have
been observed with TOMS for four volcanoes and of
tropospheric eruptions for two others. The petrologic
method (whereby the difference in volatile concen-
tration in melt inclusions and coexisting matrix glass
is used to estimate degassing for one eruptive event)
has been used to calculate the SO, emissions of four
large eruptions. Relatively rare stratospheric-reaching
eruptions released from 200-5,800 Gg SO, per erup-
tion, while passive degassing and small eruptions (the
source of most volcanic emissions) released from 5-
240 Gg SO, year™!.

Because of the very few measurements of the emis-
sion rates of the Indonesian volcanoes, estimates are
necessary to be able to incorporate volcanic emissions
into modeling studies. A conservative emission esti-
mate has been developed considering eruptive and
passive degassing volcanic activity. The only volcanic
species considered are SO, and its oxidation product
SO, because there is far more information available
about the flux rate of SO, at individual volcanoes
at specific times and, more generally, at volcanoes at
different activity levels than for any other species.

The eruptive activity recorded in the Simkin and
Siebert (1994) catalog during the past century (1900-
1993) for each volcano in the model domain were
summed. Over this time period, 63 volcanoes in



Air Qual Atmos Health (2012) 5:277-292

281

Table 3 Estimates of Indonesian volcanic emissions

Emissions (Gg (SO, )/year)

Author Eruptive  Non-eruptive =~ Combined
Hilton et al. (2002) - 120 -

Spiro et al. (1992) - 210 -

Nho et al. (1996) 1,900 1,600 3,500
Halmer et al. (2002) - - 2,100-2,600
Pfeffer et al. (2006) 290 3,500 3,790

This study 290 194 484

Indonesia are known to have erupted and 32 additional
volcanoes have passively degassed. The strength of
each eruption as described by the volcanic explosiv-
ity index (VEI; Newhall and Self 1982) was used to
calculate the amount of SO, released following the
volcanic sulfur index (VSI; Schnetzler et al. 1997).
The total number of eruptions of each VEI class was
multiplied by the maximum amount of SO, released
by arc volcanoes (volcanism produced by subduction)
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suggested by the VSI. The SO, flux resulting from this
multiplication was then divided by the 94 years of the
record to generate an annual mean emission estimate.
The time-averaging removes some of the high natural
short-term variability in volcanic eruption frequency.
These calculations indicate 290 Gg SO, year~! released
eruptively by the Indonesian volcanoes.

The passive emissions were calculated by assuming
that 60% of volcanic emissions are eruptive and 40%
are passive, following Halmer et al. (2002). This re-
sults in an assessment of 190 Gg SO, year™! released
passively. The passive emissions were divided evenly
among the 95 active volcanoes, providing a mean pas-
sive SO, flux of 2 Gg SO, year~! for each volcano. The
sum of passive and eruptive volcanic emissions is about
480 Gg SO, year™'.

The estimated emissions of individual volcanoes
are generally less than COSPEC measurements. The
COSPEC measurements were mostly made during
times of tropospheric eruptive activity and eruptions

September 1997

Emission  Contribution
Source (%)
Feb.  Sep.
Anth 48 2
Fire 5 96
Volc 47 2
Emission  Contribution
Source (%)
Feb.  Sep.
Anth 98 9
Fire 2 91
Emission  Contribution
Source (%)
Feb.  Sep.
Anth 91 1
Fire 9 99

95E 100E 105E 110E 115E 120E 125E 130E 135E 140E

Fig. 1 Total emissions for the sum of the anthropogenic, fire, and volcanic sources for SOy, NO,, and CO for February and

September 1997
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are frequently interspersed with long periods of passive
degassing. The lower values of the estimated emissions
compared with the COSPEC measurements reflect
this lower emission flux averaged over time. We con-
tend that this century-mean emission inventory pro-
vides a realistic, conservative estimate of the volcanic
degassing of SO, in the region (Table 3).

Implementation of emission inventories

Figure 1 shows the total emissions from anthropogenic,
fire, and volcanic sources for SO, (SO, + SO;7) and
the total emissions from anthropogenic and fire sources
for NO, (NO, + NO) and CO for February and Sep-
tember 1997. The emissions of each volcano have been
released into the model layer at the height of the
volcano, which lie within the bottom 12 model levels
(up to about 4 km). This is a practical approach as
we do not have sufficient data to reasonably estimate
the injection heights of the eruptive emissions or the

SO,
6N - W 185
3N - 160
q £E 140
EQ N N s 120
351 o it L= 100
6S 1 %{) i —80
= U #
5 60
95 1 [
S I4o
1251 2 -
155 15
185 10
95E 100E 105E 110E 115E 120E 125E 130E 135E 140E
ppb SO,
(6(0)

6N N "y 41
3N+ 37
4 i‘E "33
. 8 I = 29
351 @ o L 25
= u -
e

65 L 21
;
o5 | :‘Qk, I17
13
4 £
125 |
155 | 5
185II:I Region where measurementstvere made 2
95E 100E 105E 110E 115E 120E 125E 130E 135E 140E
ppm CO

amount of passive degassing from the flanks of the
volcanoes. The anthropogenic and fire emissions were
released into the bottom model layer, which is between
~30 — 500 m thick. This is a reasonable approach for
Indonesia where few industrial stack heights exceed
this height and where most of the biomass burning
emissions are from smoldering peat fires (Heil 2007).
For all three species, the fire emissions strongly dom-
inate in September while they are minor in February.
Because of the severity of the fires, the total emissions
are also greatly increased in September. The fires in
September 1997 were strongest in southern Kalimantan
and southeastern Sumatra.

Experiments

In order to ascertain the influence of the different emis-
sion sources within the model domain on the air quality
in the region, an experiment including all emission
sources and two sensitivity experiments excluding an

NO

210

2
6N - W
3N 190
4 EE 170
EQ o A L 150
35 o L1130
| i L 110
ol 4
S
f )

]
= N

65
90

95
I7o
1251 | -
1551 40
1851 30

95E 100E 105E 110E 115E 120E 125E 130E 135E 140E
ppb NO,

6N 125
an ] 110
=95
EQ1 80
351 —65
651 L 55
45
951
I35
1251 A 25
Petaling Jaya, Malaysia il
1551 D) 14 15
185 &Watukosek, Indonesia PS

95E 100E 105E 110E 115E 120E 125E 130E 135E 14'0Eppb o
3

Fig. 2 Ground-level concentration of SO,, NO,, CO, and O; averaged over September-November 1997 for experiment Anth-

Volc-Fire
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emission source were conducted. (1) Anth-Volc-Fire—
emissions from the anthropogenic, volcanic, and fire
sources were included in the model experiment: this
is the reference experiment; (2) Volc-Fire—only emis-
sions from the volcanic and fire sources were included
while anthropogenic emissions inside the domain were
excluded; and (3) Anth-Fire—only emissions from the
anthropogenic and fire sources were included while
volcanic sources inside the domain were excluded. In
figures, experiments Anth-Volc-Fire, Volc-Fire, and
Anth-Fire will be referred to as AVF, VF, and AF,
respectively. All experiments were conducted for the
year 1997. The sulfur species, SO, and SO;~, have
been “marked” into four categories: A, V, and F for
the anthropogenic, volcanic, and fire emission sources,
respectively, and B for the sulfur containing species
defined at the boundaries of the simulation area. This
marking allows sulfur from each source to be fol-
lowed individually throughout the experiments as four
SO, and four SO}~ tracers. This is a technique only
possible in modeling studies.

Results

The maximum surface concentrations of SO,, NO,,
CO, and O; in September-November 1997 are found

Table 4 Indonesian air quality standards

Pollutant Averaging Standard
time ng/m3 ppm?
SO, 1h 900 0.34
24h 365 0.14
1 year 100 0.023
NO, 1h 400 0.21
24h 150 0.080
1 year 100 0.053
CO 1h 30,000 26.2
24h 10,000 8.7
O, 1h 235 0.12
1-year 50 0.025

Syahril et al. (2002); For comparison, the air quality standards of
the US EPA (ppm) are: SO, 24 h, 0.14; NO, 1 year, 0.053; CO
1h,35;,058h,0.08

4Calculated assuming 25°C and 1 ATM

over southeastern Sumatra and southern Kaliman-
tan (Fig. 2): the locations of the most intense fires.
These four compounds are focused on because they
are among the pollutants regulated by the Indone-
sian government and they are active participants in
tropospheric chemistry. These 3-month average val-
ues have been plotted to highlight where they ex-
ceed the Indonesian air quality standards. There are
no 3-month air quality standards (Table 4). There
are l-year air quality standards for SO, (0.023 ppm),

Fig. 3 Vertical profiles of the Petaling Jaya
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measured (open circles) Feb. 17 Sep. 15 Oct. 15 Nov. 17
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Fig. 4 Vertical profiles of the Watukosek
modeled (filled triangles) and
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NO, (0.053 ppm), and O; (0.025 ppm) and a 24-h
standard for CO (8.7 ppm). Comparing the 3-month
average values of SO,, NO,, and O; with the 1-year
standards will overestimate the region where the air
quality standards were exceeded, as the fires did not last
a whole year. Comparing the 3-month average value of
CO with the 24-h standard will produce an underesti-
mation of the region with exceedances. Despite the lack

Fig. 5 Vertical profiles of the
modeled (filled triangles) and
measured (open circles) 14 4

of 3-month air quality standards, comparing these three
months of the main fires with the longest available air
quality standards provides a framework to consider the
severity of the pollution. Regions in Fig. 2 that exceed
the standards as described above are plotted in green
through red, while regions with concentrations less
than the standards are plotted in white and blue. SO,,
NO,, and CO rarely exceed the air quality standards.

October 20, 1997

CO for 20 October 1997 AA  AA oGC/FID measurements
between 1-7° N and AREMOTE
103-109° E. Measurements 121 o
were made using a gas A
chromatograph equipped 101 o
with a flame ionization
detector (GC/FID) from £ R
Matsueda and Inoue (1999) = 8 o
= A
(=]
® 6 O
T
4 o)
A
O
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A A
© O © A
0 ‘ O ‘ ‘ A ‘ A
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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The three-month averaged O; exceeds the 1-year air
quality standard over a large portion of the modeling
domain, most significantly extending from the fires
northwestward over much of western Kalimantan, cen-
tral Sumatra, and southern Malaysia.

The modeled O; has been compared with
ozonesonde measurements performed at two locations:
Petaling Jaya, Malaysia (Fig. 3; Yonemura et al. 2002a)
and Watukosek, Indonesia (Fig. 4; Fujiwara et al.
1999; for locations of measurements see bottom right
panel of Fig. 2). At Petaling Jaya, 23 ozonesonde
measurements were performed in 1997, typically
at the beginning/end of a month and in the middle
of a month, usually around 20:00 (local time). At
Watukosek, 20 measurements were made, similarly
at the beginning/end of a month and in the middle

REMOTE - February 1997

6N |
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98
12S
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18S __5 s
95E 100E 105E 110E 115E 120E 125E 130E 135E 140E

REMOTE - September 1997

6N 1
3N {
EQ { '-
351
6S
9S
128
15S {
185 {

of a month, with no measurements made April-June
and weekly measurements made October—December,
usually around 10:00 (local time).

Petaling Jaya is downwind of the fires and is mod-
eled to be affected by the fire-related O;, with sur-
face concentrations greater than the 1-year air quality
standard. In February, the simulated O; matches the
measured very well. During the three months of the
fire, the model overpredicts the surface O; at Petaling
Jaya by 20-40 ppb. Between 1-2 km elevation, the
model greatly overpredicts the O; and becomes less
than the observed above 3 km. Watukosek is upwind
of the fires, and the measured Oj is greater than the
O; measured at Petaling Jaya. Again, the modeled
O; in February matches the observation very well
For the three months of the fire, the simulated Oj is

GOME - February 1997

95E 100E 105E 110E 115E 120E 125E 130E 135E 140E
GOME - September 1997

.

0.05 0.1 0.5 1 2

4 5 6 7.5 10

NO, [10*® molecules / cm?]

Fig. 6 Tropospheric column concentration of NO, for February (fop row) and September (bottom row) 1997 for REMOTE model
simulations (left column) and GOME satellite observations (right column; Richter et al. 2005)
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less than the observed and up to 3 km matches the
vertical pattern of the ozonesonde measurements quite
well. The modeled CO has been compared with air-
borne measurements made on October 20, 2007 (Fig. 5;
Matsueda and Inoue 1999; for locations of measure-
ments see bottom left panel of Fig. 2). The model
results shown are for the horizontal grid box and model
level containing the latitude/longitude and elevation
where a sample was collected. Heights of the measure-
ments and model results are not equal in the figure
because the model results are presented at the mean
height of the model layer. The modeled CO is approx-
imately double the observed throughout the vertical
profile, and replicates the vertical trend very well.

The modeled, monthly averaged NO, tropospheric
column concentration for February and September
1997 has been compared with gridded, monthly av-
eraged GOME satellite data (Fig. 6; Richter et al.
2005). Despite the missing data in the February 1997
GOME image (the white pixels), it can be seen that the
REMOTE February simulation matches the GOME

-
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image well. In September 1997, the burning regions of
southern Kalimantan and southeastern Sumatra have
much greater NO, burdens than the GOME image
shows. The modeled O; tropospheric column concen-
tration cannot be compared with GOME observations,
because REMOTE does not include stratospheric
chemistry. A result of this is that the very impor-
tant transport of O; from the stratosphere into the
troposphere is not captured, and our simulated tro-
pospheric column concentrations will necessarily be
underestimated.

The influence of the anthropogenic emissions in the
domain has been depicted by subtracting the surface
concentration of the four species of interest cal-
culated in the experiment without anthropogenic emis-
sions (Volc-Fire) from the results of the reference
experiment (Anth-Volc-Fire; Fig. 7). The anthro-
pogenic surface concentrations (Fig. 7) are about one
order of magnitude less than the total surface concen-
trations (Fig. 2). The greatest increase of SO, and NO,
is found above Singapore, with an increase of 91%
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Fig. 7 Difference in surface concentration of SO,, NO,, CO, and O; averaged over September-November 1997 for experiment Anth-

Volc-Fire-Volc-Fire
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for SO, and 99% for NO, when the anthropogenic
emissions are included in the experiments. The greatest
effect for CO is above Kuala Lumpur, where the an-
thropogenic emissions increase the atmospheric CO by
58% and for O; above Jakarta by 67%. O; is not
enhanced by the anthropogenic pollution over most of
Kalimantan and southeastern Sumatra, where the emis-
sions from the fires were the strongest. The influence
of the volcanic emissions on these four species has
been calculated accordingly, by subtracting the results
of the experiment without volcanic emissions (Anth-
Fire) from Anth-Volc-Fire. These results are not shown
because the influence on SO, is minor, with the volcanic
emissions contributing primarily over Java.

Discussion

The observational data set is too small to make a robust
statistical comparison with the model results: it is only
possible to present a visual comparison of the model
results with the few observations. Comparisons of the
model results with the measurement sets available indi-
cate that the simulated atmospheric concentrations of
trace gases from the fires are too high at downwind lo-
cations. O compared with ozonesonde measurements
at Petaling Jaya, CO compared with airborne measure-
ments made slightly beyond the region where the model
simulates the fire emissions to have been transported,
and NO, as observed by GOME all support this. In
contrast, comparisons made in February, not during
the extreme fires, agree well. We do not put as much
weight on the comparison with measurements made
at Watukosek. It is possible that the O; values mea-
sured at Watukosek are too high, as they are greater
than the values measured at Petaling Jaya (downwind
of the fires) and the high values continue after the
end of the fires. Ladstitter-Weienmayer et al. (2005)
show that the tropospheric column concentration of O,
as calculated from the ozonesonde measurements at
Watukosek in September 1997 are about 10 DU greater
than the GOME satellite observations. Thompson et al.
(2003) offer the hypothesis that half of the tropospheric
O; increase measured at Watukosek may be due to
large scale dynamical processes rather than fire emis-
sion related photochemical processes, in which case the
measurements may not be too high, rather there is a
physical transport mechanism that is not being correctly
simulated.

The RETRO fire trace gas emissions included in
this study may be overestimated. The RETRO fire
emissions can be most readily compared with the

Global Fire Emissions Database, Version 2 (GFEDv2;
Randerson et al. 2006). RETRO has higher emissions
than GFEDv2, which is attributed to a greater contri-
bution from smoldering peat fires (auxiliary material
Schultz et al. 2008). The RETRO emissions for the 1997
Indonesian fires has an uncertainty range of at least a
factor of four due to uncertainties in variables includ-
ing biomass load and burning efficiency (Heil 2007).
Unfortunately, given the paucity of measurement data,
it is not possible using the comparisons we have made
to quantify the possible overestimation. Given that the
fire emissions may be too high, the results regarding the
air quality exceedances are most likely overestimated.
The good performance of the model’s atmospheric
chemistry in February, outside of the burning season,
suggests that the results relating to the interactions be-
tween the different emission sources may be valuable.
If the fire emissions have been overestimated, however,
this will influence the results relating to the other emis-
sion sources, and as such the results presented are for
this one simulated scenario.

A detailed comparison of the model’s simulated
rainfall with data from the Global Precipitation Clima-
tology Centre (GPCC 2007), Global Precipitation Cli-
matology Project (Huffman et al. 1997), and individual
Malaysian stations is presented in Langmann and Heil
(2004). The relevant comparison is for the so-called
climate mode. It is shown that the REMOTE model fol-
lows the seasonal trend of dry season/wet season very
well but strongly overestimates rainfall, particularly
over the ocean. Over land, REMOTE’s simulation of
rainfall is more reasonable. This overprediction means
that water soluble compounds, such as SO;~, will be
washed out of the atmosphere too quickly but will have
little effect on less soluble compounds.

The highest surface concentrations of SO,, NO,,
CO, and Oj; in September-November 1997 were mod-
eled to be directly above southeastern Sumatra and
southern Kalimantan—the locations of the strongest
fires, with winds out of the southeast transporting the
pollution. The active Indonesian volcanoes are upwind
of the fires. They contributed only slightly to the sur-
face concentration of SO, during the fires and did
not discernibly influence the concentration of the sec-
ondary pollutant O;. The anthropogenic pollution was
greatest above the major cities in the region: Jakarta,
Singapore, and Kuala Lumpur. Singapore and Kuala
Lumpur are in the downwind path of the fire pollution,
while Jakarta is upwind. The modeled concentrations of
SO,, NO,, and CO were all highest at 7:00 (local time)
as the pollutants are trapped in the nocturnal boundary
layer. The modeled concentration of O; was highest at
13:00 (local time) due to photochemical reactions.
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The 1-h air quality standards (Table 4) were ex-
ceeded for all four species at discrete modeled hourly
values above and downwind of the main fires. For
SO,, NO,, and CO the exclusion of the anthropogenic
pollution in the domain (experiment Anth-Volc-Fire-
Volc-Fire) produces a minor reduction in the number of
exceedances at 7:00. The inclusion of the anthropogenic
pollution increases the total sum of O5 1-h exceedances
where the most people live (Fig. 8). Applying the
Gridded Population of the World Version 3 (GPWv3)
data for the year 1995 (Center for International Earth
Science Information Network (CIESIN), Columbia
University and Centro Internacional de Agricultura
Tropical (CIAT) 2005) indicates an increase of 17% of
the number of people living in grid boxes with 1-h O,
exceedances. Some of the changes in surface O; due
to anthropogenic emissions are due to NO, pollution
along the lines of international shipping (bottom right
panel Fig. 7; middle row Fig. 1).

It is shown by subtracting the SO, F (the SO,
marked as specifically fire) in experiment Volc-Fire
from that in Anth-Volc-Fire (top row Fig. 9) that
the difference in SO, F is negative over peninsular
Malaysia and Java, near the large cities where the
anthropogenic emissions are strongest, and positive
above the southeastern Sumatra fires. The difference in
SO;~ F shows the reverse pattern: where the difference
in SO, F is negative, that in SO}~ F is positive. The
anthropogenic emissions in the domain enhance the
conversion of the SO, released by the fires to SO; .
This decrease in SO, F is in contrast to the upper
left panel in Fig. 7 which shows an increase in the
total SO,. While the anthropogenic emissions decrease
SO, F, the total SO, is increased. The decrease in SO, F
occurs in the same areas as where the anthropogenic

Hourly O, exceedances Sep. — Nov. 1997 AVF

6N
3N+
EQA
354
65
95+
125+
155+
185+

95E 100E 105E 110E 115E 120E 125E 130E 135E 140E

days

emissions have increased the surface concentration of
O, (bottom right panel of Fig. 7). The increase of O; by
the anthropogenic emissions leads to the enhancement
of the conversion of SO, to SO; ™. The evidence that
the secondarily produced compound O; influences an-
other secondarily produced compound, SO;~, shows
that the anthropogenic emissions are able to change
the atmospheric lifetime of the fire pollution. This is a
demonstration of non-linearity in the chemical system.

As we looked at SO, F to see how the anthropogenic
pollution affected the fire emissions, we have looked at
SO, A to examine the influence of the fire emissions on
the anthropogenic. The subtraction of SO, A in exper-
iment Anth-Volc from that in Anth-Volc-Fire (bottom
row Fig. 9) shows that the difference in SO, A is neg-
ative. The difference in SO;~ A is positive above the
main fires and negative above peninsular Malaysia. The
fire emissions are leading to the more rapid oxidation
of SO, A to SO}~ A. Above peninsular Malaysia, the
SO;~ A is then being formed in a region with more
precipitation (not shown), leading to a more rapid wash
out of the SO;~ A, producing the negative difference in
SO, A.

The possibility that the anthropogenic emissions
contributed to air quality exceedances caused primar-
ily by the fire pollution, particularly in the vicinity of
major cities, is relevant for the transboundary pollu-
tion issue. In Quah (2002), different approaches are
discussed involving both Indonesia (the state where the
fires occurred) and “victim states” including Singapore
and Malaysia in fire prevention and fire reduction.
All of the suggested mechanisms for reducing the fire-
related haze events involve minimizing the fires within
Indonesia. This is very important, and a clear, logi-
cal approach to prevent future environmental disasters
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Fig. 8 The number of days during September-November 1997 when the Indonesian hourly air quality standard for O; was exceeded
at 13:00 for experiment Anth-Volc-Fire and the difference in Anth-Volc-Fire-Volc-Fire
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Fig. 9 Difference in the average ground level concentration for September 1997 of SO, F and SOZ‘ F for experiments Anth-Volc-
Fire-Volc-Fire (top row) and of SO, A and SOf’ A for experiments Anth-Volc-Fire-Anth-Volc (bottom row)

such as occurred during the 1997 fires. The theoretical
results of this study suggest an additional approach for
neighboring countries that are adversely affected by the
fire-related haze: reducing urban air pollution during
high-risk times. This may have the effect of keeping the
atmospheric concentrations of dangerous pollutants in
densely populated areas below the air-quality thresh-
olds, reducing the health and economic consequences
of the fires in major cities. If the fire emissions included
in the scenario presented here were overestimated, the
number of modeled air quality exceedances is greater
than really occurred. The role of the anthropogenic
emissions in the domain relative to the fire, in that case,
will be greater.

Conclusions

Indonesian air quality standards for O5, SO,, CO, and
NO, were simulated to have been exceeded during the

Indonesian fires of 1997. Due to sparse ground and
air based measurements at the time, these simulations
represent one possible scenario, our best attempt to
capture the complex interactions between various emis-
sions sources during this very important event. Results
from this modeled scenario suggest that the RETRO
fire emissions included in this study may be overes-
timated. Anthropogenic emissions were modeled to
have extended the region where air quality standard
exceedances may have occurred, most significantly for
the secondary pollutant O; in densely populated urban
areas. Because the range of possible fire emissions is
so great, it is unlikely the modeled number of emis-
sion standard exceedances depict reality correctly. The
model results show us that the increased atmospheric
concentration of O; from the anthropogenic emissions
in the domain increased the rate of conversion of
SO, released by the fires to SO, ™. This study distin-
guishing the roles of the different emission sources may
help in creating solutions to reduce the harmful effects
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of wildfire pollution. Large cities downwind from major
fire events may benefit by reducing their urban
pollution during such events, thereby reducing health
and economic disturbances. The surface conditions
present during this extreme event led to volcanic emis-
sions serving only a minor role.
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