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A B S T R A C T   

In recent years, it has become clear that attention plays an important role in spoken word production. Some of 
this evidence comes from distributional analyses of reaction time (RT) in regular picture naming and picture- 
word interference. Yet we lack a mechanistic account of how the properties of RT distributions come to 
reflect attentional processes and how these processes may in turn modulate the amount of conflict between 
lexical representations. Here, we present a computational account according to which attentional lapses allow for 
existing conflict to build up unsupervised on a subset of trials, thus modulating the shape of the resulting RT 
distribution. Our process model resolves discrepancies between outcomes of previous studies on semantic 
interference. Moreover, the model’s predictions were confirmed in a new experiment where participants’ 
motivation to remain attentive determined the size and distributional locus of semantic interference in picture 
naming. We conclude that process modeling of RT distributions importantly improves our understanding of the 
interplay between attention and conflict in word production. Our model thus provides a framework for inter
preting distributional analyses of RT data in picture naming tasks.   

1. Introduction 

A workhorse in the study of spoken word production is the picture- 
word interference (PWI) paradigm (e.g., Damian & Martin, 1999; 
Schriefers, Meyer, & Levelt, 1990). In a typical PWI study, participants 
are instructed to name a picture (e.g., of a dog) while trying to ignore a 
written distractor word superimposed onto the picture. In studies of 
lexical selection, the distractor words are typically semantically related 
(e.g., fish) or unrelated (e.g., tree) to the picture. It is consistently found 
that, relative to unrelated distractors, related distractors yield a Stroop- 
like increase of RT called semantic interference. Traditionally, this 
interference effect has been measured as the difference in mean RT 
between the two conditions. Recently, however, researchers have begun 
to explore the distributional dynamics of semantic interference using 
tools such as ex-Gaussian analyses, which model RT distributions as the 
convolution of a Gaussian and an exponential component (e.g., Balota, 
Yap, Cortese, & Watson, 2008; Luce, 1986). The Gaussian component is 
described by the parameters μ and σ, which correspond to its mean and 
standard deviation. The τ parameter describes the exponential compo
nent (viz., its mean and standard deviation) and is therefore a measure 

of skewness. The mean of the distribution is the sum of μ and τ. Thus, any 
mean RT effect can be decomposed into a μ effect (a shift of the distri
bution) and a τ effect (a difference in skewness). 

PWI is a picture-word analog of the color-word Stroop task, which is 
a gold standard of attentional measures (MacLeod, 1991). Clearly, 
attention also plays a role in PWI, since interference from distractor 
words needs to be resolved (e.g., Kleinman, 2013; Piai, Roelofs, & 
Schriefers, 2014; Roelofs, 2003; Schnur & Martin, 2012). It is therefore 
possible that differences in results from studies using RT distributional 
analyses are due to differences in the deployment of attention. This 
points to the need for a computational account of how the properties of 
RT distributions come to reflect the effect of attentional processes and 
how these may modulate the amount of conflict between lexical repre
sentations. Yet we lack such a computational account. The aim of the 
present article is to fill this theoretical gap. 

The fundamental hypothesis in the article is that lapses of attention 
play a key role in determining the shape of an RT distribution (cf. 
Jongman, Roelofs, & Lewis, 2020; Jongman, Roelofs, & Meyer, 2015). 
Nineteenth century pioneers of research on attention and performance, 
like James and Wundt, already assumed a fundamental influence of 
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Contents lists available at ScienceDirect 

Cognition 

journal homepage: www.elsevier.com/locate/cognit 

https://doi.org/10.1016/j.cognition.2021.104636 
Received 4 June 2020; Received in revised form 6 February 2021; Accepted 14 February 2021   

mailto:Aitor.SanJose@mpi.nl
www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2021.104636
https://doi.org/10.1016/j.cognition.2021.104636
https://doi.org/10.1016/j.cognition.2021.104636
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2021.104636&domain=pdf


Cognition 211 (2021) 104636

2

fluctuations of attention on performance. James (1890) stated: “There is 
no such thing as voluntary attention sustained for more than a few 
seconds at a time” (p. 420). In discussing fluctuations, Wundt (1908) 
argued that external and internal disturbances of attention (“äußere und 
innere Störungen der Aufmerksamkeit”, p. 581) may cause a frequency 
distribution to become more asymmetrical, for example, by increasing 
the slow tail. We refer to Woodworth (1938) and Woodworth and 
Schlosberg (1954) for reviews of the early literature. 

Our article is structured as follows. In the remainder of this intro
duction section, we first discuss the empirical findings from PWI that 
motivated our work, and also briefly describe the WEAVER++ model. 
This is a computational model of word planning and its attentional 
control (e.g., Roelofs, 2003), which accounts for RT findings. In Section 
2, we discuss the way the model was extended to account for attentional 
lapses. In Section 3, we report on simulations that tested the model’s 
ability to quantitatively account for the difference in results between 
methodologically comparable PWI studies in the literature as arising 
solely from differences in the properties of lapses. In Sections 4 and 5, we 
further explore the interplay between lapses of attentional control and 
lexical competition in modulating the locus of the semantic interference 
effect in the RT distribution. In Section 6, we show that the model’s 
predictions were confirmed in a new experiment where participants’ 
motivation to remain attentive determined the size and distributional 
locus of semantic interference in PWI. 

1.1. Distributional findings on picture-word interference 

Scaltritti, Navarrete, and Peressotti (2015a, 2015b) used ex-Gaussian 
analyses to explore the distributional properties of the semantic inter
ference effect in PWI. In two experiments, they found that the semantic 
effect was significantly present in τ, although their first experiment also 
showed a marginally significant effect in μ. They suggested that se
mantic interference might be selectively linked to the τ parameter. 
However, in a subsequent study by Roelofs and Piai (2017), the semantic 
interference effect yielded not only a significant increase in τ but also in 
μ. This pattern was replicated in Roelofs and Piai’s reanalysis of an 
earlier PWI study by Piai, Roelofs, and Van der Meij (2012) . Finally, an 
earlier study by (Piai, Roelofs, & Schriefers, 2011), Experiment 1) found 
an effect of semantic interference in μ alone. Taken together, these re
sults suggest that semantic interference can cause not only an increase in 
skewness in the RT distribution, but also an overall distributional shift. 
The distributional shift is currently accounted for in WEAVER++

(Roelofs, 2008) as arising from increased competition between seman
tically related lemmas (Levelt, Roelofs, & Meyer, 1999; Roelofs, 1992, 
2018). In the present work, we examine whether the WEAVER++ model 
can also account for the abovementioned skewing effects as arising from 
attentional lapses. 

1.2. The WEAVER++ model 

WEAVER++ is a symbolic computational model that was originally 
designed to explain mean RT effects from picture naming tasks (Roelofs, 
1992) and was later extended to account for other task variants, such as 
the color-word Stroop task (e.g., Roelofs, 2003; Roelofs & Hagoort, 
2002), and for semantic interference in continuous and blocked-cyclic 
naming (Roelofs, 2018). WEAVER++ consists of a declarative network 
and a procedural component. The declarative network is made up of 
three types of symbolic nodes, which are arranged into three strata: the 
concept, the lemma (syntactic), and the word-form stratum. When a 
concept node is activated (e.g., by a picture), activation spreads to the 
lemma it is linked to. Moreover, some of this activation spreads to 
semantically related lemmas, mediated by concept-to-concept links. A 
lemma is selected by means of a procedural rule (see below). Activation 
spreads further to the word-form stratum, which consists of morpheme, 
phoneme, and syllable program layers. Lexical access is complete when 
the correct syllable program nodes are selected, after which the only 

remaining process is articulation (not included in WEAVER++). For a 
thorough description of WEAVER++’s architecture, the reader is 
referred to Levelt et al. (1999) and Roelofs (1992, 2003, 2008, 2018). 
Since the simulations in the present work are only concerned with se
mantic effects at the lemma level, only the processes up to lemma se
lection were modeled. 

WEAVER++’s procedural component consists of a set of condition- 
action rules which modulate the activation of nodes in the declarative 
network so as to achieve the selection of the target lemma. WEAVER++

uses the following production rules for picture naming and picture-word 
interference: 

Production rule 1 IF the task goal is to name the picture AND 
concept(x) was evoked by the picture 

THEN select concept(x) AND flag concept(x) as a goal AND enhance 
the activation of concept(x). 

Production rule 2 IF the activation of lemma(x) ≥ selection_threshold 
AND lemma(x) is linked to the goal concept 

THEN select lemma(x). 
Production rule 3 IF the task goal is to name the picture AND input 

is received from a word 
THEN block out the word input. 
In WEAVER++, the semantic interference effect in the PWI para

digm arises as follows. When presented with a picture, the model selects 
the concept associated to it and enhances its activation according to 
Production rule 1. The lemma corresponding to the written distractor 
word is blocked out according to Production rule 3. The selection of the 
target lemma is then achieved through Production rule 2 by ensuring 
that the target lemma has achieved a high enough activation level 
relative to the activation of other lemmas in the network. The actual 
moment of selection is determined through an activation ratio, such that 
the selection of the target lemma will be delayed as a function of the 
activation received by its competitors. The semantic interference effect 
thus arises because semantically related distractors cause a delay in 
lemma selection, compared to unrelated distractors. 

1.3. The implementation of attentional lapses 

In our implementation, we assumed that lapses of goal maintenance 
reflect brief moments of disengagement from the task, due to either 
internal or external stimuli momentarily capturing the focus of attention 
(cf. Wundt, 1908). We assume that these lapses of goal maintenance 
cause WEAVER++’s top-down control to be momentarily interrupted, 
since its production rules are dependent on such task goal. We reasoned 
that the most likely mechanism to be affected by lapses is the top-down 
enhancement in Production rule 1, since this mechanism needs to be 
applied in a sustained fashion throughout the entire trial and plays an 
active and direct role in countering semantic interference. Accordingly, 
during a lapse of top-down enhancement, the declarative network runs 
unsupervised, and spreading activation allows for any existing semantic 
interference to quickly build up, thus delaying selection and increasing 
RT on affected trials. Technically, this implementation implies that goal 
maintenance in the model is isomorphic with the capacity to consis
tently apply top-down enhancement to target concepts (i.e., to apply 
Production rule 1). However, the model yields equivalent results when 
lapses affect other forms of top-down control (e.g., production rule 3). 
Thus, we can define goal maintenance in the model more broadly as the 
ability to consistently apply task-goal-directed executive control in a 
sustained and uninterrupted fashion (cf. Kane & Engle, 2003). Because it 
is difficult to make a clear-cut distinction between lapses of goal main
tenance and lapses of top-down control, we henceforth use the two terms 
interchangeably. 

2. Simulation methods 

In order to implement lapses, three new parameters were introduced 
in the model: lapse_rate, lapse_duration_mean and lapse_duration_stdev. The 
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parameter lapse_rate determines the probability of a lapse occurring at 
any given time, provided that a lapse is not currently taking place. The 
duration of a lapse is then sampled from a Gaussian distribution with a 
mean of lapse_duration_mean and a standard deviation of lapse_dur
ation_stdev. In the following sections, we show how the behavior of these 
three parameters determines whether semantic interference shows up in 
τ, μ, or both. 

2.1. Trial procedure 

Following Roelofs (1992), the language network consisted of six 
concepts and their corresponding lemmas. On each trial, the target 
lemma to be selected was dog. Semantically related trials were modeled 
by assuming the presence of the written distractor fish. On semantically 
unrelated trials, the distractor was tree. Picture-word interference was 
modeled by assuming that the target picture activates the concept 
associated with it, whereas a written distractor activates its corre
sponding lemma directly. Selection is then achieved through the pro
cedural rules described above. 

2.2. Sampling procedure 

In previous versions of WEAVER++, RT distributions were 
computed using a mathematical formalism (e.g., Roelofs, 2008). For the 
present simulations, a sampling procedure was introduced, which makes 
the derivation of RT stochastic. Each sample was obtained by running an 
independent trial in the model. The RT value for each sample was the 
time point at which the target lemma was selected. WEAVER++’s 
step_size parameter, which determines how often the network’s activa
tion is evaluated and updated (see Roelofs, 1992), was set to 1 ms for all 
simulations, so as to obtain maximal accuracy in the sampling of RT. For 
the parameter optimization in Simulation 1, the number of samples per 
condition was allowed to increase gradually from 250 to 2500, as a 
function the number of iterations. This was to speed up parameter 
exploration at the beginning of the optimization without compromising 
exploitation at the end. All the results reported throughout the article 
were obtained with a sample size of 50,000 per condition, so as to 
maximize convergence. 

2.3. Delta deciles 

Delta decile plots of the simulation results were computed as follows. 
First, all raw RT samples from each distractor condition were rank or
dered and divided into 10 bins. Deciles were obtained by computing the 
mean RT of each bin. Delta deciles were then computed by subtracting 
the deciles in the unrelated condition from the deciles in the semanti
cally related condition. Consequently, delta deciles index the mean size 
of the semantic interference effect for each decile. 

2.4. Delta ex-Gaussian analyses 

Ex-Gaussian analyses were carried out on the raw RT samples 
separately for each condition using the R function mexgauss from the 
retimes package (Massidda, 2013). As with delta deciles, delta ex- 
Gaussian parameters were calculated by subtracting the parameters in 
the unrelated condition from the parameters in the semantically related 
condition. Thus, Δμ indexes the magnitude of distributional shifting 
resulting from semantic interference, while Δσ indexes the corre
sponding change in standard deviation, and Δτ indexes the change in 
skewness. 

3. Simulation 1: Addressing empirical discrepancies 

3.1. Aim 

The aim of the first simulation was to test the model’s ability to 

account for the conflicting distributional findings of previous studies as 
arising from differences in attentional engagement. In particular, we 
simulated the data from the studies of Scaltritti et al. (2015a, b, 
Experiment 3) and Roelofs and Piai (2017). As discussed earlier, Scal
tritti et al. found an effect of semantic interference in τ alone while 
Roelofs and Piai found it in both μ and τ. These two studies were chosen 
for being the most methodologically similar ones, differing primarily in 
the stimuli, language, and number of stimulus repetitions. Since Scal
tritti et al.’s first experiment found a marginally significant effect of 
semantic interference in μ, we chose to simulate their third experiment 
instead, as its results contrast more sharply with those of Roelofs and 
Piai. In order to test the hypothesis that the distributional differences 
between the two chosen experiments can arise from group differences in 
the rate and duration of lapses, the model parameters were optimized to 
account for the two empirical data sets by differing primarily in the lapse 
parameters (i.e., lapse_rate, lapse_duration_mean, and lapse_dur
ation_stdev). Details of the optimization procedure can be found in Ap
pendix A. 

3.2. Results and discussion 

The lapse parameter values for each data set are given in Table 1, 
together with the resulting model error (i.e., root mean squared error, 
RMSE) and delta ex-Gaussian parameters. As shown by the table, RMSE 
was low for both data sets, indicating good model fit. 

The delta decile plots in Fig. 1 show that the model was able to 
replicate the distributional patterns in both data sets. Specifically, the 
model correctly captures the fact that the semantic effect in Roelofs and 
Piai (2017) manifested itself as both an increase in skewness and an 
overall distributional shift and is therefore present in all the deciles. In 
contrast, in Scaltritti et al. (2015a, 2015b) Experiment 3, it was largely 
captured by an increase in skewness and is thus only salient from decile 
5 onward. Note, however, that the semantic effect was not 0 for any 
decile, in line with the findings of Roelofs (2008) that the semantic effect 
is present throughout the entire distribution. 

The results of the delta ex-Gaussian analyses converge with the 
decile plot results. As shown in Fig. 2, the model yields the same pattern 
as the data, with the semantic effect showing up in both μ and τ for the 
data of Roelofs and Piai (2017) but only in τ for the Scaltritti et al. 
(2015a, 2015b) data. As Table 1 shows, the model predicted the data of 
Roelofs and Piai as arising from lapses that were on average 66 ms 
shorter than for the Scaltritti et al. data. The lapse_duration_stdev value 
was, however, 95 ms larger in the Roelofs and Piai data than in the 
Scaltritti et al. data, indicating more variation in the duration of lapses. 
Finally, the rate of lapses was almost 0.026 higher in the Roelofs and Piai 
data, meaning that lapses were almost seven times as frequent in the 
Roelofs and Piai data compared to the Scaltritti et al. data. Thus, the 
difference in lapse parameter values between the two data sets did not 
follow a single direction. Proportionally, however, the difference in 
lapse_rate was much larger than the difference in the duration parame
ters. This suggests that the lapse_rate parameter can be considered the 
main driving force behind the distributional differences obtained in this 
simulation. Accordingly, since lapses had a greater impact on the se
mantic effect for Roelofs and Piai, we can infer that the model predicted 
these results as arising from worse goal maintenance for Roelofs and Piai 
than for Scaltritti et al. 

However, it needs to be pointed out that the optimizer did not show 
signs of convergence indicating a very irregular parameter space and 
pointing to the existence of several parameter configurations that may in 
principle be able to explain the data similarly well. It is thus possible that 
the model could predict the Roelofs and Piai (2017) data as arising from 
better, rather than worse, maintenance than the Scaltritti et al. (2015a, 
2015b) data. In any case, regardless of the directionality of goal main
tenance differences, the results of Simulation 1 confirm the hypothesis 
that differences in fluctuations of top-down control are a plausible 
explanation for the distributional differences between the two studies. 
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It is not implausible that lapses may have occurred more frequently 
in the study of Roelofs and Piai (2017) than in that of Scaltritti et al. 
(2015a, 2015b). De Jong, Berendsen, and Cools (1999) provided evi
dence that a faster pace of stimulus presentation helps participants to 
remain engaged on the instructed task. A lower lapse rate for Scaltritti 
et al. than for Roelofs and Piai is in line with this evidence. Roelofs and 
Piai presented 384 trials to each participant with a trial duration of 
4000 ms, whereas there were 480 trials presented by Scaltritti et al. with 
a mean trial duration of 1711 ms. Thus, on average, the critical trial 
portion of the task lasted about 1.87 times as long in the experiment 
conducted by Roelofs and Piai as in the experiment conducted by Scal
tritti et al. As a consequence, the participants of Roelofs and Piai were 
asked to do 80% as much in about 190% of the time. To this, we may add 
that participants in the Scaltritti et al. study enjoyed a self-terminated 
break after each block of trials, whereas the Roelofs and Piai partici
pants did not have breaks at all. This is likely to have contributed further 
to differences in engagement, as motivation and energy likely occa
sionally plummeted in the Roelofs and Piai study, while the Scaltritti 
et al. participants received periodic opportunities to “reboot” their 
attentional engagement by disengaging from the task for as long as they 
considered appropriate. A further reason why participants may have 
been less engaged in the Roelofs and Piai study is that the number of 
distinct stimuli in this study was smaller than in Scaltritti et al., and as a 

consequence, each item was repeated three times. This repetition would 
have made the task much more tedious and monotonous for the Roelofs 
and Piai participants, and would have made it harder to sustain their 
attention for as long as their Scaltritti et al. counterparts. For all of these 
reasons, it is plausible that attentional lapses were more frequent in the 
Roelofs and Piai study than in the Scaltritti et al. study. 

There are, however, also other ways in which differences between 
studies may have contributed to the distributional disparities. For 
example, the stimuli of the two studies are different in terms of the 
words used, their pictorial representations, and of course, their lan
guage. In our simulation work, we observed that lapses magnify inherent 
conflict. If the stimulus set of Roelofs and Piai happens to elicit a slightly 
larger semantic interference effect on average, then the difference in 
lapse rate necessary to explain the disparity between the two studies 
would be smaller. However, we lack evidence as to whether such a 
difference in inherent conflict existed and what its magnitude was, so 
this explanation remains weaker than an explanation in terms of dif
ferences in task engagement. Accordingly, while we cannot claim that a 
difference in lapse rate is the only force driving the observed distribu
tional differences between the two studies, their methodological dif
ferences (i.e., number of trials, trial duration, difference in breaks, 
number of distinct stimuli, number of repetitions) make different lapse 
rates a plausible explanation. 

Table 1 
Lapse parameters, delta ex-Gaussian parameters, and RMSE for each data set modeled in Simulation 1.  

Data set lapse_rate lapse_dur_mean lapse_dur_stdev Δ μ Δ σ Δ τ RMSE 

Roelofs and Piai (2017) 0.0302 118 ms 120 ms 22.4 11.5 15.33 3.46 
Scaltritti et al. (2015 a, b, Exp 3) 0.0044 184 ms 25 ms 3.5 − 1.98 16.32 4.66  

Fig. 1. Delta decile plots of the semantic effect in the model versus empirical data.  

Fig. 2. Delta ex-Gaussian measures of the semantic effect in the model versus empirical data.  
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4. Simulation 2: Understanding how lapses affect semantic 
interference 

4.1. Aim 

In the second simulation, we sought to gain further insight into the 
model’s behavior so as to obtain an algorithmic understanding of how 
the duration and frequency of lapses interacts with semantic interfer
ence in modulating the shape of the RT distribution. As discussed above, 
the results of Simulation 1 explain differences in the distributional locus 
of semantic interference as arising from differences in the three lapse 
parameter values. While the results suggest that the difference in 
distributional results was primarily due to the lapse_rate parameter, the 
overall pattern of differences is somewhat counterintuitive, since not all 
the differences were in the same direction. In addition, the lack of 
convergence in the optimization suggested the existence of an irregular 
parameter space, where several different parameter combinations may 
be able to yield equivalent results. Thus, it is unclear from these results 
alone how the three lapse parameters interact with each other, and how 
these interactions relate to the observed distributional results. The 
present exploratory simulation sought to shed light on these issues by 
exploring the model’s behavior across a range of parameter configura
tions. On the one hand, we sought to explore how the individual and 
joint effects of the three lapse parameters relate to differences in the 
distributional locus of semantic interference. On the other hand, in order 
to assess the model’s explanatory utility, we sought to determine 
whether its behavior is qualitatively stable across a range of parameter 
configurations. 

4.2. Method 

In order to explore the behavior of each lapse parameter and the 
interactions between them, a grid search was performed on a large re
gion of the parameter space. The grid search included 3 parameter 
values for the duration_mean and duration_std parameters (1 ms, 100 ms, 
and 200 ms) and 11 values for lapse_rate (0.001, 0.0025, 0.005, 0.0075, 
0.010, 0.050, 0.075, 0.10, 0.25, 0.50, and 0.75), resulting in a total of 99 
parameter configurations. The model was run individually for each 
parameter combination, following the sampling procedure described in 
Section 3. 

4.3. Results 

Fig. 3 shows the delta ex-Gaussian estimates of the semantic effect as 
a function of lapse_rate for each combination of lapse_duration_mean and 
lapse_duration_stdev. Fig. 4 shows the corresponding decile plots for the 
same data. Overall, these results show that the total semantic effect (Δμ 
+ Δτ, which theoretically corresponds to delta mean RT) increases as 
lapses become longer and more frequent. Lapse frequency, however, has 
a stronger impact than lapse length, as evidenced by the fact that the 
only salient effect of lapse_duration_mean and lapse_duration_stdev in 
Fig. 3 is the difference between the top left panel and all of the rest.1 

When it comes to the locus of the semantic effect, however, there are 
complex interactions between the three lapse parameters. Firstly, in the 
absence of lapses, the simulation yields WEAVER++’s default semantic 
interference effect, which is a distributional shift (Roelofs, 2008) that 

arises from competition at the lemma level. This can be seen in the top 
left subplots of Figs. 3 and 4, where the mean and standard deviation of 
lapse duration are both 1 ms long and thus lapses have almost no effect 
on semantic interference. The same phenomenon can be observed for 
the lowest values of lapse_rate throughout the remaining parameter 
configurations. This is because at extremely low rates, the effect of 
lapses on semantic interference is also minimal. Thus, in the ideal sce
nario of perfect or near perfect goal maintenance, the model predicts a 
baseline semantic interference effect which is not meaningfully influ
enced by lapses and is completely captured by a distributional shift (i.e., 
a μ effect), as in Roelofs (2008). Furthermore, as we discuss later, the 
results illustrate how lapses have the effect of magnifying this baseline 
semantic interference effect and modulating its distributional locus. 
Henceforth, we use the term baseline semantic interference effect to 
distinguish the pure effect of lexical competition under perfect goal 
maintenance from the aggregated effect that arises when this baseline 
effect is magnified by lapses. 

Figs. 3 and 4 illustrate how the locus of the semantic effect is most 
strongly determined by the lapse_rate parameter: At low values of laps
e_rate, increasing this parameter causes the bulk of the semantic effect to 
shift from Δμ to Δτ. This is because infrequent lapses have the effect of 
disproportionately lengthening RT in a small subset of trials, while the 
vast majority of trials remain unaffected. As a result, the RT distribution 
becomes highly positively skewed. Since this causes the bulk of the 
overall interference effect to arise from the contribution of these trials 
alone, ex-Gaussian analyses correctly attribute a greater proportion of 
semantic interference to τ, at the expense of μ. At higher values of 
lapse_rate, however, the pattern is reversed, and further increases in this 
parameter cause the semantic effect to spill over from Δτ to Δμ. 

The decile plots in Fig. 4 show how the inversion of this pattern 
occurs when the slowest decile begins to approach a ceiling level. At 
even higher rates, the effect of lapses begins to lengthen RT in enough 
trials so as to influence even the fastest deciles. Therefore, when the 
frequency of lapses exceeds a certain threshold, the proportion of trials 
affected by lapses becomes higher than the proportion of unaffected 
trials, which causes a semantic interference effect that is closer to a 
distributional shift than to an increase in skewness. Accordingly, this 
pattern shows up in ex-Gaussian analyses as a larger effect in μ than in τ. 
The abovementioned distributional pattern of the lapse_rate parameter 
holds throughout all configurations of lapse_duration_mean and lapse_
duration_stdev, except for the extreme case discussed above where the 
mean and standard deviation of lapses is only 1 ms and therefore only 
the baseline semantic effect can be observed. Thus, in line with the re
sults of Simulation 1, the frequency of lapses seems to be more relevant 
for the modulation of the semantic effect than their duration. Further
more, while lapse_duration_mean and lapse_duration_stdev interact with 
each other, the simulation results show that setting them to the same 
value does not affect the model’s behavior in a qualitatively meaningful 
way, suggesting that the number of free parameters in the model could 
be easily reduced by one. We take advantage of this finding in Simula
tion 3. 

4.4. Discussion 

The simulations showed that the size and distributional locus of the 
semantic interference effect can be explained by an interaction between 
all three lapse parameters in the model: lapse_rate, which determines the 
frequency of lapses, lapse_duration_mean, which determines the mean 
duration of lapses, and lapse_duration_stdev, which determines the stan
dard deviation of the duration of lapses. According to the model, these 
lapses modulate the size and distributional locus of the semantic inter
ference effect by magnifying the baseline semantic interference effect, 
that is, the inherent amount of competition between lexical represen
tations when factoring out the effects of goal maintenance limitations. 
The model shows a stable pattern of behavior across parameter config
urations, which is readily interpretable on a theoretical level. This 

1 Fig. 3 might suggest that the transition between the top left panel and all the 
others is a step function, and that, consequently, the lapse length parameters 
play no role in the semantic interference effect once they are set to any value 
larger than 1 ms. However, we know this not to be the case from our initial 
exploration of the parameter space. This could have been illustrated in Fig. 3 by 
increasing the number of intermediate parameter values in the grid search. 
However, we chose not to do so to avoid an exponential growth in the number 
of parameter combinations explored. 
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suggests that the model’s ability to replicate the findings in Simulation 1 
arises from its architectural properties rather than its flexibility to fit 
arbitrary functions. 

As for the distributional locus of the semantic interference effect, the 
model predicts a pattern that challenges previous interpretations. Along 
the lines of the worst performance rule (see Coyle, 2003), Kane and 
Engle (2003) claimed that “variables thought to affect goal neglect 
should have a selective effect on skew, and not on the overall distribu
tion shift” (p. 64). While our simulation results formalize and validate 
their hypothesis that skewing effects can be attributed to lapses of goal 
maintenance, the results also show how the logical extension of this 
hypothesis implies that more frequent lapses can also cause distribu
tional shifts by lengthening RT in a larger subset of trials. In fact, the 
model describes the distributional locus of semantic interference as 
arising from a continuous tradeoff between Δμ and Δτ which is modu
lated by the frequency and duration of lapses. While Roelofs and Piai 
(2017) already argued against the one-to-one mapping between ex- 
Gaussian parameters and the semantic interference effect, the present 
simulations go one step further by providing proof-of-principle evidence 
that the locus of the semantic interference effect can in fact be readily 
explained as a continuous rather than a discrete phenomenon. Together, 
the results suggest that Scaltritti et al. (2015a, 2015b) proposal to 
selectively link ex-Gaussian parameters to cognitive processes (i.e., se
mantic interference alone) is inherently problematic. In addition, the 
simulation results suggest that the tradeoff between Δμ and Δτ may be a 
more informative index of the effects of lapses of goal maintenance on 
semantic interference than Δμ and Δτ alone. Importantly, in line with 

Kane and Engle’s (2003) predictions, such a measure should correlate 
with measures of the cognitive processes that drive lapses. In Simulation 
3, we formalize this hypothesis by predicting a measure of the Δμ – Δτ 
tradeoff from a single goal_neglect parameter that captures the combined 
effect of the three lapse parameters. 

5. Simulation 3: Predicting the Δμ – Δτ tradeoff from a single 
measure of goal maintenance 

5.1. Aim 

The previous simulation showed the size and locus of the semantic 
effect to be modulated by the frequency and duration of lapses of goal 
maintenance. The results suggested that the locus of the semantic 
interference effect moves along a Δμ – Δτ tradeoff continuum as a 
function of attentional performance. Nevertheless, the model used in 
Simulations 1 and 2 is limited in its ability to make straightforward 
predictions regarding goal maintenance, since the effect of lapses is 
driven by three separate parameters. The aim of the third simulation was 
to formalize the aforementioned hypothesis by predicting a measure of 
the Δμ – Δτ tradeoff from a single unifying measure of goal mainte
nance. To this end, a goal_neglect parameter was introduced which de
termines the behavior of all three lapse parameters. In line with the 
results of Simulation 2, we predicted that the correlation between the 
goal_neglect parameter and the Δμ – Δτ tradeoff should be U-shaped. 

Fig. 3. Delta ex-Gaussian measures of the semantic effect across different parameter configurations. Parameter lapse_rate was log-transformed (base e) for visuali
zation purposes. Lines correspond to conditional smoothed means computed with the geom_smooth function from the R package ggplot2 (Wickham, Chang, & 
Wickham, 2016). The total effect shown in gray is the sum of the smoothed means of Δμ and Δτ. 
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5.2. Method 

The Δμ – Δτ tradeoff was operationalized by subtracting Δτ from Δμ. 
The new goal_neglect parameter was introduced in the model to represent 
limitations of goal maintenance as a single construct. The value of each 
lapse parameter was made to be a function of the goal_neglect parameter 
(e.g., lapse_rate’ = goal_neglect * lapse_rate). Thus, this parameter has the 
function of scaling the three lapse parameters and making them covary. 
As a result, the goal_neglect parameter can be interpreted as a single 
measure of the effect of lapses of goal maintenance, and can therefore be 
used to make more straightforward and readily interpretable predictions 
than the three separate lapse parameters. For the present simulation, a 
one-dimensional grid search was performed on the goal_neglect param
eter alone. Based on the results of Simulation 2 that setting lapse_dur
ation_mean and lapse_duration_stdev to the same value does not affect the 
model’s qualitative behavior, they were fixed to have same value across 
configurations of the goal_neglect parameter. As a result, the addition of 
the goal_neglect parameter does not increase the degrees of freedom 
relative to Simulations 1 and 2. In the present simulation, a grid search 
was carried out exploring 18 values of the goal_neglect parameter, 
ranging from 0.01 to 1. The values of lapse_duration_mean and lapse_
duration_stdev were set to 1000 ms, and lapse_rate was set to 0.1. Since the 
goal of this simulation is to summarize the findings of Simulations 1 and 
2 with a single measure of goal neglect, we selected parameter values 
which, once scaled by the goal_neglect parameter, yielded configurations 
of the lapse parameters comparable to those reported in Simulations 1 
and 2. These values were then multiplied by each of the 18 values of the 
goal_neglect parameter. As a result of this scaling, the lowest value of 

goal_neglect yielded a lapse_rate of 0.001 and a lapse_duration_mean and 
lapse_duration_stdev of 100 ms, while the highest value of goal_neglect 
explored yielded a lapse_rate of 0.1 and a lapse_duration_mean and laps
e_duration_stdev of 1000 ms. 

5.3. Results and discussion 

The results are shown in Fig. 5, where the Δμ – Δτ tradeoff is plotted 
as a function of goal_neglect. The figure illustrates how the pattern of the 
goal_neglect parameter mimics the behavior of the lapse_rate parameter in 
showing a gradual reversal of the relative size of Δμ with respect to Δτ. 
This is in line with the results from Simulations 1 and 2 that the distri
butional locus of the semantic interference effect is more strongly 
determined by the frequency of lapses than by their duration. More 
importantly, as predicted, the model showed this relationship to be U- 
shaped. That is, in line with the results of Simulation 2, the model 
predicts that low goal neglect (i.e., high goal maintenance) should cause 
the semantic effect to be more present in Δμ, whereas increasingly 
higher goal neglect will cause the effect to spill over from Δμ to Δτ, and 
even higher degrees of goal neglect should cause it to spill over from Δτ 
back to Δμ. By representing the effect of lapses as a single goal neglect 
variable, the model now makes a clear prediction about the correlational 
patterns that should be found between ex-Gaussian parameters and 
participants’ attentional performance. 

Importantly, the model’s prediction is consistent not only with the 
PWI findings we have discussed so far, but also with findings from 
regular picture naming studies. For example, Shao, Roelofs, and Meyer 
(2012) found a correlation between working memory capacity 

Fig. 4. Delta decile plots of the semantic effect across different parameter configurations.  
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(operationalized as Operation Span) and the τ parameter of RT in a 
regular picture naming task. The μ parameter, on the other hand, did not 
correlate with Ospan in either condition. Importantly, while Ospan 
correlated with the τ parameter in both action and object naming, its 
correlation with mean RT was restricted to action naming. This pattern 
is readily accounted for in the model as arising from a spill-over effect 
from τ to μ, as a consequence of the interaction between lapses of goal 
maintenance and the amount of competition between lexical represen
tations (i.e., the baseline semantic interference effect). Assuming that 
action naming causes more lexical competition than object naming 
(Shao et al., 2012; Shao, Roelofs, Acheson, & Meyer, 2014), the baseline 
semantic effect in action naming would have been magnified by lapses to 
a greater extent than the semantic effect in object naming, just like our 
simulations showed lapses to magnify the interference effect of related 
distractors to a higher degree than the interference effect of unrelated 
distractors. Thus, the findings of Shao et al. (2012) highlight the 
explanatory utility of our model, as they can be readily explained as the 
effect of a continuous spill-over from τ to μ. 

Additional evidence for a μ–τ trade-off in picture naming comes from 
a study by Jongman et al. (2015, Experiment 2), which explored the role 
of sustained attention in speech production. In this experiment, partic
ipants performed object naming in a single task versus a dual task 
setting. It was found that sustained attention (as measured by a visual 
digit discrimination task) correlated with the τ parameter of object 
naming RT in both conditions. On the other hand, μ did not significantly 
correlate with object naming in the single task condition, but 
approached significance in the dual task condition. This was interpreted 
as dual tasking taking a greater toll on sustained attention than single 
tasking. Importantly, these findings are also in line with our model’s 
prediction that increasing attentional demands should cause semantic 
competition effects to spill over from τ to μ, as they cause longer and 
more frequent lapses. In sum, our simulation results predict a U-shaped 
relationship between attentional engagement and a Δμ – Δτ tradeoff, 
and this pattern is compatible with experimental findings involving 
different picture naming variants and different attentional measures that 
can be related to task goal maintenance. 

6. Behavioral experiment 

In our simulations, we showed that our model can explain differences 
in the size and distributional locus of the semantic interference effect as 
arising from differences in attentional engagement alone. This insight, 
however, can only be considered a proof-of-principle demonstration, 
given the post-hoc nature of our simulations and the existence of several 
differences between the studies we have considered. We thus set out to 
test this hypothesis empirically with a new behavioral experiment where 
attentional engagement is manipulated within-subjects. In particular, 
we used monetary reward as a proxy for motivation (see Woodworth, 
1938, and Woodworth & Schlosberg, 1954, for discussion of an early 
study on how incentives influence RT distributions). 

Participants completed a picture-word interference task. A pre- 
stimulus cue informed the participants about whether the upcoming 
trial would carry low (€0.01) or high (€0.10) reward. If the participant’s 
response was correct and fell within a pre-specified RT range, the trial 
was scored as correct, and its associated reward was added to the par
ticipant’s final payment. In contrast, if the response was incorrect (e.g., 
wrong word) or fell outside the permitted RT range, the trial was 
penalized, and its associated reward was subtracted from the final 
payment rather than added to it. We predicted that participants would 
be more engaged in the high-reward condition and, as a result, would be 
less affected by attentional fluctuations (i.e., the lapses in our model). As 
a result, higher reward should decrease the size of the semantic inter
ference effect and affect its locus in the distribution. As discussed in 
Section 3 on Simulation 1, the model cannot a priori predict which exact 
distributional patterns we are likely to observe. That is, the model 
cannot reliably predict, for example, whether one of our conditions 
should yield an effect in τ alone (as in Scaltritti et al., 2015a, 2015b) or 
both in μ and τ (as in Roelofs & Piai, 2017). Furthermore, as shown in 
Simulations 2 and 3, our simulations warn against formulating hy
potheses in terms of absolute mappings between the semantic effect and 
individual ex-Gaussian parameters. As our simulations illustrate, this 
approach would allow for genuine differences to go undetected, and 
thus severely compromise the statistical power of our study. Conse
quently, we limited ourselves to predicting that the reward manipula
tion should yield a significant decrease in the magnitude of the semantic 
interference effect in at least one of the two ex-Gaussian parameters of 
interest, either μ or τ. If reward significantly modulates the effect of 
semantic interference in both μ and τ, then the effect of reward on μ and 
τ should be in the opposite direction (i.e., higher interference in τ and 
lower interference in μ or vice versa), in line with the U-shaped Δμ – Δτ 
tradeoff shown in Simulation 3. Finally, we predict that our reward 
manipulation should decrease RT across distractor conditions, reflecting 
the fact that attentional lapses should slow down responses even in low 
conflict conditions (i.e., unrelated distractor). 

6.1. Method 

6.1.1. Participants 
The experiment was carried out with 41 native speakers of Dutch 

recruited through the Max Planck Institute’s database. The data from 
one participant was excluded for not complying with the instructions. 
Participants were paid on the basis of their performance, whereby the 
reward of each correct trial was added to the final payment and the 
reward of each penalized trial was subtracted from it. The payment 
ranged from a minimum of €10 to a maximum of €20. 

6.1.2. Design and materials 
The variables reward (low, high) and distractor word (semantically 

related, unrelated) were fully crossed in a 2 × 2 within-subjects design. 
The stimuli used as low- and high-reward cues were color pictures of a 
one-cent and a ten-cent Euro coin, respectively. The picture-word ma
terials were taken from the study of Roelofs and Piai (2017). These 
consist of 32 line-drawings of common objects, each paired with a 

Fig. 5. Δμ – Δτ tradeoff as a function of goal_neglect. The line corresponds to the 
smoothed mean of the Δμ – Δτ tradeoff computed with the geom_smooth 
function from the R package ggplot2 (Wickham et al., 2016). 
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semantically related or unrelated Dutch word, yielding 64 different 
pairs. As in Roelofs and Piai, each picture-word pair was repeated three 
times per condition, yielding a total of 384 trials. All the visual stimuli, 
including the reward cues, were adjusted to fit in a 10 × 10 cm white 
frame. The stimuli were presented in semi-random order, with the 
constraint that pictures and words were not repeated on successive 
trials. 

6.1.3. Procedure 
Participants sat individually in front of a computer screen and PC 

equipped with a voice key. The experiment began with a familiarization 
phase where participants saw each drawing together with the name of 
the depicted object that they would be asked to provide during the 
experiment. Participants then received written instructions and 
completed a practice phase which was identical to the main procedure, 
except that it consisted of 20 filler trials. During the practice phase, the 
experimenter corrected any errors in performance and adjusted the 
voice key if necessary. Participants were then encouraged to ask ques
tions about the procedure. Next, the actual experiment began, which 
consisted of 384 trials divided into 6 blocks. Participants were instructed 
to name the picture and ignore the distractor. They were told that both 
being slow and inaccurate (saying the wrong word) would incur a 
penalty, and thus they should put equal emphasis on speed and 
accuracy. 

The trial structure is illustrated in Fig. 6. Each trial began with a 
fixation cross, which remained on the screen for 200 ms. This was fol
lowed by a blank screen (200 ms) and the reward cue, which remained 
on the screen for 1400 ms. This was followed by a blank screen (200 ms), 
a fixation point (200 ms), and an additional blank screen (200 ms). The 
picture was then presented for 1500 ms or until a response was recorded 
by the voice key. Therefore, there was a period of 2 s from the onset of 
the reward cue to the onset of the picture-word stimulus, during which 
participants were informed about the reward of the upcoming trial and 
could prepare accordingly. The inter-trial interval was 2 s. 

After each block, participants received feedback on their perfor
mance: They received information about the amount of money they had 
earned during the block (the sum of the reward from all correct trials) 
and the amount of money they had lost (the sum of all penalized trials). 
Money earned was shown in green, preceded by a plus sign. Money lost 
was shown in red, preceded by a minus sign. These quantities were 
presented simultaneously in the middle of the screen, with earned 
reward on the top and lost reward on the bottom. This feedback was 
calculated as follows: Speed penalties were computed automatically 

from voice-key responses, whereby responses outside a given range were 
penalized. The lower bound was 200 ms, so that false starts or the 
accidental triggering of the voice key would be penalized. The upper 
bound was calculated by rounding up the 75th percentile from Roelofs 
and Piai (2017), so as to make sure that roughly 75% of the trials were 
unlikely to be penalized based on speed. Our aim was to have a penalty 
bound that was realistically strict, yet not tough enough to demotivate 
participants. Errors were coded online by the experimenter and inputted 
manually. The feedback from each block remained on the screen for 30 s. 
There were no breaks between blocks. The session lasted for approxi
mately an hour. 

6.1.4. Analysis 
RTs were computed graphically using the Praat software. Errors were 

annotated offline. Trials in which the participant produced the wrong 
word, self-corrected, or triggered the voice key by accident were 
considered errors and excluded from the analysis. 

Raw RTs were submitted to ex-Gaussian analyses using the mexgauss 
function from the retimes R package (Massidda, 2013). These analyses 
were performed individually for each participant and condition. The 
resulting ex-Gaussian estimates were submitted to three separate linear 
regressions (one per ex-Gaussian parameter). Each regression model 
included as fixed effects the sum-coded predictors reward (low = − 1, 
high = 1) and distractor (unrelated = − 1, related = 1), plus the inter
action between the two. The resulting R syntax was as follows: Param
eter ~ Distractor * Reward. 

Previous studies such as Roelofs and Piai (2017) and Scaltritti et al. 
(2015a, 2015b) complemented their statistical analyses of ex-Gaussian 
estimates with an analogous analysis of mean RT estimates. While this 
makes the analyses more comparable, aggregating over trials inevitably 
leads to a loss of information. Since the distractor effect is typically quite 
small and we were looking to detect its interaction with a presumably 
much smaller effect (as per our model’s predictions), we sought to 
maximize our statistical power by exploiting every single trial in the 
data set. We therefore submitted RTs to mixed-effects linear regression. 
For this analyses, raw RTs were log-transformed so as to reduce skew 
(Baayen, Davidson, & Bates, 2008). The fixed terms in the model were 
the same sum-coded variables as before. The inclusion of random terms 
was informed by a model comparison based on the Akaike Information 
Criterion (Akaike, 1973). The winner was a model that included only 
random intercepts for items. However, since our study examined 
attention, and its relevance for individual differences is well docu
mented in the literature, we opted for the second-best model, which 

Fig. 6. Trial structure in our experiment.  
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included intercepts for participants as well. The resulting R syntax was 
the following: Log_RT ~ Distractor * Reward + (1 | Participant) + (1 | 
Picture). 

6.2. Results 

Table 2 shows mean RT, mean error, and ex-Gaussian parameter 
estimates per condition. Fig. 7 shows mean RT by decile for each reward 
condition. These plots were computed by rank-ordering RTs into 10 bins 
and computing the mean of each bin individually for each condition and 
participant. Deciles were then averaged across participants for each 
condition. As Fig. 7 shows, high reward yielded slightly faster responses 
than low reward, but this difference between conditions was restricted 
to the slowest trials, i.e., the tail of the distribution. Fig. 8 shows mean 
RT by decile per distractor condition. As we can see, related distractors 
yielded slower responses than unrelated distractors. While this differ
ence can be observed throughout the distribution, it became more 
salient for the slowest deciles. Fig. 9 gives the distractor effect (seman
tically related − unrelated) by reward condition. This was calculated 
separately for each reward condition by subtracting the deciles in the 
unrelated condition from the deciles in the related condition. The 
resulting delta deciles were then averaged across participants. The plot 
shows how the distractor effect grew as a function of RT in both con
ditions, but this growth was smaller and slower in the high reward 
condition. As a result, the difference in the distractor effect between the 
high and low reward conditions is also largest in the tail of the distri
bution. Finally, errors were not submitted to inferential analyses due to 
their low frequency in the dataset. However, as shown in Table 2, the 
observed pattern appears to be consistent with the mean RT results, with 

error rate being increased by semantic interference and reduced by 
reward. 

6.2.1. Distributional analyses 
The regression coefficients from the distributional analyses are pre

sented in Tables 3 (for μ), 4 (for τ), and 5 (for σ). These analyses revealed 
no significant effect of reward for any of the three ex-Gaussian param
eters. The distractor effect was highly significant for τ and approached 
significance for σ, but not for μ. Finally, the interaction between reward 
and distractor was significant for τ, but not for μ or σ. 

Table 2 
Mean RT, mean error rate, and ex-Gaussian estimates per condition. The stan
dard error is shown in brackets.  

Distractor Reward Mean 
RT 

τ μ σ Mean 
error 

Related High 652 
(47) 

105.15 
(25.25) 

546.36 
(39.52) 

51.4 
(20.43) 

6.1 
(4.4) 

Unrelated High 635 
(42) 

92.55 
(27.71) 

540.2 
(36.8) 

44.08 
(19.06) 

3.7 
(3.1) 

Related Low 667 
(55) 

121.27 
(22.63) 

544.09 
(52.33) 

52.54 
(29.45) 

6.3 
(4.9) 

Unrelated Low 633 
(46) 

90.04 
(27.95) 

540.54 
(44.54) 

47.44 
(20.42) 

4.2 
(3.4)  

Fig. 7. Decile plot for the high and low reward conditions. The error bars 
indicate standard error. 

Fig. 8. Decile plot for the related and unrelated distractor conditions. The error 
bars indicate standard error. 

Fig. 9. Semantic effect (related − unrelated deciles) for the high and low 
reward conditions. The error bars indicate standard error. 

Table 3 
Regression coefficients for the μ analysis.   

β SE t-value p(>|t|) 

Intercept 542.80 3.50 155.15 <0.001 *** 
Distractor 2.43 3.50 0.70 0.49 
Reward 0.49 3.50 0.14 0.89 
Distractor × Reward 0.65 3.50 0.19 0.85  
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6.2.2. Log RT analysis 
The model coefficients for the analysis on log RTs are shown in 

Table 6. This analysis revealed a significant effect of reward and a highly 
significant effect of distractor. Finally, the interaction between reward 
and distractor was highly significant. 

6.3. Discussion 

We carried out a PWI experiment to test the hypothesis that the 
attentional engagement of participants can modulate the size and 
distributional properties of the semantic interference effect. Scaltritti 
et al. (2015a, 2015b) observed a semantic effect only in the tail of the RT 
distribution (τ parameter), whereas Roelofs and Piai (2017) found a 
larger semantic effect which showed up in both the tail of the distri
bution (τ) and its leading edge (μ). Our simulation work offered proof- 
of-principle evidence that these differences between studies could be 
explained as arising from a difference in attentional engagement. In the 
present study, we manipulated attentional engagement by offering 
participants either high (€0.10) or low (€0.01) monetary reward upon 
sufficient performance on each corresponding trial. According to the 
model, the baseline semantic interference effect, however small, should 
be present across the entire distribution (μ effect). In addition, lapses of 
attentional engagement should inflate the semantic effect and modulate 
its distributional dynamics, so that relatively infrequent lapses would 
inflate the tail of the distribution, but relatively frequent lapses would 
begin to inflate μ, as more and more trials become affected. Therefore, 
our reward manipulation should have an asymmetric effect on μ and τ. 
That is, the reward effect should either show up in one parameter alone 

or exhibit the opposite trend in each of them (e.g., decrease τ but in
crease μ). Our results are consistent with these predictions: In our 
experiment, high reward yielded a significantly smaller semantic 
interference effect than did low reward. And this difference was 
restricted to the τ parameter. 

Compared to the Roelofs and Piai (2017) experiment, which used the 
same stimuli, our participants were overall faster, and the semantic 
interference effect was overall smaller. In addition, Roelofs and Piai 
found the semantic effect in both μ and τ, whereas we found it only in the 
τ parameter. All of these differences between the two studies can be 
accounted for by our model by assuming that the participants of the 
present experiment had higher attentional engagement. This is in fact 
extremely likely, given that our study involved some degree of reward 
on all trials, and therefore participants’ motivation to remain attentive 
should be higher than in the experiment of Roelofs and Piai across the 
board. Additionally, we penalized RTs above the 75th percentile of 
Roelofs and Piai’s data, which is likely to have led participants to aim for 
faster performance overall. 

In sum, our results confirmed the model predictions that boosting 
attentional engagement not only decreases RT across the board, but also 
decreases the semantic interference effect and alters its distributional 
properties in a way that is consistent with our Δμ – Δτ trade-off hy
pothesis. Furthermore, the differences between our study and Roelofs 
and Piai (2017) are all consistent with the model predictions, which 
provides additional support for the hypothesis discussed in Simulation 1 
that differences between previous studies may have also partly been 
caused by differences in attentional engagement. 

7. Summary and conclusions 

Previous evidence from distributional analyses of RTs in regular 
picture naming and picture-word interference showed that attention 
plays an important role in spoken word production. However, there was 
still no computational account of how properties of RT distributions 
reflect the effect of attentional processes and how these may modulate 
the amount of conflict between lexical representations. To fill this gap, 
we presented an extension of the WEAVER++ model in which lapses of 
attention allow for lexical conflict to build up unsupervised on a subset 
of trials, thus modulating the shape of the resulting RT distribution. 
Computer simulations revealed that our model resolves discrepancies 
between outcomes of studies on semantic interference in the literature. 
Moreover, the model’s predictions were confirmed in a new experiment 
where the motivation of participants to remain attentive determined the 
size and distributional locus of semantic interference in picture naming. 
Our model therefore provides a useful framework for interpreting 
distributional analyses of RT data in picture naming tasks. We conclude 
that the process modeling of RT distributions provides valuable insight 
into the interplay between attention and conflict in spoken word 
production. 

Declaration of Competing Interest 

We have no conflicts of interest to disclose.  

Appendix A 

Simulation 1 methods 

The model parameters were optimized using Simulated Annealing (Van Laarhoven & Aarts, 1987). The objective function to be minimized was the 
root mean squared error (RMSE) between the model’s output and the empirical data. This measure was calculated on the delta deciles of the semantic 
interference effect (see Section 2.4). The optimization process was carried out in two steps. In the first step, the objective function was calculated on 
the mean of the two empirical data sets. For this optimization problem, all the model parameters were allowed to vary, so as to find the parameter 

Table 4 
Regression coefficients for the τ analysis.   

β SE t-value p(>|t|) 

Intercept 102.25 2.08 49.18 <0.001 *** 
Distractor 10.96 2.08 5.27 <0.001 *** 
Reward − 3.40 2.08 − 1.64 0.10 
Distractor × Reward − 4.66 2.08 − 2.24 0.03 *  

Table 5 
Regression coefficients for the σ analysis.   

β SE t-value p(>|t|) 

Intercept 48.86 1.82 26.87 <0.001 *** 
Distractor 3.11 1.82 1.71 0.09 
Reward − 1.12 1.82 − 0.62 0.54 
Distractor × Reward 0.56 1.82 0.31 0.76  

Table 6 
Regression coefficients for the log RT analysis.   

β SE t-value p(>|t|) 

Intercept 6.455 0.016 409.768 <0.001 *** 
Distractor 0.019 0.001 14.932 <0.001 *** 
Reward − 0.004 0.001 − 2.778 0.006 ** 
Distractor × Reward − 0.005 0.001 − 3.930 <0.001 ***  
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configuration that is most likely to explain the experimental findings of both experiments. The resulting parameter configuration (presented as 
Appendix B) was used as the starting point for the second optimization step. In this second step, two separate models were fitted, one for each of the 
two data sets. For these simulations, only the three lapse parameters were allowed to vary. As a result, any difference in the distributional behavior of 
the two models can be attributed solely to the behavior of the lapse parameters. For each of the abovementioned optimization problems, the algorithm 
was run ten times. The results were then collapsed across runs and the best performing parameter configuration was selected on the basis of RMSE. 

Appendix B 

Common parameters used in Simulation 1  

parameter value 

distractor_duration (ms) 106 
sem_rate 0.0071596 
lem_rate 0.0598442 
decay_rate 0.0342529 
extin 0.2480972 
crit_diff 19.183263  
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