Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stochastic Fractal and Noether's Theorem

MPG-Autoren
/persons/resource/persons217163

Rahman,  Rakibur
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2010.07953.pdf
(Preprint), 626KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rahman, R., Nowrin, F., Rahman, M. S., Wattis, J. A. D., & Hassan, M. K. (2021). Stochastic Fractal and Noether's Theorem. Physical Review E, 103(2): 022106. doi:10.1103/PhysRevE.103.022106.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-16AA-0
Zusammenfassung
We consider the binary fragmentation problem in which, at any breakup event,
one of the daughter segments either survives with probability $p$ or disappears
with probability $1\!-\!p$. It describes a stochastic dyadic Cantor set that
evolves in time, and eventually becomes a fractal. We investigate this
phenomenon, through analytical methods and Monte Carlo simulation, for a
generic class of models, where segment breakup points follow a symmetric beta
distribution with shape parameter $\alpha$, which also determines the
fragmentation rate. For a fractal dimension $d_f$, we find that the $d_f$-th
moment $M_{d_f}$ is a conserved quantity, independent of $p$ and $\alpha$. We
use the idea of data collapse -- a consequence of dynamical scaling symmetry --
to demonstrate that the system exhibits self-similarity. In an attempt to
connect the symmetry with the conserved quantity, we reinterpret the
fragmentation equation as the continuity equation of a Euclidean
quantum-mechanical system. Surprisingly, the Noether charge corresponding to
dynamical scaling is trivial, while $M_{d_f}$ relates to a purely mathematical
symmetry: quantum-mechanical phase rotation in Euclidean time.