Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Focusing the view on nature's water-splitting catalyst

MPG-Autoren
/persons/resource/persons237755

Zein,  Samir
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;
Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany;

/persons/resource/persons237637

Lubitz,  Wolfgang
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237645

Messinger,  Johannes
Research Department Lubitz, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zein, S., Kulik, L. V., Yano, J., Kern, J., Pushkar, Y., Zouni, A., et al. (2008). Focusing the view on nature's water-splitting catalyst. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 363(1494), 1167-1177. doi:10.1098/rstb.2007.2212.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-33BD-A
Zusammenfassung
Nature invented a catalyst about 3 Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere.