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In divertor transport simulations, perpendicular transport is given empirically and usually
assumed to be constant in time and space. In reality, anomalous D, and x, are
known to be sensitive functions of the gradients ) (the density gradient Vn and the
temperature gradient V7' ) and various parameters

D =D(r,t) =D(Vn, VT, VT;,v,wr, .. Z¢ff, ... Paug, ...) - (1)

For the purpose of computing transport phenomena correctly, we need to employ first
principle (theory) based transport coefficients. In this work, numerical coupling of per-
pendicular transport between a turbulence code DALF 2 and a divertor code B23) is
pursued. We also model H-modes ¥ incorporating self-consistent E, as well as E x B
shear stabilisation of turbulence ® .

The following transport coefficients are imported from DALF to B2 based on Fick’s
law and Fourier’s law. In MKS units this reads D = — < nv, > (n/Vn) x Csp? /L2,
X = — < 3/2nT > (T/VT) x Cyp?/L2%, where p, is square root the mass ratio times
the ion Larmor radius, C is the sound velocity and Vn and V7T are that of the
equilibrium. The flux < nwv, > in a dimensionless form is calculated from DALF,
where the factor C,p?/L? is computed as an internal parameter in B2. We employed
a two dimensional sheared slab model for the turbulence computation. In addition to
the Hasegawa-Wakatani model V) | T, and 7, equations are evolved in an electrostatic
limit 2 . In practice we prepare a fitted numerical database beforehand for D and x’s.
The largest advantage is numerical stability for the implicit solver of B2. Alternatively
running DALF and B2 (direct coupling) is employed rather to pre-condition and to narrow
down the parameter space. Up to seven different parameters are practically approachable
in the current computational settings.

Fitting is done to the time averaged outputs from DALF by Chebyshev polynomials ¢ .
Transport as function of plasma parameters are expanded in the form

D (0,t) = S Alin, g, b5y iy i) Ty (wn) x T, (wy) x T, (wi) x T, (v) x T, (wp)- (2)

where w,,w;, and w; are the indices of Vn,VT,, and VT;. Here, v and wg represent
electron collisionality and the E x B shear parameter ® respectively. An example of
two dimensional fitting is shown in Ref. 7).

An example of divertor simulation with constant core heat flux is shown aiming at
reconstructing the H-mode. Transport coefficients are space and time dependent as sig-
nified in Eq.(2). If the temperature at the core is fixed, the heat flux adjusts itself to
relax the radial profile and will not make significant difference with the constant D and
Xx cases. The reference configuration is from an ASDEX Upgrade single null divertor
shot. A grid size of 96 x 36 is used to resolve the structure of the radial electric field in
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the vicinity of the divertor separatrix (the radial grids are packed near the separatrix).
Dirichlet boundary conditions are taken for n at the core (6 x 10m ). Neumann
boundary conditions for 7, and 7; at the core correspond to a total heating power
of 3.7TMW . The rest of the parameters are the same as in Ref. 7). Essentially the
radial transport in the closed field line regions can be understood as a one dimensional
problem. Responding to the dynamics of drift-wave turbulence ! (steeper the gradi-
ents, larger the transport) the plasma is transported to the turbulent side and make the
profile rather uniform compared to the constant constant D and x cases. Turbulence
makes the plasma profile stiff. This feature is captured in the region y < 0(m). The
increase of transport coefficients toward the edge in Fig.1(b) (large dissipation at the low
temperature regions) is the response to the v dependence of Eq.(2).
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Figure 1: (a) Radial electron temperature profile from B2 simulation at the outboard
midplane. Black dashed line: In the absence of turbulence effects [ D = 0.5(m?/s) and
X = 0.7(m?/s) constant in time and space]. Red line: as a response of drift-wave
turbulence. The separatrix is signified by dashed lines at y = 0(m) . (b) Radial profile
of converged x.(m?/s) values.

The Braginskii transport model of the B2 code incorporates guiding-centre plasma
drifts self-consistently ® and generates F, shear in the presence of steep gradients. Here
we briefly review the generation mechanism of electric field both inside and outside the
separatrix. Inside the divertor separatrix, the electric field is described by the radial ion
momentum balance of the Braginskii set of equations ? . The original Braginskii equa-
tions (for one component ion) solve ten equations, that are mass, momentum, and energy
balance equations, for ten unknowns n;,n., V;, Ve, T; , and T, . The ion momentum bal-
ance equation is given by

0

5 (V) +(V-V)V| ==Vp; =V Tl +en; (-V¢+V x B) + R+ 8™ (3)

m;n;
The terms on the right hand are the pressure gradient, stress tensor, Lorentz force and
the collision terms. In a steady state 0; — 0, when the flow term V x B are less

10)

dominant *” | the radial component gives an approximate relation ¢ ~ —p; . Within the

B2 formulation, the equations are reduced to five, solving for n(=n; =n.), V), T;
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T, , and the electrostatic potential ¢ . The perpendicular dynamics are given by the
guiding centre approximation. The balance between diamagnetic and the E x B drifts
in the quasi-neutral relation determines the electrostatic potential.

On the other hand, the electric field in the scrape off layer (SOL) is determined
by Bohm sheath dynamics. The ions enter the sheath regions (the divertor plates) at
the sound speed: J; = ngeC; . On the other hand, the electrons follow the Boltzmann
relation closely: J, = —(noeCs/4) exp (e/Te) . The electrostatic potential is determined
by J; +J. =0 toward the divertor plate. We obtain an approximate relation ¢ ~ 7T, .

Figure 2(a) shows the radial profile of the electrostatic potential obtained from a B2
simulation. As predicted by the theory, profiles follow ¢ ~ —p; inside the separatrix and
¢ ~ T, in SOL. The anomalous perpendicular dynamics and corresponding dissipation
mechanism (which connects the solution inside and outside the divertor separatrix) de-
termine the scale length of the boundary layer. Figure 2(b) shows the radial electrostatic
field E,. , which is simply a radial derivative of Fig. 2(a).
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Figure 2: (a) Radial profile of electrostatic potential on the outboard midplane, and (b)
radial electric field (both from B2 simulation in the absence of turbulence effects when
D and x’s constant in time and space. Red line : radial electric field as a response of
turbulence.

Now, let us discuss the relation of our coupled simulation model to the L to H
transition ¥ . Note the extremely short scale length of dE,/dy [the black solid line
in Fig.2(b)]. The steepness near the separatrix is caused by perpendicular transport with
constant D and x’s. [At the separatrix the absolute value of the E, shear is an order
(or two) of magnitude larger than the experiments]. As in the red solid line of Fig.2(b),
turbulence modification to the Braginskii electric field smoothes out the localised struc-
ture.

The Braginskii type external electric field can enter the turbulence model as a back-
ground E x B shear parameter [ wg of Eq.(2)]. Simulation results from the turbulence
model suggest a monotonic decrease of the radial transport as the value wg increase.
Figure 3(a) is a fitted DALF output of the diffusion coefficient as a function of wg and
the gradients w, = w; = w; [Note that the turbulence model includes Reynolds stress,
and thus the electric fields are the combination of the Braginskii type and zonal flows ') ].
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There are two transport mechanisms in Figure 3(a) that were already described above;
transport increases with the gradients (drift-wave dynamics) and transport decreases
with the external E x B shear flow ® . If the density and temperature steepen in the

12) | for example] and reach a critical gradient, shear

edge regions [by an external source
flow stabilisation becomes dominant and the transport level can go down the hill of the
curved surface [follow the solid curve in Fig.3(a)]. Interestingly, the solid line is still
monotonically increasing along the gradient axis. Projection of the solid line to the two
dimensional plane will give the well-known L to H transition curve [see Fig.3(b)].

In this work, we have presented divertor simulation employing space and time depen-

dent transport coefficients. Our preliminary results related to L-H transition are given.
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Figure 3: (a) Fitted DALF output of diffusion coefficient as a function of external wg
and the gradients w, = w; = w; . The surface is tilted. The value D increase in the
direction of the gradients and decrease in the direction of E x B shear. (b) A projection
of L to H transition curve of (a).
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