English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Proteasomal degradation of the intrinsically disordered protein tau at single-residue resolution

MPS-Authors
/persons/resource/persons251066

Ukmar-Godec,  T.
Research Group of Protein Structure Determination using NMR, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons251032

Fang,  P.
Research Group of Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons198110

Henneberg,  F.
Department of Structural Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons206062

Godec,  A.
Research Group of Mathematical Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons185577

Pan,  K. T.
Research Group of Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons133053

Chari,  A.
Research Group of Structural Biochemistry and Mechanisms, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15947

Urlaub,  H.
Research Group of Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons16093

Zweckstetter,  M.
Research Group of Protein Structure Determination using NMR, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

3254930.pdf
(Publisher version), 6MB

Supplementary Material (public)

3254930-Suppl.pdf
(Supplementary material), 2MB

Citation

Ukmar-Godec, T., Fang, P., Ibáñez de Opakua, A., Henneberg, F., Godec, A., Pan, K. T., et al. (2020). Proteasomal degradation of the intrinsically disordered protein tau at single-residue resolution. Science Advances, 6(30): eaba3916. doi:10.1126/sciadv.aba3916.


Cite as: https://hdl.handle.net/21.11116/0000-0007-1736-3
Abstract
Intrinsically disordered proteins (IDPs) can be degraded in a ubiquitin-independent process by the 20S proteasome. Decline in 20S activity characterizes neurodegenerative diseases. Here, we examine 20S degradation of IDP tau, a protein that aggregates into insoluble deposits in Alzheimer’s disease. We show that cleavage of tau by the 20S proteasome is most efficient within the aggregation-prone repeat region of tau and generates both short, aggregation-deficient peptides and two long fragments containing residues 1 to 251 and 1 to 218. Phosphorylation of tau by the non-proline–directed Ca2+/calmodulin-dependent protein kinase II inhibits degradation by the 20S proteasome. Phosphorylation of tau by GSK3β, a major proline-directed tau kinase, modulates tau degradation kinetics in a residue-specific manner. The study provides detailed insights into the degradation products of tau generated by the 20S proteasome, the residue specificity of degradation, single-residue degradation kinetics, and their regulation by posttranslational modification.