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Electromagnetic toroidal �i mode turbulence is investigated linearly and nonlinearly for parameters typical for

the plasma edge. The linear eigenmodes are shifted to longer wavelength while the growth rate remains unchanged,

thus a mixing length estimate would predict an increase of the transport rates. Nonlinear simulations, however,

exhibit a strong drop of the transport rates, when electromagnetic e�ects are taken into account. This reduction

of the transport rates is associated with a fundamental change in the dominant scale lengths and saturation of

the underlying turbulence. Speci�cally, magnetic reconnection plays a dominant role in the nonlinear evolution.

Therefore magnetic 
uctuations should generally be included in simulations of �i mode turbulence.

1 Introduction

During the last years large e�orts have been taken to achieve a theory based understanding of the anoma-
lous transport in tokamaks. Plasma edge turbulence exerts vital control on the overall con�nement by
determining the height of the edge pedestal which enters most core con�nement scalings as the domi-
nant external parameter. Edge turbulence is typically characterized by three di�erent regimes [1]: At
the outermost, low temperature edge resistive ballooning modes provide the dominant drive for the tur-
bulence. In the subsequent region of modestly higher temperature resistivity becomes smaller and the
ballooning mode is stabilized by diamagnetic e�ects. At these parameters the turbulence is maintained
by the nonlinear drift wave instability. Raising the temperatures further suppresses the nonlinear drive
and destabilizes the toroidal �i mode at increasingly large scales, in particular when the gradients 
atten
out towards the top of the edge pedestal. Recently the investigations of the resistive ballooning and the
nonlinear drift wave turbulence have been extended to include magnetic 
uctuations, and in both regimes
major changes compared to the electrostatic limit have been observed for di�erent reasons [2, 3, 4]. Non-
linear simulations of �i mode turbulence typically still rely on the electrostatic approximation. Thus, it
appears to be important to proceed with a complete electromagnetic description, in particular regarding
the prominent role of �i mode turbulence in core con�nement physics [5].

2 Equations

Our investigations are based on the drift-Braginskii equations [6] including magnetic pumping but drop-
ping electron thermal e�ects.
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Figure 1: Growth rate 
 = �i!=!� versus �n and ky�s for � = 1, �i = 2:5 in the electrostatic limit (a)
and for (2�)2�m=k

2

k = 0:3 (b)

Figure 2: (a) Growth rate versus ky for the complete set of equations. Parameters are �i = 2:5, �n = 0:1,
�d = 1:25, �i = 0:005, 
p = 0:075 and � = 0 (stars), � = 0:675 (crosses). (b) Growth rate with
�n = 0:3, other parameters as in (a). (c) Fluctuation amplitude of n (solid), Ti (dashed),  (dotted),
and � (dash-dotted) at �n = 0:1, ky�s = 0:18 versus z (outside of the torus at z = 0).

�d = v�t0=L? with v� the electron diamagnetic velocity, �n = 2Ln=R, �v = �
1=2
n =(4�q), and the parallel

heat conduction �i and the magnetic pumping parameter 
p. The parameter �m = q2R�=Ln, �nally, is
directly related to the usual MHD parameter � by �m = �[1 + �i�=(1 + �)]�1.

3 Linear electromagnetic �i modes

To qualitatively understand the impact of electromagnetic 
uctuations on the linear stability of the
toroidal �i mode we neglect the parallel heat conduction �i = 0, the parallel sound wave �v = 0, magnetic
shear ŝ = 0 and the resistivity [J term in Eq. (1)], and evaluate the curvature operator Ĉ at the outside
of the torus z = 0 (with � = 0). In this limit the only coupling along the magnetic �eld arises from
the shear Alfv�en wave, the essential new element compared to the electrostatic regime. With the ansatz
 ; �; n; Ti / expfi(kyy + kkz � !t)g Eqs. (2), (3), and (4) combine to

��
!

!�
k2y�

2

s + �n

��
!

!�
+

5

3
��n + �

�
�i �

2

3

��
�

�
!

!�
+

5

3
��n

��
�+ (6)

+

�
5

3
�

�
!

!�
k2y�

2

s + �n

��
!

!�
+ �n�

�
+
!

!�

�
!

!�
+

5

3
��n

��
�dn = 0;

where we have used the abbreviations �2s = �2d�n(1 + �) and !� = �dky. From Eqs. (1) and (3) we obtain
a second relation between n and �"
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Eq. (7) is the electromagnetic generalization of the usual adiabatic relation � = �dn which is readily
obtained in the electrostatic limit � = �m = 0. With � = �dn Eq. (6) reproduces the dispersion relation
of the electrostatic toroidal �i mode (compare Ref. [1] and citations therein). In Figure 1 we show the
result of a numerical evaluation of the dispersion relation obtained from Eqs. (6) and (7). Consistent
with earlier results [7] electromagnetic e�ects stabilize the mode over most of the parameter regime, in
particular at large �n >� 0:3. At intermediate �n (� 0:05 � 0:3), which is typical for the plasma edge near
the top of the pedestal, however, long wavelength modes are destabilized. This suggests an increase of
the transport rates in this region when electromagnetic e�ects are taken into account. At small �n <� 0:05,
typical of the outermost edge, the �i mode remains weak even when � is �nite.



�n � hnvri hTivri
0:07 0 0:06 0:53
0:07 0:225 0:053 0:33
0:07 0:675 0:034 0:20
0:1 0 0:083 0:87
0:1 0:675 0:039 0:21

Table 1: E � B transport rates for
di�erent values of �n and �, �d =
1:25, �i = 2:5. For �n = 0:07 �i =
0:0035, 
p = 0:05, and for �n = 0:1
�i = 0:005, 
p = 0:075.

Figure 3: E � B heat 
ux hTivri
(solid line) and particle 
ux hnvri
(dotted line) versus time for the
parameters �n = 0:07, � = 0:675
and �i = 2:5.

Figure 4: Structure of Ti in the
direction perpendicular to the
magnetic �eld at the out side
of the torus (z = 0). The left
plot corresponds to � = 0, the
right plot to � = 0:675.

Figure 5: Magnetic reconnection at a late state of the simulation dis-
cussed in Fig. 3 (marked by a little arrow in Fig. 3). The left plot shows
the magnetic �eld at z = �0:83 (outside of the torus at z = �1; 0; 1)
and t = 234, the right plot at t = 247.

Figure 6: Ion heat 
ux (solid)
and particle 
ux (dotted) at
t = 244:5 in the simulation dis-
cussed in Figs. 3 and 5.

The importance of electromagnetic e�ects is controlled by both � and kk [compare Eq. (7)]. If kk is
su�ciently large, the Alfv�en wave is fast enough to establish the adiabatic relation � = �dn, even if �
is large, and we obtain the electrostatic dispersion relation. In the complete set of equations Eqs. (1) -
(5) the parallel gradients are limited by ion heat conduction and the parallel sound wave. To realistically
include these e�ects we evaluate the growth rates with our three-dimensional initial value code [1], where
we choose all parameters including the numerical viscosities as in the nonlinear simulations which will be
discussed in the next section. Figure 2a con�rms our basic result that for typical plasma edge gradients
�n ' 0:1 electromagnetic e�ects destabilize the �i mode at long perpendicular wavelength, whereas at
larger �n electromagnetic e�ects strongly reduce the growth rate (Fig. 2b).

4 Nonlinear simulations

Based on our linear results the usual mixing length estimate for the anomalous di�usion coe�cients
D = 
=k2? predicts a strong increase of the transport for �n � 0:1, as the parameter � is increased.
To test this we performed a series of nonlinear simulations with our 3-d 
ux-tube code [1]. The box
dimensions are 80L? � 80L? � 3Lk at a resolution of 192� 192� 90 collocation points. Surprisingly the
turbulent transport rates strongly contradict the mixing length estimate (Table 1): raising � from zero
to 0:675 leads to a drop of the anomalous heat 
ux of roughly a factor of three. In the electromagnetic
regime the 
uxes exhibit large 
uctuations, and may even become negative (Fig. 3). The structure of the
turbulence in the electromagnetic regime also di�ers substantially from the electrostatic limit (Fig. 4):
whereas in the electrostatic limit the scale size of the 
uctuations is several times the ion gyro radius, it
becomes very large in the electromagnetic regime. The electromagnetic state is characterized by highly
localized eddies in the magnetic �eld as well as in the E � B velocity, which have no counterpart in the
electrostatic simulations. Within these eddies the plasma velocity considerably exceeds average levels.
These strong 
ows cause the large 
uctuations in the 
uxes, and can even result in negative values of
transport in spatially localized areas.

The failure of the linear mixing length estimate demonstrates that the magnetic 
uctuations must also
strongly in
uence the nonlinear saturation of the 
uctuations. The fundamental change of the nonlinear
dynamics is underscored by the presence of the fast rotating eddies and the large localized 
uxes in the
direction opposite to the equilibrium gradients. A more detailed analysis of the time evolution shows



Figure 7: Saturation of the linear mode displayed in Figure 2b. The plots show contours of the magnetic
potential  at z = 0:17 with time increasing from left to right.

that these originate from regions where major changes in the three dimensional topology of the magnetic
�eld occur. Figure 5 shows such an event. Initially the magnetic �eld consists of two oppositely directed
bands of magnetic 
ux which are separated by a chain of islands (left plot). About ten time units later
the sheared structure is completely destroyed (right plot). Finally, Figure 6 shows the transport rate as
a function of the parallel coordinate z; we observe strong negative transport at the location where the
magnetic �eld is changed. Thus, magnetic reconnection seems to be responsible for the sharp drops in
the transport rates and therefore plays a dominant role in the overall dynamics. To gain some better
insight into the saturation mechanisms we use the eigenmode shown in Figure 2c as initial condition in
our three-dimensional code and study the nonlinear breakup. The streamers resulting from the toroidal �i
mode (Fig. 7a) are perturbed by an instability with k?�s ' 0:15 (Fig. 7b). At su�ciently large amplitude
of the perturbation the magnetic �eld starts to reconnect (Fig. 7c), which �nally completely destroys the
radial streamers (Fig. 7d). It is important to note that the secondary instability starts to grow in the
vicinity of the maximum of  at z ' 0:2, not at z = 0 where �, n and Ti are peaked (compare Fig.
2c). This indicates that the magnetic energy provides the dominant drive, and therefore suggests that
the secondary instability is a tearing mode. To con�rm this we performed two-dimensional analytical and
numerical calculations on the stability of a sheared magnetic �eld as in Fig. 7a. The maximum growth
rate of the tearing mode is found at kx�s ' 0:1 consistent with Fig. 7.

In the electrostatic regime, by contrast, the saturation results from Kelvin-Helmholtz and drift-wave
type secondary instabilities as demonstrated for the resistive ballooning mode [2]. Thus, the electrostatic
and the electromagnetic regime are characterized by distinct saturation mechanisms, which explains the
observed failure of the mixing length approach in comparing the nonlinear transport rates in the electro-
static and the electromagnetic regimes.

5 Summary

Electromagnetic e�ects alter the growth rate of the toroidal �i modes in two di�erent ways, depending
on the steepness of the pro�le. For comparatively modest gradients the mode is strongly stabilized. If
the gradients are steeper (Ln � 0:5R), as is typical for the plasma edge near the top of the pedestal,
the mode spectrum is shifted to longer wavelength while the peak growth rate is relatively constant. In
contrast to a linear mixing length estimate, which would predict an increase of the transport rates in
this regime, nonlinear electromagnetic simulations exhibit a strong reduction of particle and heat 
ux.
This reduction is caused by a fundamental change in the nonlinear dynamics: whereas in the electrostatic
case the toroidal �i mode saturates due to the growth of Kelvin-Helmholtz or drift-wave-like secondary
instabilities, magnetic reconnection becomes the dominant mechanism in the electromagnetic system.
Therefore, certainly in the plasma edge and also possibly in the higher temperature regime of the plasma
core, it is essential to keep electromagnetic corrections in simulations of �i mode turbulence.
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