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Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum
many-body problems. Nanophotonic structures are widely employed to engineer the bandstructure of light and are
thus investigated as a means to tune the interactions between atoms placed in their vicinity. A key shortcoming of
this approach is that excitations can decay into free photons, limiting the coherence of such quantum simulators.
Here, we overcome this challenge by proposing to use a simple cubic three-dimensional array of atoms to produce
an omnidirectional bandgap for light and show that it enables coherent, dissipation-free interactions between
embedded impurities. We show explicitly that the band gaps persist for moderate lattice sizes and finite filling
fraction, which makes this effect readily observable in experiment. Our work paves the way toward analogue
spin quantum simulators with long-range interactions using ultracold atomic lattices, and is an instance of the
emerging field of atomic quantum metamaterials.

I. INTRODUCTION

The possibility of engineering and manipulating interac-
tions between atoms is an essential requirement for realizing
analogue quantum simulators [1]. Recent theoretical and exper-
imental approaches use photonic crystal waveguides to manipu-
late the electromagnetic environment of individual atoms [2–7].
In particular, photonic crystal waveguides can host bandgaps,
such that quantum emitters with transition frequencies in the
bandgap cannot decay into the waveguide and instead form
exponentially localized atom–photon-bound states [8, 9]. This
mechanism can be used to mediate interactions of tuneable
range [10]. With control over the emitter spacing and the na-
ture of their coupling to electromagnetic modes, a wide class
of quantum spin models can be engineered [2, 11], which con-
stitutes a highly promising avenue for cold-atom simulators.

To achieve high coupling strengths, atoms have to be trapped
at subwavelength distances from the nanophotonic structures,
which has proven very challenging. This has motivated a num-
ber of proposals and experimental advances [2, 7, 12]. Very
recently, it has been shown that one- and two-dimensional
atomic arrays can emulate nanophotonic structures and can be
employed to control linewidth and dipole–dipole-interactions
of additional impurity atoms [13, 14]. Without fabrication
disorder and surface Casimir forces, atomic arrays promise to
simplify trapping of impurities close by and may yield more
homogeneous systems. Indeed, it is known that dense, ordered
arrays may have rich bandstructures [15–17] and optical prop-
erties [18–23]. Yet they come with the disadvantage that in
optical dipole traps it is challenging to achieve highly sub-
wavelength trapping, which is required since otherwise the
typcial atom–atom interaction strength is comparable to their
free-space decay rate [13, 14].

The competition between unitary evolution and dissipa-
tion arises as all the approaches above feature one- and two-
dimensional photonic nanostructures, which leave a third di-
mension into which photons can decay. This casts serious
doubt on the prospect of high-fidelity quantum simulation

with nanophotonic structures. Restricting solid-state nanopho-
tonic structures to two dimensions is natural due to fabrication
constraints (although note Ref. [24]) and because implanting
quantum emitters comes with other challenges such as non-
radiative decays, inhomogeneous broadening, and disorder in
their positions [25].

In this paper, we thus propose to use three-dimensional
atomic arrays to engineer omnidirectional bandgaps and fur-
thermore to mediate interactions between impurity atoms. In
the past, the occurence of bandgaps in atomic arrays has been
discussed in several works [26–30]. However, the diamond
lattice so far is the only known atomic array that can host an
omnidirectional band gap [31]. Here, we show that bandgaps
for one and both polarizations of light can be opened in simple
cubic lattices by applying a suitable magnetic field and AC
Stark shifts, compatible with current state-of-the-art experi-
ments. We provide analytical insight in the nature and size of
the band gap, which we verify with numerical simulation for
both finite and infinite lattices.

We argue analytically and demonstrate numerically that our
setups indeed can be used to mediate tunable long-range in-
teractions between embedded impurity atoms. In the limit of
infinite system size we prove that impurity atoms have infi-
nite lifetime if their transition frequency lies in the band gap.
Analyzing finite-size effects, we show that the impurity decay
rate decreases exponentially with system size and conclude
that our proposal still works for lattice sizes of 20× 20× 20-
atoms, which is readily realized in experiment [32, 33]. By
exponentially enhancing the coherence of light-based quan-
tum simulators, our work removes an otherwise fundamental
limitation for this class of quantum simulators.

The rest of this article is organized as follows. In Sec. II we
introduce the theoretical framework for atom-light interactions.
Within this model we investigate how one or both polarizations
of light can be gapped in Sec. III. In Sec. IV we show that
these setups can be used to modify dipole–dipole interactions
and the linewidth of impurity atoms. We discuss potential
implementations in Sec. V and conclude in Sec. VI.
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Figure 1. (a) Sketch of the proposed setup. A three-dimensional
array of atoms plays the role of a nanophotonic structure that modifies
the band structure of light. Impurity atoms placed within the array
interact via tunable array modes. If the array has an omnidirectional
bandgap, decay of the impurities is suppressed and they undergo
purely Hermitian dynamics. For the array we consider two-level
atoms (green transition) as well as four-level atoms (green + blue tran-
sitions). (b) The resulting bandstructure for σ+-polarized two-level
array atoms, exhibiting a band gap. The frequency of the impurity
atoms ωI can be tuned into the bandgap using Raman transitions. (c)
Path in the Brillouin zone corresponding to the plot in (b).

II. MODEL

We consider 3D simple cubic arrays of two-level atoms as
well as arrays of four-level atoms, which have one ground state
and three excited states with excitation energies ω0. In the
dipole approximation the Hamiltonian describing the interac-
tions of the atoms with the radiation field is given by [34, 35]

H =
∑
Ri

∑
α

ω0b̂
†
i,αb̂i,α +

∑
k

∑
ε⊥k

ckâ†k,εâk,ε

−
∑
Ri

∑
α

D̂iα · Ê(Ri). (1)

Here the sum over α runs over all excited states (cf. Fig. 1) and
Ri are the sites of the three-dimensional lattice. We represent
the array atoms by bosonic annihilation operators b̂i,α, which
is valid if the density of excitations is low. Assuming that
the strength of the dipoles is the same for all excited states,
the dipole operator of the atom at position Ri is given by
D̂iα = d0(dαb̂†i,α+d∗αb̂i,α), where dα and d0 are the direction
and the strength of the dipole moment associated with the
transition from the ground state to the excited state α. The
photons are described by the photon annihilation operators

âk,ε and the electric field operator is

Ê(r) =
∑

k

∑
ε⊥k

(√
ck

2ε0V
εâk,εe

ikr + h.c.

)
. (2)

Eliminating the photons adiabatically via the Born-Markov
approximation, the atom dynamics can be described by a non-
Hermitian effective Hamiltonian of the form [34, 35]

Harray =
∑
Ri

∑
α

(
ωA − i

Γ0

2

)
b̂†i,αb̂i,α

+ 3πcΓ0

ω0

∑
Ri 6=Rj

∑
α,β

d∗α · G(Ri −Rj) · dβ b̂†i,αb̂j,β ,

(3)

where Γ0 = (d2
0ω

3
0)/(3πε0c3) is the emission rate and ωA

deviates from ω0 by Lamb shift-type terms. In free space
the Green’s tensor G(r) is given by the dyadic Green’s func-
tion [36]. Note that the effective Hamiltonian in Eq. (3) de-
scribes the dynamics of the single-excitation sector completely
if there is no driving field, such that quantum jumps can be
neglected [37]. For an infinite periodic lattice it is convenient
to use Bloch’s theorem to simplify the Hamiltonian. For two-
level atoms with dipole moment d one directly obtains the
dispersion relation

ω(k)− iγ(k)/2 = ωA − iΓ0/2 + 3πcΓ0

ω0
d∗ · G̃(k) · d, (4)

while for four-level atoms the problem of finding the eigenval-
ues of Harray reduces to diagonalizing a 3 × 3-matrix of the
form

M = (ωA − iΓ0/2)1+ 3πcΓ0

ω0
G̃(k), (5)

where the atom–atom interactions are given by the dis-
crete Fourier transform of the Green’s tensor G̃(k) =∑

R 6=0 exp(−ikR)G(R).
Note that despite appearances, M is Hermitian and therefore

only has real eigenvalues (see Eq. A2), such that all eigenstates
of an infinite 3D atomic array have infinite lifetime [26]. In
the above expression, iΓ0/2 is cancelled by the non-Hermitian
part in G̃(k).

III. PHOTONIC BAND GAPS

In this section we determine under which circumstances the
model outlined above predicts photonic band gaps. We first
show that a simple cubic lattice of two-level atoms opens a gap
for light whose polarization coincides with the polarization
of the atomic transition. We then show that omnidirectional
band gaps for both polarizations of light can be opened with
four-level atoms and a suitable combination of magnetic fields
and AC Stark shifts.
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A. Band gap for circularly polarized light

We consider a simple cubic array of two-level atoms with
circular polarization, which gaps out light of the same polar-
ization, provided the array spacing a fulfils the subwavelength
condition a < λ/2, where λ is the wavelength of light.

Due to the periodicity of the array, the atoms couple to
infinitely many photon bands ωG(k) = c|k −G|, where G
are reciprocal lattice vectors. In this simple case, we can
restrict our attention to the lowest photon bands (G = 0) as
the gap opens generically due to hybridization of the atom
band with those modes. The coupling to higher bands only
yields a small shift, which is illustrated in Fig. 2(b). Thus, in
the rotating-wave approximation, the interactions between the
photons and the array is given by

H =
∑

k∈1.Bz.

 b†k
a†kε1

a†kε2


> ω0 g1

√
k g2

√
k

g1
√
k ck 0

g2
√
k 0 ck

 bk
akε1

akε2

 ,

(6)

where the coupling is defined as gi = d0
√
c/(2ε0VL)d · εi,

for i ∈ {1, 2}, where VL = a3 is the volume of the unit cell
and bk = 1/

√
N3∑

j exp (−ikRj)bj . We can always choose
a basis such that at least one polarization of light is orthogonal
to the atomic polarization and thus decoupled. Without loss
of generality we thus choose g2 = 0, such that finding the
eigenvalues of Eq. (6) reduces to diagonalizing a 2× 2-matrix.
For g1 = 0 the eigenvalues of this matrix cross at k0 = ω0/c.
By coupling the levels g1 6= 0 the crossing is avoided, such
that a gap of width ∝ g2

1 opens up near ω0. The gap closes for
k ‖ d. This can be prevented if two components of d differ
by a complex phase, as in circular polarization. The nature of
this omnidirectional bandgap is subtle since the polarization
of the gapped mode depends on the wavevector k. However, a
σ+-polarized impurity atom placed in an array of σ+-polarized
atoms “experiences” an omnidirectional bandgap.

Note that there is a subtlety hidden in the arguments above.
The problem is that we have neglected standing waves of the
electromagnetic field with nodes at the lattice sites, commonly
referred to as the free-photon modes [27]. Such modes would
couple to impurities hosted within the lattice and thus should be
avoided. As they need to have a node at each lattice site, these
modes have a minimum wavevector that depends on lattice
geometry. In the simple cubic lattice the cutoff is kc = π/a,
which means that the lowest energy at which these modes ap-
pear is ωc = cπ/a. To shift these modes away from resonance,
we require the subwavelength condition a < λ0/2.

B. Omnidirectional bandgap for both polarizations

To open an omnidirectional band gap for both polarizations
of light, we need to move to four-level atoms. While this alone
is not sufficient to produce a bandgap, we find that through
judicious choice of magnetic field, as well as AC and DC
Stark shifts, an omnidirection gap for both polarizations can
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Figure 2. Bandstructure of light interacting with two- (a-b) and four-
level atoms (c-e). Γ, M′ and R′ are defined in Fig. 1. (b) The black
curves show the dispersion when the G 6= 0-bands are neglected and
the rotating-wave approximation is applied. The red points show the
exact photonic dispersion given by Eq. (4). The dashed lines are the
bands in the absence of coupling. One effect of the coupling to higher
photon bands is that the atomic frequency ω0 is shifted to ωA, which
is why the scale for red points is shifted with respect to the black.
In the case of two-level atoms, the interactions with higher photon
bands only enter as small perturbations. (d) In the presence of three
dipoles the bandstructure is not gapped due to symmetry. The two
bands coloured in green touch at R’ and can be gapped by introducing
a suitable perturbation as discussed in the main text (e). Note that the
two highest black bands in (d) are degenerate.

be produced. In particular, we consider a situation sketched in
Fig. 1 (without impurity atoms), with the following ingredients:

(i) four-level atoms corresponding to a J = 0 to J = 1
transition, e.g., in 84Sr,

(ii) a homogeneous magnetic field applied in the z-direction,

(iii) two off-resonant lasers with wave vectors
k = (kx, ky,±π/(2a)) and polarizations
ε ∝ (eiφ/

√
2, ieiφ/

√
2,∓1) to produce Stark

shifts of the σ+- and π-transition of every second layer
of atoms [38], and

(iv) two global laser fields (of different strength) to produce
Stark shifts of the π- and σ− transition.

In the rest of this section, we detail why these requirements
arise and how they contribute to the band gap.

We note that we need to consider three dipole transitions,
because for just two transitions one can always find a k such
that d∗2 · ε2 ∝ d∗2 · (d∗×k) = k · (d∗2×d∗) = 0, independent
of the dipole moment d2. Hence we need all three orthogonal
polarizations. Surprisingly, even with all three polarizations, no
gap opens, as shown in Fig. 2. Indeed, the two lowest photon
modes (G = 0) both couple to an atomic polarization and are
thus gapped. However there is an additional band (green band
in Fig. 2), which closes the gap, since at some points at the edge
of the Brillouin zone, this band and at least one of the other
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Figure 3. Density of states with an omnidirectional band gap for one
(a) and both (b) polarizations for a = 0.24λ0. In panel (a) we consider
an array of σ+-polarized atoms. In the infinite case (blue) a gap arises
(dashed lines). The inset is a magnification of the gapped region. In
the finite case (orange) some states in the gap appear. If furthermore
some defects are taken into account (green), additional states appear
in the gap. We assume here a defect density Ndef/Ntot = 0.1 [23],
where Ntot = N × N × N = 203 is the number of lattice sides.
The energies of the infinite system were calculated with a mesh of
106 points for kx, ky, kz ≥ 0. Other relevant parameters for (b) are
aho = 0.09a, δB = µBB = 0.96Γ0, δ = 3.85Γ0 and δπ = 3.99Γ0.

bands have to be degenerate due to symmetry [26, 27, 30, 31].
In the simple cubic lattice these degeneracy points are the edges
of the cube describing the Brillouin zone, which are defined
by |kx| = |ky| = π/a, |kx| = |kz| = π/a and |ky| = |kz| =
π/a.

We find that a gap can be opened by introducing a sublattice
structure along z. In the halved Brillouin zone, new degen-
eracies arise at |kz| = π/(2a) due to sublattice symmetry. A
suitable AC Stark shift can lift the degeneracy by breaking
sublattice symmetry. The ideal form of this shift can be found
by considering the atom-atom interaction G̃′ at |kz| = π/(2a),
which reads [39]

G̃′ = 1̂⊗

 G̃xx G̃xy 0
G̃xy G̃yy 0
0 0 G̃zz

+ τ̂y ⊗

 0 0 G̃xz
0 0 G̃yz
G̃xz G̃yz 0

 ,

(7)

where the sublattice structure is expressed through the Pauli
matrices {1̂, τ̂x, τ̂y, τ̂z}, with |A〉 = (1, 0) and |B〉 = (0, 1).
The 3 × 3 matrices describe the dipole–dipole interactions,
where G̃ll′ are the components of the atom–atom interaction of
the Bravais lattice (cf. Eq. (A2) in the appendix).

This matrix is block diagonal with two identical 3× 3 matri-
ces as diagonal blocks, which implies the two-fold degeneracy
of each band at |kz| = π/(2a).

We note that to break all remaining symmetries it is not
sufficient to add a perturbation of the form H ′ = τz ⊗ 13,
because this leaves the symmetry between x and y intact. In
order to lift this symmetry as well, one can apply a magnetic
field along z. It is then sufficient to apply the AC Stark shifts
only to |σ+〉 and |π〉, such that the perturbation reads

H ′ = µ0B[1⊗ (|σ+〉 〈σ+| − |σ−〉 〈σ−|)]
+ δ[τ̂z ⊗ (|σ+〉 〈σ+| − |π〉 〈π|)]. (8)

Finally, we use a second AC Stark shift δπ to lower the energy
of the π-polarized modes, such that the gap covers the same
area of energies across the whole Brillouin zone and therefore
an omnidirectional band gap occurs.

To sum up, the resulting lattice is defined by lattice vectors
ax = (a, 0, 0), ay = (0, a, 0) and az = (0, 0, 2a), where the
unit cell contains two atoms A and B at positions rA = (0, 0, 0)
and rB = (0, 0, a) with different internal structures

ω
A/B
+ = ω0 + µBB ± δ

ω
A/B
− = ω0 − µBB (9)

ωA/Bπ = ω0 − δπ ∓ δ

In Fig. 3 we show that the band structure of this lattice is indeed
gapped. Note that the ingredients introduced in the beginning
of this section in principle produce a level scheme as in Eq. (9).
However, all frequencies are additionally shifted by −δ, which
is related to the fact that the lasers presented in (iii) can only
produce shifts of −2δ and 0 at lattice sites A and B, but not
shifts of −δ and +δ.

C. Finite size effects and defects

In this part we briefly discuss the differences between finite
and infinite lattices and the effect of defects. Similar results
have been obtained in a corresponding detailed study for the
diamond lattice [40].

Finite lattices.—To study the effect of boundaries on the
band gap, we diagonalize the full effective Hamiltonian given
by Eq. (3) for a lattice of 20 × 20 × 20 atoms, and plot the
resulting density of states in Fig. 3 for both the simple cubic
lattice of two-level atoms and the bipartite lattice of four-level
atoms. Overall, the density of states of the finite lattice is
similar to that of the infinite lattice. However, a significant
difference is that some states appear in the gap, which we
attribute to localized edge modes. In finite-size lattices, the
eigenstates also acquire a finite lifetime, as photons may radiate
into free-space modes. While the bulk-modes have decay
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rates Γbulk � Γ0 that decrease with lattice size, the edge-
modes are superradiant Γedge � Γ0 (see Appendix B). For
a one-dimensional chain of atoms this effect is discussed in
Ref. [41]. As we illustrate below, this means that the infinite
model provides an accurate description for impurities located
deep inside the array.

Defects.—We analyze the effect of defects by randomly
removing atoms. The resulting densities of states are shown
in Fig. 3. Lattice defects also give rise to bound states, which
contribute to the density of states in the band gap, which means
that their density should be sufficiently low as to not impact
the simulation.

IV. EFFECTIVE IMPURITY INTERACTIONS

In this section we analyze the interactions mediated by band
gaps in 3D atomic arrays using the example when both impurity
and array atoms are σ+-polarized. We first consider impurities
placed in infinite arrays. Afterwards we generalize our results
to finite arrays.

If the excitation energy of the impurities ωI is close to the
excitation energy ω0 of the array atoms, the Hamiltonian for
impurities interacting with an atomic array is

Htot = Himp +Harray +Hint, (10)

where the impurities are described by

Himp =
∑
ri

(
ωI − i

ΓI
2

)
σiee

+ 3πcΓI
ω0

∑
ri 6=rj

d∗ · G(ri − rj) · dσiegσ
j
ge, (11)

the array Hamiltonian is given in Eq. (3) and the interactions
between impurity atoms and array atoms are

Hint = 3πc
√

ΓIΓ0

ω0

∑
riRj

d∗ · G(ri −Rj) · d(σiegb̂j + b̂†jσ
i
ge).

(12)

Here, σi are the spin-operators of the impurity atom at position
ri. In the following we assume that all impurities are localized
at equal positions relative to the array, such that all impurity
atoms couple equally to the array modes.

A. Infinite Array

The bandstructure of the array is given by Eq. (4). The
impurity atoms are detuned from the edge of the upper band
at ωc by ∆ = ωc − ωI . If the coupling between impurity
atoms and array atoms is weak, the interactions between the
impurity atoms and the array can be treated under Born-Markov
approximation. In this case, the full effective coupling between

the impurity atoms is given by [13, 34]

Jij − i
Γij
2 = d∗ · G(ri − rj) · d

+
∫

d3k
(2π)3

|gki|2

ωI − ω(k) + i0+ e
ikrij , (13)

with

gki = 3πc
√

ΓIΓ0

ω0

[∑
R

e−ikR d∗ · G(ri −R) · d
]
. (14)

The first term in Eq. (13) describes the effective interactions
between impurity atoms due to the exchange of free photons,
while the second term takes into account modifications due to
interactions between photons and array atoms. Note that the
second term describes processes where a photon emitted by
the impurity excites a dressed array atom, before it is emitted
again and then reabsorbed by an impurity atom.

The effective decay rate of an impurity atom placed in the
array is given by

Γeff = ΓI − 2Im
[∫

d3k
(2π)3

|gki|2

ωI − ω(k) + i0+

]
. (15)

In Appendix C we show that for transition frequencies in the
bandgap, the imaginary part of the integral in Eq. (15) cancel
the free space decay rate ΓI such that impurity atoms placed
in the gap do not decay.

For impurities that are weakly detuned from the upper band
edge at ωc the effective interaction can be approximated by [10]

Jij ≈
a3g2

4π
√
AzA

e−rij/ξ

rij
, (16)

where we assume the impurities to couple to a quadratic disper-
sion with curvature A via a constant coupling g. The correla-
tion length is ξ =

√
A/∆ and the effective distance we define

as r2
ij = (xi − xj)2 + (yi − yj)2 + A/Az(zi − zj)2, where

the anisotropy of the interaction arises as the curvature in kz
differs from the curvature in the kx-ky-plane. More details on
the derivation of Eq. (16) are given in Appendix D.

Choosing small detunings ∆ one can reach the limit rij � ξ,
where the coupling Jij is long range. In Fig. 4 we compare
the approximated coupling [Eq. (16)] with the exact coupling
obtained by performing the integration in Eq. (13) numerically
and find good agreement.

B. Finite array

In this section we analyze how the effective interaction be-
tween impurities and the effective impurity decay change if
the mediating array is finite. We consider cubic arrays with
N×N×N atoms. For different detunings and lattice sizes the
effective coupling Jij and the effective decay Γeff are shown
in Fig. 4.

Effective Coupling.—The effective coupling obtained in fi-
nite arrays differs from the infinite case in the limit of ∆→ 0.
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Figure 4. Effective coupling (a) and decay (b) of the impurities for
different detunings. The infinite case (dots) is determined by numeric
integration of Eq. (13). In the case of the finite lattice (crosses) the
ratio of impurity and array linewidth is ΓI/Γ0 = 10−3 and the arrays
consist ofN×N×(N−1) atoms. The impurity atoms are separated
by a as shown in Fig. 1. For the analytic approximation (gray line)
we choose the following parameters to fit the numerical values (for
the finite lattices the values are averaged over different system sizes):
curvature aA−1/2 ≈ 1.28Γ−1/2

0 and coupling a2g2/(4π
√
AzA) ≈

−0.089ΓI (infinite case, see Eq. (16)), average curvature aĀ−1/2 ≈
1.35Γ−1/2

0 and average offset c̄1 ≈ 2.7 (effective coupling in finite
arrays, see Eq. (16) and Eq. (17)), and aĀ−1/2 ≈ 0.98Γ−1/2

0 and
c̄2 ≈ 1.38 (effective decay in finite arrays, see Eq. (18)). In general
there are three free parameters for the finite cases. However, for the
effective coupling in finite arrays we take the coupling g from the
infinite case and for the effective decay we take the offset c1 from the
effective coupling in finite arrays.

This can be modelled through a N -dependent cutoff occurring
in the correlation length

ξfin =

√
A

∆ +Ac2
1/(Na)2 (17)

The cutoff arises because in a finite systems there is only a dis-

crete set of allowed polariton moment. In particular, polaritons
cannot have momentum k = 0, such that the smallest possible
energy value in the upper band is ωmin = ωc + Ak2

min, where
kmin ∝ 1/(Na).

Effective Decay.—In contrast to the infinite case, we find
non-vanishing effective decay rates for impurities placed in a
finite array. These are caused by the fact that polaritons emitted
by the impurities can decay into free space. We numerically
find that the effective decay rate of an impurity placed in the
middle of the atomic array scales like (Fig. 4)

Γeff = c2ΓIξ−1
fin a

e−Na/ξfin

N
, (18)

where c2 ∝ g2/(Γ0ΓI) is a dimensionless parameter and g
denotes the (approximately constant) coupling of the impurity
to the polariton modes. This expression for the decay rate
can be understood as the rate at which virtual polaritons that
dress the impurity decay into the surrounding vacuum. The
time scale of the effective decay is then determined by the
spatial distribution ψ(r) = exp(−r/ξfin)/r of the polaritons
and their average velocity v̄ ∝ 〈|p̂|〉 ∝ ξ−1

fin . The velocity
of the polaritons decreases with the detuning, since for small
detunings the impurity mainly couples to polariton modes with
low momenta. Importantly, Eq. (18) predicts an exponential
suppression of the decay rate with system size, which allows
for large quality factors Q = Jeff/Γeff even with moderate
system sizes, such as the one studied here, which is readily
achieved in experiment [32, 33, 42].

Atomic motion.—Atomic motion can severely impact the
coherence in ensemble-based quantum memories [43]. In ar-
rays inelastic photon scattering can be suppressed by moving
to the Lamb-Dicke regime, such that we neglect this effect. In
order to achieve addressability and tunability, we assume that
the impurity atoms are controlled with a Raman transition (see
Sec. V). Since Raman transitions are slow, the motion of the
atoms happens on a much faster time scale than the interactions
of the atoms. In this case, the atomic motion can be eliminiated
adiabatically [26]. One then finds additional terms in the decay
rate, proportional to η2ΓI , where η � 1 is the Lamb-Dicke
parameter. Thus, provided η is sufficiently small, one can still
reach high quality factors.

V. EXPERIMENTAL IMPLEMENTATION

In order to realize the above proposals, there are three main
steps to be taken, which we discuss in detail below. The first
is to realize an atomic array with a band gap, which, as shown
above, requires an optical lattice with near unity filling but
only mild subwavelength properties. The second step is to
add impurity atoms that sit in the middle of the faces of the
square lattice in x-y direction, as shown in Fig. 1. Finally, in a
third step, one needs some amount of control over the impurity
atoms in order to excite them and read them out.
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λ = 2a λ =
√

2a

a√
2

(a) (b)

a a

Figure 5. Configuration for loading impurities. For clarity we
show a two-dimensional version of the setup. The complete three-
dimensional case is obtained by applying a standing wave along the
z-direction. For trapping only the array atoms (gray dots) one would
use a lattice as shown in panel (a). The trapping potential is visualized
with colors going from red to black. Red represents the nodes of
the electromagnetic field, where the atoms are trapped in the case
of blue-detuned trapping lasers. (b) To provide a trapping potential
for the impurity atoms (red dots) as well, a second lattice (green) is
needed. This lattice has nodes at the positions of the array atoms and
furthermore at the desired impurity positions.

ΓI � Γ0 ΓI = Γ0

tΓI
0 100 200 300 400

0.0

0.5

1.0

po
pu
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tio
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Figure 6. Rabi flopping of two impurities in a distance of rij = a
placed in an array with lattice constant a = 0.4λ0. The impurity
energy is detuned from the edge of the upper band by ∆ = 0.2Γ0. The
array consists of 11× 11× 10 atoms. The ratio of impurity linewidth
and array linewidth is ΓI/Γ0 = 1 (straight lines) and ΓI/Γ0 = 10−3

(dashed lines). In the strong-coupling regime the amplitude of the
oscillation is smaller, as the overlap of the bound states with the initial
impurity excitation is reduced. The Rabi frequency of the oscillation
is Ω ≈ 0.045ΓI in the weak coupling regime and Ω ≈ 0.023ΓI for
strong coupling. The effective decay rates are Γeff ≈ 3 · 10−8ΓI and
Γeff ≈ 8 · 10−9ΓI , respectively.

A. Three-dimensional Mott insulator

Free-space optical lattices are a standard tool in ultracold
atomic experiments [44]. Mott insulators in three-dimensional
optical lattices with near unity filling have been realized with
both bosonic 87Rb [32] and fermionic 40K [45, 46]. Since then,
Mott insulators have been produced with a variety of species
(e.g., 133Cs [47], 6Li [48]) and are widely used for analogue

quantum simulation with ultracold gases [49–51].
To realize our proposal for an omnidirectional bandgap of

one polarization, the cycling transition of 87Rb or 133Cs are
ideal candidates as these species can readily be loaded into
optical lattices with near-unity filling. A photonic bandgap for
both polarizations requires instead a J = 0 to J = 1 transition
as is for example found in bosonic strontium. Among its
bosonic isotopes, 84Sr is a suitable choice to prepare a Mott
insulator state, as it can be brought into a BEC and has a
suitable scattering length of around 123a0 [52, 53]. To gap
both polarizations of light, one furthermore has to apply a
magnetic field in z-direction as well as a second laser field to
produce an AC Stark shift of every other layer. If ways are
found to prepare Mott insulators with 86Sr or 88Sr (for example
by mixing them [54]), they are also suitable candidates.

B. Loading impurities

To trap the impurities, we require a second lattice, which has
nodes at the positions of the array atoms and at the intended
positions of the impurity atoms as well. As illustrated in Fig. 5,
such a lattice can be generated using standing waves with
1/
√

2 the original wavelength, rotated by 45 degrees relative
to the standing waves of the first lattice [55].

If the impurity atoms and the array atoms belong to the same
species, one has to load them into a superposition of the two
lattices discussed above. The combined strength of the red
and green lattice has to be chosen such that a Mott insulator
is prepared on the red sites, and their difference, which sets
the lattice depth at the impurity positions, should only allow a
small density of impurities to be loaded probabilistically [56].

In case of strontium, we have to prepare a Mott insulator of
84Sr in the red lattice, while have a small density of 87Sr as
impurities in the additional green lattice sites. One option to
achieve this is to start by producing a degenerate gas mixture
of bosonic 84Sr and fermionic 87Sr [53]. One can then trap
84Sr with a small admixture of 87Sr in the red lattice. While
the contact interactions between 84Sr–84Sr and 87Sr–87Sr are
repulsive, with scattering lengths 123a0 and 96a0, respectively,
the 84Sr–87Sr interaction is attractive (−57a0). Thus, one can
arrange that energetically, single occupancy as well as double
occupancy with one 84Sr and one 87Sr are allowed, whereas
double or higher occupancy the same species (or in fact any
other mixtures) are disallowed. We note here that mixtures
have been loaded into the same optical lattice before [54, 57–
59]. Using state-dependent lattices, one can afterwards transfer
the impurity atoms to one of the adjacent green lattice sites.
Alternatively, one can excite the 87Sr atoms to the 3P0-state,
where they can be addressed specifically using a tuneout lat-
tice [60].

In fact, using tuneout lattices, one can do better. With the
87Sr atoms excited to the 3P0 state, one can employ tweezers
to deterministically control the position of the impurity atoms
or sort them after loading, similar to how arrays of Rydberg
atoms have been assembled [61]. This is a particularly exciting
avenue, as it would give access to fully controllable lattices of
impurities within the host medium.
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C. Impurity control

To control the coupling strength as well as the transition fre-
quency of the impurity atoms, we suggest to use a Λ-scheme [2,
62, 63]. An ideal two-level Raman scheme should involve the
cycling transition in Rb (|g1〉 = |5S1/2, F = 2,mF = 2〉 →
|e〉 = |5P1/2, F = 3,mF = 3〉). As discussed in Ref. [64],
this can be achieved using a two-photon transition from a sec-
ond hyperfine ground state (|g2〉 = |5S1/2, F = 1,mF = 1〉).
Examples for the intermediate state of this two-photon transi-
tion are |5S1/2, F = 2,mF = 2〉 or a 6P3/2 state. The for-
mer requires a microwave laser to couple the two hyper-
fine ground states and one to drive the cycling transition,
whereas the latter option requires a laser to drive the |g2〉-
6P3/2-transition and one to drive the |e〉-6P3/2-transition. In
the case of 87Sr one can use a 61P1 state to couple the cy-
cling transition (|g1〉 = |51S0, F = 9/2,mF = 9/2〉 → |e〉 =
|51P1, F = 11/2,mF = 11/2〉 ) to a second hyperfine ground
state (e.g. |g2〉 = |51S0, F = 9/2,mF = 7/2〉).

Either way, one must ensure that the Raman lasers do not
affect the array atoms. For the optical laser, a possibility is to
use the lasers generating the optical lattice of the array atoms,
which have nodes at the positions of the array atoms, but not the
impurity atoms, at the expense of limiting the allowed lattice
spacings a. This is not possible for the microwave tone, which
instead has to be far detuned, such that its effect on the array
atoms is negligible. More details are given in Appendix E.

Finally we note that as shown in Fig. 6, our proposal is not
restricted to weak coupling, such that the implementation of
a Λ-scheme is not mandatory. In the strong coupling regime,
the transition frequency could be tuned using AC Stark shifts
generated by the array lasers.

To excite impurities, we suggest to use two-photon transi-
tions. First, we consider the case where the array atoms and the
impurity atoms belong to the same species, using the example
of 87Rb. We assume that all atoms are initially prepared in
the same ground state (e.g. |g1〉 = |5S1/2, F = 2,mF = 2〉).
Using a 6P3/2 state one can then engineer transitions from |g1〉
to |g2〉 = |5S1/2, F = 1,mF = 1〉. Here, the lasers driving
the transition from |g1〉 to 6P3/2 have to be aligned such that
the resulting electric field has nodes at all array positions, such
that only impurity atoms are excited. This is possible for lattice
constants a > 210 nm. To reach smaller lattice constants one
should choose an intermediate state with a higher transition
frequency. An electric field with nodes at all array positions
can also be used to ensure that the frequencies of the |g1〉-
6P3/2-transitions of the impurity atoms and array atoms differ.
One can then shape the excitation laser, which does no longer
effect array atoms, to capture single sites such that selected
impurity atoms can be excited.

If the array atoms and the impurity atoms belong to differ-
ent species (84Sr and 87Sr) their transition frequencies differ
naturally, such that single-site addressing is more straightfor-
ward. Considering strontium we assume that all impurity atoms
are prepared in the state |g1〉 = |51S0, F = 9/2,mF = 9/2〉.
One can then transfer individual impurity atoms into |g2〉 =
|51S0, F = 9/2,mF = 7/2〉 for example via a 61P1-state.

The simplest way to read out the impurities is to drop the

array atoms and then image the remaining impurity atoms. A
less invasive technique would first transfer the excited impuri-
ties to a different level with a cycling transition, such that they
can be imaged without losing the array atoms.

VI. CONCLUSION

We have proposed to use three-dimensional atomic arrays
as nanophotonic metamaterials that can host bandgaps for
light. We have shown that inserting impurity atoms whose
transition frequencies lie in the band gap these setups can
be used to engineer effective spin Hamiltonians of the form
H =

∑
ij(Jij − Γij/2)σ+

i σ
−
j , where the effective decay is

exponentially suppressed [see Eq. (18)] and the effective in-
teractions Jij are given in Eq. (16). Using Λ and four-level
systems the XXZ-model or the transverse Ising model for spin
1/2 can also be realized [2, 3]. Furthermore, tuning interactions
between three- and four-level impurity atoms may allow one
to implement higher spin models. Our proposal uses only one
specific feature of the 3d bandstructure of this metamaterial,
namely the quadratic dispersion near the band edge. It is known
that many novel, non-Markovian effects occur in the presence
of 3d structured reservoirs [65], which is another exciting di-
rection to take this platform. While in this paper we focused on
simple cubic atomic arrays for engineering bandgaps, we ex-
pect that our approach can be extended to different geometries,
which should be explored in future research.

Our proposal allows the implementation of unitary dipole–
dipole interactions for systems in one-, two-, and even three-
dimensional systems and is compatible with current ultracold
atomic quantum simulators. Tunable spin–spin interactions
enable the exploration of exciting new physics, including novel
quantum spin phases [66–71], the competition between short-
and long-range interactions [72], or frustration [73]. Further-
more, the possibility to implement coulomb-like interactions
between localized states allows the study of electron glasses,
which are known to posses phenomena as slow relaxation and
aging [74].

In the future one might envision integrating of light-
mediated interactions with standard Bose- or Fermi-Hubbard
quantum simulators to access a rich family of Hamiltonians.
Atomic metamaterials with bandgaps such as the one stud-
ied here may also be used to shield or capture radiation in a
very specific frequency range and thus may find uses beyond
quantum simulation.
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Appendix A: Green’s function

Here, we present details about the Greens’ function used in
in Eq. (3) and its Fourier transform. In free space the Green’s
tensor is given by the dyadic Green’s function, evaluated at the
atomic transition frequency ω0 [34, 35]

Gll′(r) = − eik0r

4πk2
0r

3

[
(k2

0r
2 + ik0r − 1)δll′

+ (3− 3ik0r − k2
0r

2)rlrl
′

r2

]
+ δll′δ

(3)(r)
3k2

0
, (A1)

where k0 = ω0/c is the resonant wavevector and l, l′ = x, y, z
label the spatial directions. To calculate the atom–atom-
interactions in Eq. (5), we use the approximation

∑
R 6=0
Gll′(R)eikR ≈ ek

2
0a

2
ho/2

[
1
VL

∑
G

g′ll′(k + G)− G′ll′(0)
]
.

(A2)

Here, the quantum fluctuations aho of the atomic positions
were introduced to avoid divergencies [26, 31, 37] and VL
is the volume of the unit cell. The Fourier transform of the
regularized the Green’s function is given by

g′ll′(k) = 1
k2

0

k2
0 − klkl′
k2

0 − k2 e−k
2a2

ho/2 (A3)

and the regularized Green’s function at r = 0 is
G′ll′(0) = δll′G′(0), with

G′(0) = k0

6π

[
Erfi(k0a0/

√
2)− i

e(k0a0)2/2 − −1/2 + (k0a0)2√
π/2(k0a0)3

]
,

(A4)

where Erfi(x) = 2π−1/2 ∫ x
0 dy exp(y2) is the imaginary error

function.

Appendix B: Decay rate of array modes in finite systems

Here, we discuss the finite lifetimes of the array modes of
finite systems. To illustrate that the strongly decaying modes
are mainly localized at the edge of the array, we calculate the
average decay rate for each atomic position. Assuming that the
eigenmodes of the finite array are |ξ〉 with decay rates Γξ, the
average decay rate Γ̄i of the atom at position Ri is given by

Γ̄i =
∑
ξ

Γξ| 〈Ri|ξ〉 |2. (B1)

In Fig. 7 we show the average decay rate. The strongest average
decay one finds at the corners of the array. In the middle of
the array the average decay is the smallest. While the atoms
in the middle are surrounded by atoms that protect them from
decaying, the atoms at the edges can radiate into free space.
For different system sizes we compare the average decay rate

of the atoms at the corner with that of the atoms in the middle
in Fig. 7. While the average decay rate of atoms in the bulk
decreases with increasing N , the average decay rate of the
atoms at the edge increases. Similar effects have been observed
in [41].

Appendix C: Effective impurity decay in infinite systems

Here, we show that impurity atoms which are placed in
infinite arrays do not decay if their transition frequency lies in
the bandgap. Up to second order, the decay rate is described
by Eq. (15). Using the Poisson summation formula we write
the coupling gki and the dispersion ω(k) as

gki = 3πc
√

ΓIΓ0

ω0
√
N3VL

∑
G

d∗ · g′(k−G) · de−iG·ri (C1)

and

ω(k) = 3πc
√

ΓIΓ0

ω0
√
N3VL

∑
G

d∗ · g′(k−G) · d, (C2)

where the Fourier transform of the Greens function g′(k) is
given by Eq. (A3). As the integrand in Eq. (15) is real, only
the poles of the integrand are relevant for the decay rate. If the
energy of the impurity atoms is placed in the band gap, there is
only one pole at k = k0. Near k0, the G = 0-term in gki and
ω(k) diverges. At this point, for k ∈ Iε = [k0 − ε, k0 + ε] the
integral in Eq. (15) can be approximated by

V

∫
k∈Iε

d3k

(2π)3
|gki|2

ωI − ω(k) + i0+

≈ 3πΓI
2k3

0

∫
k∈Iε

d3k

(2π)3
|d∗ · g′(k) · d|2

−d∗ · g′(k) · d

= −3πΓI
2k3

0

∫
k∈Iε

d3k

(2π)3 d∗ · g′(k) · d. (C3)

Using the Sokhotski-Plemelj theorem one obtains∫
k∈Iε

d3k

(2π)3 d∗ · g′(k) · d

= 1
(2π)2

8
3

∫ k0+ε

k0−ε

k4

k2
0 − k2 + i0+

= −iπ 1
(2π)2

4
3k

3
0, (C4)

such that in total Γeff = 0.

Appendix D: Effective impurity interactions

To obtain an analytic understanding of the effective cou-
pling between impurity atoms, we use the effective mass ap-
proximation. The approximated dispersion takes the form
ω(k) = A(k2

x + k2
y) +Azk

2
z , where we have included the fact

that the curvature along kz differs from the curvature along kx
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Figure 7. Average decay rate for different atomic positions (a) and different system sizes (b). a) One finds that the average decay rate at the
edges is larger than Γ0 while the average decay in the bulk is suppressed. b) The average decay of an atom sitting in the corner increases with
N , while the average decay of an atom in the middel decreases.

and ky (see Fig. 1). Furthermore we assume that the coupling
gk is constant such that the effective interaction takes the form

Jij = a3g2
∫

d3k

(2π)3
1

∆ +A(k2
x + k2

y +Az/Ak2
z)e

ikrij .

(D1)

Substituting
√
Az/Akz with kz and

√
A/Azz with z one finds

Jij = a3g2
√

A

Az

∫
d3k

(2π)3
1

∆ +Ak2 e
ikrij

= a3g2

2π2

√
A

Az

∫ kc

0
dk

k

∆ +Ak2
sin(krij)
rij

= a3g2

4π2
√
AzA

∫ q′
c

0
dq′

q′

1 + q′2
eiq

′rij/ξ − e−iq′rij/ξ

irij

≈ a3g2

4π
√
AzA

e−rij/ξ

rij
, (D2)

where we introduced q = ξk with the correlation length ξ =√
A/∆ and furthermore assumed ξ → ∞, which is a valid

assumption for small detunings ∆.

Appendix E: Λ-schemes with 87Rb and 87Sr

As mentioned before, a Λ-scheme can be used to tune the
transition frequency and the coupling strength of the impurity
atoms. In particular, a Λ-scheme as shown in Fig. 8 gives rise
to an effective coupling of the form [2]

Hint = −
∑
k

gk
ΩL
2∆(a†k |g1〉 〈g2|+ h.c.). (E1)

Here, we discuss how this can be implemented with 87Rb
and 87Sr. The cycling transition of 87Rb with |g1〉 =
|5S1/2, F = 2,mF = 2〉 and |e〉 = |5P1/2, F = 3,mF = 3〉
can be mapped to a Λ-scheme using a level configuration as
presented in Fig. 8, where the second hyperfine ground state
could be choosen as |g2〉 = |S1/2, F = 1,mF = 1〉 [64]. To

achieve that the resonantly emitted photons have frequencies
lying in the bandgap the second laser has to satisfy

∆1 + ωL,2 ≈ ωarraye − ωarrayg , (E2)

which implies that the second laser is near-resonant to the
cycling transition of the array atoms. To avoid any couplings
between this laser and the array it is thus reasonable to use one
of the lasers generating the optical lattice of the array atoms.
In this case, the detuning ∆1 is determined by the detuning of
the trapping laser. Since ∆1 has to be of the order of GHz, the
detuning of the trapping laser is small and the lattice spacing a
is close to λ0/2.

To obtain setups with smaller lattice spacings one could
engineer effective couplings between |g2〉 and |e〉 using |ei〉 =
|6P1/2, F = 3,mF = 2〉 as an intermediate state (see also
Fig. 8). The lasers driving the |g2〉-|ei〉-transition can be
aligned such that the resulting electric field has nodes at all
array positions.

Another possibility is to use 84Sr for the array and
87Sr for the impurity atoms. 87Sr has a nuclear spin
of I = 9/2, which gives rise to hyperfine structure
splitting. One possible choice for implementing a
lambda scheme is |g1〉 = |51S0, F = 9/2,mF = 9/2〉,
|g2〉 = |51S0, F = 9/2,mF = 7/2〉, |e〉 =
|51P1, F = 11/2,mF = 11/2〉 and |ei〉 =
|61P1, F = 11/2,mF = 9/2〉. Since the transition fre-
quencies of 84Sr and 87Sr differ, the raman lasers are far
detuned from the transitions of the array atoms, such that
the couplings between these lasers and the array atoms are
negligible.

Some of the lasers discussed above do also couple to the
array atoms. Here, we discuss their effect using the example
of the microwave laser, which is used to couple two hyperfine
ground states in 87Rb. Up to first order, the perturbed ground
state |g1〉 takes the form

|g1〉 = |g1〉 − Ω1/∆1 |g2〉 (E3)

The probability that an atom initially in |g1〉 is excited to |g2〉
after switching on Ω1 is thus pg2 = (Ω1/∆1)2. Declaring the
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Figure 8. (a) A lambda scheme to tune the transition frequency and coupling strength of impurity atoms. (b) A two-photon lambda scheme
allows one to use the cycling transition [64]. It is equivalent to a Λ-scheme with ΩL = Ω1Ω2/∆1 (if ∆2 � ∆1). One can also couple |g2〉 and
|e〉 via an additional state |ei〉 (blue scheme).

atoms in |g2〉 as additional defects, this effect can be neglected
if the defect density due to the microwave laser pg2 = Ns/Ntot
is much smaller than the defect density due to finite filling. For
example, if Ndef/Ntot & 0.1 [23], we require (Ω1/∆1)2 �

0.1. The laser driving the cycling transition has to be much
stronger than the microwave tone to achieve sufficiently strong
effective Raman transition rates ΩL = Ω1Ω2/∆1.
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Creation of a Bose-condensed gas of 87 Rb by laser cooling,
Science 358, 1078 (2017).

[63] A. Urvoy, Z. Vendeiro, J. Ramette, A. Adiyatullin, and V. Vuletić,
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