Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Phase Coexistence and Structural Dynamics of Redox Metal Catalysts Revealed by Operando TEM

MPG-Autoren
/persons/resource/persons39194

Huang,  Xing
Scientific Center for Optical and Electron Microscopy, ETH Zurich ;
College of Chemistry, Fuzhou University ;
Department of Chemistry and Applied Biosciences, ETH Zurich;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons135780

Jones,  Travis
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21502

Farra,  Ramzi
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion;

/persons/resource/persons22243

Willinger,  Marc Georg
Scientific Center for Optical and Electron Microscopy, ETH Zurich ;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

adma.202101772.pdf
(Verlagsversion), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huang, X., Jones, T., Fedorov, A., Farra, R., Copéret, C., Schlögl, R., et al. (2021). Phase Coexistence and Structural Dynamics of Redox Metal Catalysts Revealed by Operando TEM. Advanced Materials, 33(31): 2101772. doi:10.1002/adma.202101772.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-B69C-B
Zusammenfassung
Metal catalysts play an important role in industrial redox reactions. Although extensively studied, the state of these catalysts under operating conditions is largely unknown, and assignments of active sites remain speculative. Herein, an operando transmission electron microscopy study is presented, which interrelates the structural dynamics of redox metal catalysts to their activity. Using hydrogen oxidation on copper as an elementary redox reaction, it is revealed how the interaction between metal and the surrounding gas phase induces complex structural transformations and drives the system from a thermodynamic equilibrium toward a state controlled by the chemical dynamics. Direct imaging combined with the simultaneous detection of catalytic activity provides unparalleled structure–activity insights that identify distinct mechanisms for water formation and reveal the means by which the system self-adjusts to changes of the gas-phase chemical potential. Density functional theory calculations show that surface phase transitions are driven by chemical dynamics even when the system is far from a thermodynamic phase boundary. In a bottom-up approach, the dynamic behavior observed here for an elementary reaction is finally extended to more relevant redox reactions and other metal catalysts, which underlines the importance of chemical dynamics for the formation and constant re-generation of transient active sites during catalysis.