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I. Symmetry and Stacking Analysis of Shift Vector in van der Waals materials and homostructures

In this section, we present the shift vector dependence on the symmetry and stacking arrangement in van der
Waals (vdW) materials and homostructures. We show that the shift vector is highly sensitive to the local atomic
configuration of the structure, leading to stacking and polarisation dependent SPC. In general, the real space shift of
photo-excited electrons can be described by a shift vector r(θ,k)1,2 as displayed in Eq. (1) of the main text:

r(θ,k) = Ac(k)−Av(k)−∇k arg[νθ(k)]. (S1)

For our symmetry and stacking analysis below, it will be useful to re-express this conventional form of the shift vector
in terms of a Wilson line3,4:

r(θ,k) = lim
q→0
∇q arg[W(θ,k,q)], (S2)

where θ is the electric field polarisation angle of the incident light with respect to the x, k is the wavevector measured
from the Γ point, and

W(θ,k,q) =〈uv(k)|uv(k + q)〉〈uv(k + q)|νθ|uc(k + q)〉〈uc(k + q)|uc(k)〉. (S3)

Here |uc(v)(k)〉 is the Bloch wavefunction of the conduction (valence) band. The velocity matrix νθ = ν̂ ·êθ is a function
of the polarisation direction êθ. For linearly polarised light, we have νθ = νx cos θ+ νy sin θ. We note that though the
Wilson lineW(θ,k,q) depends on the gauge choice of the wavefunction, the gradient of its phase∇q arg[W(θ,k,q)] and
the shift vector are gauge invariant. In the following, we examine the properties of 〈un(k)|um(q)〉 and 〈un(k)|νθ|um(q)〉
in different vdW materials and homostructures and the atomic configuration dependence of the shift vector and SPC.
In particular, we illustrate the configuration dependent SPC in Bernal stacked bilayer graphene (BLG), graphene on
hexagonal boron nitride (G/hBN), monolayer transition metal dicalcogenide (TMD) and 2H stacked bilayer TMD.

A. Shift Vector Configuration Dependence for Bernal Stacked BLG

Bernal stacked BLG possesses a three-fold rotational symmetry Cz3 and mirror symmetry about the armchair
direction, as shown in Fig. 1 in the main text (e.g., the y-axis in Fig. 1). Applying an interlayer electric potential
difference ∆ breaks the inversion symmetry of the system. As we see below, this gives rise to a nonzero SPC.

Two stacking configurations are possible in Bernal stacked BLG: AB stacking whereby the A site of the top layer
is directly on top of the B site of the bottom layer and BA stacking whereby the B site of the top layer is directly
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on top of the A site of the bottom layer. Here we describe AB/BA stacked BLG with the real space Hamiltonian
H(η)(∆, r), where η = AB,BA denotes the stacking configuration and ∆ denotes the interlayer potential difference. In
the following, we examine the symmetry constraints of the shift vector r(η)(∆, θ,k) and the stacking and configuration
dependence of the SPC.

1. Time Reversal Symmetry

BLG exhibits spin degeneracy and can be considered an effectively spinless system. In the presence of time reversal
symmetry T , the Bloch Hamiltonian H(η)(∆,k) = e−ik·rH(η)(∆, r)eik·r satisfies T H(η)(∆,k)T −1 = H(η)(∆,−k).

The Bloch wavefunction of band n, |u(η)
n (∆,k)〉 is defined such that H(η)(∆,k)|u(η)

n (∆,k)〉 = ε
(η)
n (∆,k)|u(η)

n (∆,k)〉,
where ε

(η)
n (∆,k) is the energy eigenvalue of band n. By considering T H(η)(∆,k)|u(η)

n (∆,k)〉, we find that the Bloch
wavefunction transforms as:

ε(η)
n (∆,k) = ε(η)

n (∆,−k), T |u(η)
n (∆,k)〉 = |u(η)

n (∆,−k)〉∗. (S4)

Thus, for any wavevectors k1 and k2 measured from the centre of the Brillouin zone, we have

〈u(η)
m (∆,k1)|u(η)

n (∆,k2)〉 = 〈u(η)
m (∆,k1)|T −1T |u(η)

n (∆,k2)〉 = 〈u(η)
m (∆,−k1)|u(η)

n (∆,−k2)〉∗. (S5)

The velocity operator is odd under time reversal: T ν̂(η)(∆)T −1 = −ν̂(η)(∆). Thus, the velocity matrix element
satisfies

〈u(η)
m (∆,k1)|ν(η)

θ (∆)|u(η)
n (∆,k2)〉 = 〈u(η)

m (∆,k1)|T −1T ν(η)
θ (∆)T −1T |u(η)

n (∆,k2)〉

= −〈u(η)
m (∆,−k1)|ν(η)

θ (∆)|u(η)
n (∆,−k2)〉∗. (S6)

Similarly, we obtain the symmetry constraint for the Wilson line:

W(η)(∆, θ,k,q) = −[W(η)(∆, θ,−k,−q)]∗, arg[W(η)(∆, θ,k,q)] = − arg[W(η)(∆, θ,−k,−q)] + π. (S7)

As a result, the shift vector in a time-reversal invariant system is even in k-space:

r(η)(∆, θ,k) = r(η)(∆, θ,−k). (S8)

2. Inversion Operation and Interlayer Potential Dependence

In AB/BA stacked bilayer BLG, the interlayer potential difference ∆ breaks the inversion symmetry. Here we show
that breaking of the inversion symmetry is necessary to induce a finite SPC. Furthermore, switching the direction of
the interlayer potential flips the sign of the shift vector – as a result, SPC flows in the opposite direction.

To see this, we observe that upon spatial inversion, the atomic configuration of the BLG remains unchanged but
the interlayer potential difference ∆ flips sign. The real-space Hamiltonian satisfies IH(η)(∆, r)I−1 = H(η)(∆,−r) =
H(η)(−∆, r). Thus, under inversion, the Bloch Hamiltonian transforms as IH(η)(∆,k)I−1 = H(η)(−∆,−k). By

considering IH(η)(k)|u(η)
n (k)〉, one arrives at

ε(η)
n (∆,k) = ε(η)

n (−∆,−k), I|u(η)
n (∆,k)〉 = |u(η)

n (−∆,−k)〉 (S9)

This gives

〈u(η)
m (∆,k1)|u(η)

n (∆,k2)〉 = 〈u(η)
m (∆,k1)|I−1I|u(η)

n (∆,k2)〉 = 〈u(η)
m (−∆,−k1)|u(η)

n (−∆,−k2)〉. (S10)

Upon inversion, velocity operator transforms as Iν̂(η)(∆)I−1 = −ν̂(η)(−∆). Thus for electric field polarisation θ,
we have

〈u(η)
m (∆,k1)|νθ(∆)|u(η)

n (∆,k2)〉 = 〈u(η)
m (∆,k1)|I−1Iν(η)

θ (∆)I−1I|u(η)
n (∆,k2)〉

= −〈u(η)
m (−∆,−k1)|ν(η)

θ (−∆)|u(η)
n (−∆,−k2)〉. (S11)
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Using these relations above, the Wilson line satisfies

W(η)(∆, θ,k,q) = −W(η)(−∆, θ,−k,−q), arg
[
W(η)(∆, θ,k,q)

]
= arg

[
W(η)(−∆, θ,−k,−q)

]
+ π, (S12)

and the shift vector satisfies

r(η)(∆, θ,k) = −r(η)(−∆, θ,−k). (S13)

Importantly, when ∆ = 0, the above relation demands that the shift vector is odd in the k-space. Since ρ(η)(∆,k)

and |ν(η)
θ (∆)|2 are both even, upon integrating the weighted shift vector in the Brillouin zone [see Eq. (2) of the main

text], we obtain the well-known vanishing of SPC in an inversion symmetric system. Thus, inversion symmetry has
to be broken to obtain finite SPC.

We note that by further applying time reversal symmetry (see above section) where r(η) is even in the k-space
[Eq. (S8)], we arrive at the dependence of shift vector on the sign of interlayer potential:

r(η)(∆, θ,k) = −r(η)(−∆, θ,k). (S14)

The shift vector switches sign when the interlayer potential difference is reversed. We see in Fig. 1b in the main text
that this is manifested in opposite SPC for ∆→ −∆.

3. Mirror Symmetry

Bernal stacked BLG exhibits mirror symmetry about the armchair directions. In the coordinate system shown in
Fig. 1 in the main text, one of the mirror reflection axis is along the y direction; the system is invariant under the
mirror operation My : (x, y, z) → (−x, y, z). The real space Hamiltonian obeys MyH(η)(∆, r)M−1

y = H(η)(∆, r).

The Bloch Hamiltonian thus satisfies MyH
(η)(∆,k)M−1

y = H(η)(∆,Myk) and we have

ε(η)
n (∆,k) = ε(η)

n (∆,Myk), My|u(η)
n (∆,k) = |u(η)

n (∆,Myk)〉. (S15)

The above relation gives

〈u(η)
m (∆,k1)|u(η)

n (∆,k2)〉 = 〈u(η)
m (∆,k1)|M−1

y My|u(η)
n (∆,k2)〉 = 〈u(η)

m (∆,Myk1)|u(η)
n (∆,Myk2)〉. (S16)

Under My, the x component of the velocity operator switches sign Myν
(η)
x (∆)M−1

y = −ν(η)
x (∆) while the y

component remains invariant Myν
(η)
y (∆)M−1

y = ν
(η)
y (∆), thus we have Myν

(η)
θ (∆)M−1

y = ν
(η)
π−θ(∆). This gives

〈u(η)
m (∆,k1)|ν(η)

θ (∆)|u(η)
n (∆,k2)〉 = 〈u(η)

m (∆,k1)|M−1
y Myν

(η)
θ (∆)M−1

y My|u(η)
n (∆,k2)〉

= 〈u(η)
m (∆,Myk1)|ν(η)

π−θ(∆)|u(η)
n (∆,Myk2)〉. (S17)

Using these relations above, the Wilson line satisfies

W(η)(∆, θ,k,q) =W(η)(∆, π − θ,Myk,Myq), arg[W(η)(∆, θ,k,q)] = arg[W(η)(∆, π − θ,Myk,Myq)], (S18)

and shift vector thus satisfies

r(η)
x (∆, θ,k) = −r(η)

x (∆, π − θ,Myk), r(η)
y (∆, θ,k) = r(η)

y (∆, π − θ,Myk). (S19)

We note, parenthetically, for a given ac electric field (light irradiation), the polarisations along ê and −ê directions

are equivalent and yield the same shift vector. To see this, we observe that ν
(η)
θ (∆) = −ν(η)

θ+π(∆) and

W(η)(∆, θ,k,q) = −W(η)(∆, θ + π,k,q), arg[W(η)(∆, θ,k,q)] = arg[W(η)(∆, θ + π,k,q)] + π. (S20)

Since the shift vector is the gradient of the argument of the Wilson line, an additional π phase shift forW(η)(∆, θ,k,q)
does not affect the shift vector

r(η)(∆, θ,k) = r(η)(∆, θ + π,k). (S21)
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Thus, Eq. (S19) can be rewritten as

r(η)
x (∆, θ,k) = −r(η)

x (∆,−θ,Myk), r(η)
y (∆, θ,k) = r(η)

y (∆,−θ,Myk). (S22)

Furthermore, combining Eq. (S8) and (S22), the composition of time reversal T and mirror symmetry My yields

r(η)
x (∆, θ,k) = −r(η)

x (∆,−θ, kx,−ky), r(η)
y (∆, θ,k) = r(η)

y (∆,−θ, kx,−ky). (S23)

Eq. (S23) gives the symmetry constraints for the shift vector, which is manifested as the constraints for the direction of
the SPC when the electric field is polarised along high-symmetry axes. For example, when the electric field polarisation
is normal to the mirror plane (i..e θ = 0, π), the shift vector satisfies

r(η)
x (∆, 0,k) = −r(η)

x (∆, 0, kx,−ky), r(η)
y (∆, 0,k) = r(η)

y (∆, 0, kx,−ky). (S24)

Since both ρ(k) and |ν(η)
θ (∆)|2 are even under ky → −ky, the symmetry constraint in Eq. (S24) ensures that upon

integration in the k-space [Eq. (2) in the main text], the x component of the SPC vanishes while the y component is
nonzero. Thus, for linear polarisation normal to the mirror plane, SPC is completely transverse.

Similarly, when the electric field is polarised along the mirror reflection axis (i.e. θ = ±π/2), Eq. (S23) reduces to

r(η)
x (∆, π/2,k) = −r(η)

x (∆, π/2, kx,−ky), r(η)
y (∆, π/2,k) = r(η)

y (∆, π/2, kx,−ky). (S25)

Since r
(η)
x (∆, π/2,k) is odd in ky while r

(η)
y (∆, π/2,k) is even, Eq. (S25) implies that SPC is along the y direction.

Thus, for electric field polarisation parallel to the mirror plane, we obtain completely longitudinal SPC.

4. In-plane Three-fold Rotational Symmetry

The BLG lattice is invariant under in-plane three-fold rotational symmetry Cz3 such that Cz3H(η)(∆, r)(Cz3 )−1 =
H(η)(∆, r). The Bloch Hamiltonian thus obeys the relation Cz3H

(η)(∆,k)(Cz3 )−1 = H(η)(∆, Cz3k). Here, Cz3k is
defined by the rotation matrix

Cz3

(
kx
ky

)
=

(
cosϑ sinϑ
− sinϑ cosϑ

)(
kx
ky

)
, (S26)

where ϑ = 2π/3.
The Cz3 amdMy symmetries imply that the system preserves reflection symmetry about other two axes with angle

±π/6 with respect from the x-axis. Thus, for electric fields polarised parallel or normal to those two high-symmetry
axes, the shift vector also acts as a pseudovector.

5. Stacking Dependence

Now we show that the shift vector switches sign when the stacking configuration is switched from AB to BA.
AB/BA stacked BLG are related by flipping the sample about an axes along the armchair direction. For concreteness,
we concentrate on the y-axis, so that this flip can be denoted Cy2 : (x, y, z) → (−x, y,−z) as the rotation about
y-axis by π. We note that Cy2 not only flips the sample, but also interchanges the layer indices. As a result, the
interlayer potential between the bottom and the top layer ∆ switches sign. The real-space Hamiltonians of AB and
BA stacked BLG satisfy Cy2H(AB)(∆, r)(Cy2 )−1 = H(AB)(∆, Cy2 r) = H(BA)(−∆, r). The Bloch Hamiltonians are thus
related by Cy2H

(AB)(∆,k)(Cy2 )−1 = H(BA)(−∆, Cy2k). Here, we consider BLG as a 2D system with k = (kx, ky)
and Cy2 (kx, ky) = (−kx, ky) =My(kx, ky). We note that the dispersion is independent of stacking configuration and

interlayer potential direction ε
(AB)
n (∆,k) = ε

(BA)
n (−∆,k) and Cy2 satisfies (Cy2 )−1 = Cy2 = (Cy2 )†. It follows that the

wavefunctions are related by

ε(AB)
n (∆,k) = ε(BA)

n (−∆, Cy2k), Cy2 |u(AB)
n (∆,k) = |u(BA)

n (−∆, Cy2k)〉. (S27)

Thus we have

〈u(AB)
m (∆,k1)|u(AB)

n (∆,k2)〉 = 〈u(AB)
m (∆,k1)|(Cy2 )−1Cy2 |u(AB)

n (∆,k2)〉 = 〈u(BA)
m (−∆, Cy2k1)|u(BA)

n (−∆, Cy2k2)〉.
(S28)
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The velocity operators transform as Cy2 ν
(AB)
x (∆)(Cy2 )−1 = −ν(BA)

x (−∆) and Cy2 ν
(AB)
y (∆)(Cy2 )−1 = ν

(BA)
y (−∆).

Thus, for a linear polarisation angle θ, we have Cy2 ν
(AB)
θ (∆)(Cy2 )−1 = ν

(BA)
π−θ (−∆). This gives

〈u(AB)
m (∆,k1)|ν(AB)

θ (∆)|u(AB)
n (∆,k2)〉 = 〈u(AB)

m (∆,k1)|(Cy2 )−1Cy2 ν
(AB)
θ (∆)(Cy2 )−1Cy2 |u(AB)

n (∆,k2)〉

= 〈u(BA)
m (−∆, Cy2k1)|ν(BA)

π−θ (−∆)|u(BA)
n (−∆, Cy2k2)〉. (S29)

We can perform the similar analysis on the Wilson line and the shift vector:

W(AB)(∆, θ,k,q) =W(BA)(−∆, π − θ, Cy2k, C
y
2q), arg[W(AB)(∆, θ,k,q)] = arg[W(BA)(−∆, π − θ, Cy2k, C

y
2q)],

(S30)
The shift vector can be calculated by taking the derivatives of arg[W(η)] in k-space. Noting the identity in Eq. (S21)
that the shift vector is invariant for θ → θ + π, we arrive at

r(AB)
x (∆, θ,k) = −r(BA)

x (−∆,−θ, Cy2k), r(AB)
y (∆, θ,k) = r(BA)

y (−∆,−θ, Cy2k). (S31)

Noting that MyC
y
2k = k, and combining Eq. (S22) and (S31), we have

r(AB)(∆, θ,k) = r(BA)(−∆, θ,k). (S32)

Finally, recalling that the shift vector switches sign for ∆→ −∆ [Eq. (S14)], thus we have

r(AB)(∆, θ,k) = −r(BA)(∆, θ,k). (S33)

Since the dispersion and |ν(η)
θ |2 are stacking independent, it follows that the shift currents flow in opposite directions

in the two stacking configurations, as discussed in the main text.

B. Shift Vector Configuration Dependence for Staggered Sublattice Potential, e.g. G/hBN

We now examine the symmetry constraints of the shift vector in a gapped Dirac material with staggered sublattice
potential difference described by the Bloch Hamiltonian H(δ,k), where δ is the sublattice potential difference and
k is the wavevector measured from the Γ point. In this section, we focus on the spinless fermions, which can be
realised in a commensurate stacked graphene-hexagonal boron nitride (G/hBN) system, where the sign of δ depends
on the alignment between the graphene and hBN layers. Such commensurate stacking have been achieved recently in
G/hBN as evidenced by substantial gap opening at the charge neutrality point. For simplicity, we will consider the
case whereby the carbon atoms in graphene are directly on top of the boron and nitrogen atoms in hBN (e.g., found
within a single commensurate domain). In-plane rotation of the hBN layer by π (keeping the graphene layer fixed)
leads to the interchange of the electric potential at the A and B site of graphene, thus reversing the sign of δ. In the
following, we will show that the shift vector and SPC depend on the atomic alignment and light polarisation. For
consistency of notation for the various vdW materials and systems considered here, we will fix the orientation so that
one of the armchair directions is aligned along the y-direction (similar to that discussed for BLG above).

1. Time Reversal Symmetry

The system is invariant under time reversal operation: T H(δ,k)T −1 = H(δ,−k). Thus the dispersion and the
Bloch wavefunctions transform under T as

εn(δ,k) = εn(δ,−k), T |un(δ,k)〉 = |un(δ,−k)〉∗. (S34)

The above gives us

〈um(δ,k1)|un(δ,k2)〉 = 〈um(δ,k1)|T −1T |un(δ,k2)〉 = 〈um(δ,−k1)|un(δ,−k2)〉∗. (S35)

The velocity operator transforms as T ν̂(δ)T −1 = −ν̂(δ). Thus, for a given polarisation angle θ, the velocity matrix
element satisfies

〈um(δ,k1)|νθ(δ)|un(δ,k2)〉 = 〈um(δ,k1)|T −1T [νx(δ) cos θ + νy(δ) sin θ]T −1T |un(δ,k2)〉
= −〈um(δ,−k1)|νθ(δ)|un(δ,−k2)〉∗. (S36)
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We obtain the symmetry constraint for the Wilson line:

W(δ, θ,k,q) = −[W(δ, θ,−k,−q)]∗, arg[W(δ, θ,k,q)] = − arg[W(δ, θ,−k,−q)] + π. (S37)

As a result, the shift vector in a time-reversal invariant system is even in k-space:

r(δ, θ,k) = r(δ, θ,−k). (S38)

2. Inversion

For δ 6= 0, the system breaks inversion symmetry. Under inversion operation, the real space Hamiltonian satisfies
IH(δ, r)I−1 = H(δ,−r) = H(−δ, r), i.e. inversion switches the staggered potential. As a result, the Bloch Hamiltonian
transforms as IH(δ,k)I−1 = H(−δ,−k), and the dispersion and Bloch wavefunction satisfy:

εn(δ,k) = εn(−δ,−k), I|un(δ,k)〉 = |un(−δ,−k)〉. (S39)

Thus we have

〈um(δ,k1)|un(δ,k2)〉 = 〈um(δ,k1)|I−1I|un(δ,k2)〉 = 〈um(−δ,−k1)|un(−δ,−k2)〉. (S40)

On the other hand, the velocity operator transforms as Iν̂(δ)I−1 = −ν̂(−δ). This yields

〈um(δ,k1)|νθ(δ)|un(δ,k2)〉 = 〈um(δ,k1)|I−1Iνθ(δ)I−1I|un(δ,k2)〉
= −〈um(−δ,−k1)|νθ(−δ)|un(−δ,−k2)〉. (S41)

We obtain the symmetry constraint for the Wilson line:

W(δ, θ,k,q) = −W(−δ, θ,−k,−q), arg[W(δ, θ,k,q)] = arg[W(−δ, θ,−k,−q)] + π. (S42)

The shift vector obeys the following relation:

r(δ, θ,k) = −r(−δ, θ,−k). (S43)

Furthermore, we note that under time reversal symmetry, the shift vector is even in k-space. Eq. (S38) and (S43)
demand that the shift vector switches sign when the sublattice potential difference is switched:

r(δ, θ,k) = −r(−δ, θ,k). (S44)

As a result, the direction of SPC is expected to be reversed when the sublattice potential difference is reversed. As
we discussed, in G/hBN, this can be achieved by different alignment of hBN below the graphene layer, for example,
by in-plane rotation of hBN by π. Thus SPC serves a a tool to determine the stacking alignment in G/hBN.

3. Mirror Symmetry

For consistency of notation for the various vdW materials and systems considered here, we will fix the orientation so
that one of the armchair directions is aligned along the y-direction (similar to that discussed for BLG above). Mirror
symmetry about the y-axis ensures: MyH(δ, r)M−1

y = H(δ, r) and MyH(δ,k)M−1
y = H(δ,Myk). Thus we have

εn(δ,k) = εn(δ,Myk), My|un(δ,k)〉 = |un(δ,Myk)〉, (S45)

and

〈um(δ,k1)|un(δ,k2)〉 = 〈um(δ,k1)|M−1
y My|un(δ,k2)〉 = 〈um(δ,Myk1)|un(δ,Myk2)〉. (S46)

The velocity operators transform as Myνx(δ)M−1
y = −νx(δ) and Myνy(δ)M−1

y = νy(δ), thus we have

Myν
(η)
θ M−1

y = νπ−θ(δ). This gives

〈um(δ,k1)|νθ(δ)|un(δ,k2)〉 = 〈um(δ,k1)|M−1
y Myνθ(δ)M−1

y My|un(δ,k2)〉
= 〈um(δ,Myk1)|νπ−θ(δ)|un(δ,Myk2)〉. (S47)
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The Wilson line satisfies

W(δ, θ,k,q) =W(δ, π − θ,Myk,Myq), arg[W(δ, θ,k,q)] = arg[W(δ, π − θ,Myk,Myq)], (S48)

and shift vector thus satisfies

rx(δ, θ,k) = −rx(δ, π − θ,Myk), ry(δ, θ,k) = ry(δ, π − θ,Myk). (S49)

We note that the electric field polarisation along êθ is equivalent to the polarisation along −êθ = êπ+θ. Thus
Eq. (S49) can be rewritten as

rx(δ, θ,k) = −rx(δ,−θ,Myk), ry(δ, θ,k) = ry(δ,−θ,Myk). (S50)

Additionally, following the similar analysis in Eq. (S23), we combine the constraints of time reversal symmetry
[Eq. (S38)] and mirror symmetry [Eq. (S50)] to obtain

rx(δ, θ,k) = −rx(δ,−θ, kx,−ky), ry(δ, θ,k) = ry(δ,−θ, kx,−ky). (S51)

Similar with the scenario of Bernal stacked BLG, the shift vector in Eq. (S51) also exhibits pseudovector property
when the electric field polarisation is either perpendicular to (θ = 0, π) or parallel with (θ = ±π/2) with mirror
plane (y-axis). At these polarisations, rx(δ, θ,k) flips sign for ky → −ky while ry(δ, θ,k) remains invariant. Thus,
integration over the k-space in Eq. (2) in the main text leads to transverse (longitudinal) SPC for linear polarisations
perpendicular to (parallel with) the mirror reflection axis.

Furthermore, the material under consideration is also invariant under three-fold in-plane rotational symmetry Cz3
like BLG. Thus the system possesses three mirror reflection axes with angle π/2,±π/6. Similar argument can be
applied to the shift vector and shift current after rotating the system by 2π/3 about the z axis, and we expect
transverse (longitudinal) SPC for polarisations perpendicular to (parallel with) any of the mirror reflection axes.

C. Shift Vector Configuration Dependence for Monolayer TMDs

Now we consider the configuration dependence of shift vector in monolayer TMDs, which possess hexagonal lattice
structure with A and B lattice site hosting different atoms. Thus they have sublattice potential difference δ. Further,
large Ising spin-orbit coupling yields spin-valley locked states. In the following, we show that the spin SPC in these
materials depends on the δ and the incident light polarisation.

1. Time Reversal Symmetry

Monolayer TMDs are invariant under time reversal symmetry T H(δ,k)T −1 = H(δ,−k) and the Bloch wavefunction
projected to each spin state transforms as

εsn(δ,k) = ε−sn (δ,−k), T |usn(δ,k)〉 = |u−sn (δ,−k)〉∗, (S52)

where s =↑, ↓ denotes the z component of the electron spin (arising from the large Ising spin-orbit coupling in the
valleys of TMDs). The above wavefunction transformation yields

〈us1m(δ,k1)|us2n (δ,k2)〉 = 〈us1m(δ,k1)|T −1T |us2n (δ,k2)〉 = 〈u−s1m (δ,−k1)|u−s2n (δ,−k2)〉∗. (S53)

The velocity operator transforms as T ν̂(δ)T −1 = −ν̂(δ). Thus, for a given polarisation angle θ, the velocity matrix
element satisfies

〈us1m(δ,k1)|νθ(δ)|us2n (δ,k2)〉 = 〈us1m(δ,k1)|T −1T νθ(δ)T −1T |us2n (δ,k2)〉
= −〈u−s1m (δ,−k1)|νθ(δ)|u−s2n (δ,−k2)〉∗. (S54)

We obtain the symmetry constraint for the Wilson line:

Ws(δ, θ,k,q) = −[W−s(δ, θ,−k,−q)]∗, arg[Ws(δ, θ,k,q)] = − arg[W−s(δ, θ,−k,−q)] + π. (S55)
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As a result, the spin-dependent shift vector in a time-reversal invariant system satisfies

rs(δ, θ,k) = r−s(δ, θ,−k). (S56)

Due to the large (Ising) spin-valley locking in TMDs for photon energies close to the bandgap, we anticipate that this
spin SPC is locked to each of the valleys. However, the spin-resolved shift vectors have the same sign [see Eq. (S56),
albeit at opposite k]. Since the square of the velocity matrix element is even under k→ −k and s→ −s [Eq. (S54)],
the weighted shift vector satisfies Rs(δ, θ,k) = R−s(δ, θ,−k). Thus, upon integration over the k-space, both ↑, ↓ spin
SPC move in the same direction yielding a charge current.

2. Inversion

Due to the sublattice potential difference δ, monolayer TMDs also break inversion symmetry. Under spatial inversion
operation, we have IH(δ, r)I−1 = H(−δ, r) and IH(δ,k)I−1 = H(−δ,−k). On the other hand, spin is invariant under
inversion. Thus the spin resolved Bloch wavefunction satisfies

εsn(δ,k) = εsn(−δ,−k), I|usn(δ,k)〉 = |usn(−δ,−k)〉. (S57)

Thus we have

〈us1m(δ,k1)|us2n (δ,k2)〉 = 〈us1m(δ,k1)|I−1I|us2n (δ,k2)〉 = 〈us1m(−δ,−k1)|us2n (−δ,−k2)〉. (S58)

The velocity operator transforms as Iν̂(δ)I−1 = −ν̂(−δ). This yields

〈us1m(δ,k1)|νθ(δ)|us2n (δ,k2)〉 = 〈us1m(δ,k1)|I−1Iνθ(δ)I−1I|us2n (δ,k2)〉
= −〈us1m(−δ,−k1)|νθ(−δ)|us2n (−δ,−k2)〉. (S59)

We obtain the symmetry constraint for the Wilson line:

Ws(δ, θ,k,q) = −Ws(−δ, θ,−k,−q), arg[Ws(δ, θ,k,q)] = arg[Ws(−δ, θ,−k,−q)] + π. (S60)

As a result, the shift vector obeys the following relation:

rs(δ, θ,k) = −rs(−δ, θ,−k). (S61)

The spin SPC can be obtained by integrating the weighted shift vector over the entire k-space [Eq. (2) in the main
text], thus Eq. (S61) requires that the spin resolved SPC reverses sign for δ → −δ. Furthermore, the charge current
can be calculated by summing over the spin SPC and also flips sign for δ → −δ.

3. Mirror Symmetry

Monolayer TMD also exhibits mirror symmetry about the y-axis: MyH(δ, r)M−1
y = H(δ, r) andMyH(δ,k)M−1

y =
H(δ,Myk). On the other hand, spin transforms in the same way as angular momentum upon reflection. In 3D, for
a yz mirror plane, the z component of the spin flips sign under My : (x, y, z)→ (−x, y,−z). Thus the wavefunction
projected to each spin satisfies

εsn(δ,k) = ε−sn (δ,Myk), My|usn(δ,k)〉 = |u−sn (δ,Myk)〉, (S62)

and

〈us1m(δ,k1)|us2n (δ,k2)〉 = 〈us1m(δ,k1)|M−1
y My|us2n (δ,k2)〉 = 〈u−s1m (δ,Myk1)|u−s2n (δ,Myk2)〉. (S63)

The velocity operators transform as Myνx(δ)M−1
y = −νx(δ) and Myνy(δ)M−1

y = νy(δ), thus we have
Myνθ(δ)M−1

y = νπ−θ(δ). This gives

〈us1m(δ,k1)|νθ(δ)|us2n (δ,k2)〉 = 〈us1m(δ,k1)|M−1
y Myνθ(δ)M−1

y My|us2n (δ,k2)〉
= 〈u−s1m (δ,Myk1)|νπ−θ(δ)|u−s2n (δ,Myk2)〉. (S64)
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The spin-dependent Wilson line satisfies

Ws(δ, θ,k,q) =W−s(δ, π − θ,Myk,Myq), arg[Ws(δ, θ,k,q)] = arg[W−s(δ, π − θ,Myk,Myq)], (S65)

and shift vector obeys

rsx(δ, θ,k) = −r−sx (δ, π − θ,Myk), rsy(δ, θ,k) = r−sy (δ, π − θ,Myk). (S66)

Since the polarisation directions θ and θ + π are equivalent, Eq. (S66) as

rsx(δ, θ,k) = −r−sx (δ,−θ,Myk), rsy(δ, θ,k) = r−sy (δ,−θ,Myk). (S67)

Combining with Eq. (S56), we obtain the shift vector symmetry constraint for each spin:

rsx(δ, θ,k) = −rsx(δ,−θ, kx,−ky), rsy(δ, θ,k) = rsy(δ,−θ, kx,−ky). (S68)

Similar to the charge current in BLG and G/hBN, the spin SPC is sensitive to the linear polarisation of light.
For electric field polarised perpendicular to (θ = 0, π) or parallel with (θ = ±π/2) the mirror axis, rsx(δ, θ,k) flips
sign for ky → −ky while rsy(δ, θ,k) is invariant. This leads to transverse (longitudinal) spin SPC for polarisation
perpendicular to (parallel with) the mirror axis. Since Eq. (S68) is valid for both spins, we anticipate that the charge
SPC also exhibits the same polarisation dependence, i.e. the charge SPC is transverse (longitudinal) for electric field
polarisation normal to (parallel with) the mirror plane.

Furthermore, monolayer TMDs are also invariant under Cz3 and possesses three mirror reflection axes that are
separated by ±2π/3 apart from each other. Thus a similar argument on the polarisation dependent spin and charge
SPC can be extended to other mirror reflection axes after rotating by ±2π/3 about the z-axis.

D. Shift Vector Configuration Dependence for 2H Stacked Bilayer TMDs

SPC in bilayer TMDs exhibits stacking and polarisation dependence as well. Here we focus on the most common
2H stacking configuration for bilayer TMDs, whereby one of the layers is rotated by π about the z-axis and then
directly stacked on top of the other. In this stacking configuration, the A (B) site of the top layer is directly on top
of the B (A) site of the bottom layer. We describe the system with a real space Hamiltonian H(∆, δ, r), where ∆ is
the interlayer potential difference provided by an external out-of-plane electric field, and δ is the sublattice potential
difference between A and B sites. In the absence of interlayer potential difference, the material is centrosymmetric
and the SPC vanishes. Here we consider the symmetry constraints of the spin dependent shift vector and SPC when
∆ 6= 0.

1. Time Reversal Symmetry

Time reversal symmetry demands T H(∆, δ,k)T −1 = H(∆, δ,−k). Thus the wavefunction projected to each spin
satisfies

εsn(∆, δ,k) = ε−sn (∆, δ,−k), T |usn(∆, δ,k)〉 = |u−sn (∆, δ,−k)〉∗, (S69)

and

〈us1m(∆, δ,k1)|us2n (∆, δ,k2)〉 = 〈us1m(∆, δ,k1)|T −1T |us2n (∆, δ,k2)〉 = 〈u−s1m (∆, δ,−k1)|u−s2n (∆, δ,−k2)〉∗. (S70)

Here, s =↑, ↓ denotes the the electron spin along the z-axis.
The velocity operator transforms as T ν̂(∆, δ)T −1 = −ν̂(∆, δ). Thus, for a given polarisation angle θ, the velocity

matrix element satisfies

〈us1m(∆, δ,k1)|νθ(∆, δ)|us2n (∆, δ,k2)〉 = 〈us1m(∆, δ,k1)|T −1T νθ(∆, δ)T −1T |us2n (∆, δ,k2)〉
= −〈u−s1m (∆, δ,−k1)|νθ(∆, δ)|u−s2n (∆, δ,−k2)〉∗. (S71)

We obtain the symmetry constraint for the Wilson line:

Ws(∆, δ, θ,k,q) = −[W−s(∆, δ, θ,−k,−q)]∗, arg[Ws(∆, δ, θ,k,q)] = − arg[W−s(∆, δ, θ,−k,−q)] + π. (S72)
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As a result, the spin-dependent shift vector satisfies

rs(∆, δ, θ,k) = r−s(∆, δ, θ,−k). (S73)

Similar with the scenario in a monolayer TMD as discussed in the previous subsection, Eq. (S73) leads to spin SPC
that is locked to each valley. We also note that the (weighted) shift vectors for opposite spins have the same sign at
opposite k. Thus the spin currents for s =↑, ↓ flow in the same direction, leading to a net charge SPC.

2. Inversion

Under spatial inversion, the atomic configuration of the 2H stacked bilayer TMD remains invariant, while the
interlayer potential flips sign: IH(∆, δ, r)I−1 = H(−∆, δ, r). The Bloch Hamiltonian thus satisfies IH(∆, δ,k)I−1 =
H(−∆, δ,−k). This gives

εsn(∆, δ,k) = εsn(−∆, δ,−k), I|usn(∆, δ,k)〉 = |usn(−∆, δ,−k)〉, (S74)

and

〈us1m(∆, δ,k1)|us2n (∆, δ,k2)〉 = 〈us1m(∆, δ,k1)|I−1I|us2n (∆, δ,k2)〉 = 〈us1m(−∆, δ,−k1)|us2n (−∆, δ,−k2)〉. (S75)

Upon spatial inversion, the velocity operator transforms as Iν̂(∆, δ)I−1 = −ν̂(−∆, δ). This gives

〈us1m(∆, δ,k1)|νθ(∆, δ)|us2n (∆, δ,k2)〉 = 〈us1m(∆, δ,k1)|I−1Iνθ(∆, δ)I−1I|us2n (∆, δ,k2)〉
= −〈us1m(−∆, δ,−k1)|νθ(−∆, δ)|us2n (−∆, δ,−k2)〉. (S76)

It follows that the Wilson line satisfies

Ws(∆, δ, θ,k,q) = −Ws(−∆, δ, θ,−k,−q), arg[Ws(∆, δ, θ,k,q)] = arg[Ws(−∆, δ, θ,−k,−q)] + π. (S77)

As a result, the spin-dependent shift vector satisfies

rs(∆, δ, θ,k) = −rs(−∆, δ, θ,−k). (S78)

Since the SPC is obtained by integrating the weighted shift vector and both ρ(∆, δ,k) and |νθ(∆, δ,k)|2 are even
in ∆ and k, Eq. (S78) implies that the spin SPC flips direction for ∆ → −∆. The charge SPC can be obtained by
summing over s =↑, ↓ and thus also reverses its direction upon reversing interlayer potential difference.

3. Mirror Symmetry

2H bilayer TMD is invariant under mirror reflection about the y axis: MyH(∆, δ,k)M−1
y = H(∆, δ,Myk). The

spin acts as a pseudovector upon reflection, and thus s flips sign under My. This leads to

εsn(∆, δ,k) = ε−sn (∆, δ,Myk), My|usn(∆, δ,k)〉 = |u−sn (∆, δ,Myk)〉, (S79)

and

〈us1m(∆, δ,k1)|us2n (∆, δ,k2)〉 = 〈us1m(∆, δ,k1)|M−1
y My|us2n (∆, δ,k2)〉 = 〈u−s1m (∆, δ,Myk1)|u−s2n (∆, δ,Myk2)〉. (S80)

The velocity operators transform as Myνx(∆, δ)M−1
y = −νx(∆, δ) and Myνy(∆, δ)M−1

y = νy(∆, δ), thus we have
Myνθ(∆, δ)M−1

y = νπ−θ(∆, δ). This gives

〈us1m(∆, δ,k1)|νθ(∆, δ)|us2n (∆, δ,k2)〉 = 〈us1m(∆, δ,k1)|M−1
y Myνθ(∆, δ)M−1

y My|us2n (∆, δ,k2)〉
= 〈u−s1m (∆, δ,Myk1)|νπ−θ(∆, δ)|u−s2n (∆, δ,Myk2)〉. (S81)

The spin-dependent Wilson line satisfies

Ws(∆, δ, θ,k,q) =W−s(∆, δ, π−θ,Myk,Myq), arg[Ws(∆, δ, θ,k,q)] = arg[W−s(∆, δ, π−θ,Myk,Myq)], (S82)
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and shift vector obeys

rsx(∆, δ, θ,k) = −r−sx (∆, δ, π − θ,Myk), rsy(∆, δ, θ,k) = r−sy (∆, δ, π − θ,Myk). (S83)

Again, we use the identity that the polarisation directions θ and θ + π are equivalent to obtain

rsx(∆, δ, θ,k) = −r−sx (∆, δ,−θ,Myk), rsy(∆, δ, θ,k) = r−sy (∆, δ,−θ,Myk). (S84)

Combining with Eq. (S73), we obtain the shift vector symmetry constraint for each spin:

rsx(∆, δ, θ,k) = −rsx(∆, δ,−θ, kx,−ky), rsy(∆, δ, θ,k) = rsy(∆, δ,−θ, kx,−ky). (S85)

Eq. (S85) ensures that for polarisation angles θ = 0, π and θ = ±π/2, rsx(∆, δ, θ,k) is odd under ky → −ky while
rsy(∆, δ, θ,k) is even. Thus, for electric field polarised perpendicular to (parallel with) with mirror reflection axis, the
spin SPC is transverse (longitudinal). Again, similar with the scenario in a monolayer TMD, since the symmetry
constraint in Eq. (S85) is valid for both spins, the charge SPC exhibits the same polarisation dependence as the spin
SPC.

We remark that 2H stacked bilayer TMD also possesses three-fold in-plane rotational symmetry Cz3 and thus has
two more mirror axes that are separated ±2π/3 from the y-axis. The argument above on polarisation dependent spin
and charge SPC can also be applied to the other two mirror axes after rotating the coordinate system by ±2π/3.

Now we move on to Mx. 2H stacked bilayer TMD breaks mirror symmetry with respect to the x-axis. Mx

interchanges the A, B sublattice sites, thus reversing δ: MxH(∆, δ, r)Mx = H(∆,−δ, r). The Bloch Hamiltonian
satisfiesMxH(∆, δ,k)Mx = H(∆,−δ,Mxk). For wavefunctions projected to each spin state, under mirror reflection,
the spin transforms as a pseudovector and the z component s flips sign. Thus we have

εsn(∆, δ,k) = ε−sn (∆,−δ,Mxk), Mx|usn(∆, δ,k)〉 = |u−sn (∆,−δ,Mxk)〉, (S86)

and

〈us1m(∆, δ,k1)|us2n (∆, δ,k2)〉 = 〈us1m(∆, δ,k1)|M−1
x Mx|us2n (∆, δ,k2)〉 = 〈u−s1m (∆,−δ,Mxk1)|u−s2n (∆,−δ,Mxk2)〉.

(S87)
Under Mx, the y component of the velocity operator switches sign Mxνy(∆, δ)M−1

x = −νy(∆,−δ) while the x
component is invariant Mxνx(∆, δ)M−1

x = νx(∆,−δ). Thus for a given polarisation θ, we have Mxνθ(∆, δ)M−1
x =

ν−θ(∆,−δ) and

〈us1m(∆, δ,k1)|νθ(∆, δ)|us2n (∆, δ,k2)〉 = 〈us1m(∆, δ,k1)|M−1
x Mxνθ(∆, δ)M−1

x Mx|us2n (∆, δ,k2)〉
= 〈u−s1m (∆,−δ,Mxk1)|ν−θ(∆,−δ)|u−s2n (∆,−δ,Mxk2)〉. (S88)

Thus the Wilson line satisfies

Ws(∆, δ, θ,k,q) =W−s(∆,−δ,−θ,Mxk,Mxq), arg[Ws(∆, δ, θ,k,q)] = arg[W−s(∆,−δ,−θ,Mxk,Mxq)], (S89)

The spin dependent shift vector satisfies

rsx(∆, δ, θ,k) = r−sx (∆,−δ,−θ,Mxk), rsy(∆, δ, θ,k) = −r−sy (∆,−δ,−θ,Mxk). (S90)

Combining Eq. (S84) and (S90), we obtain the dependence of the spin shift vector on δ:

rs(∆, δ, θ,k) = −rs(∆,−δ, θ,−k). (S91)

We observe that the sublattice potential difference δ plays a similar role with the interlayer potential difference ∆ in
Eq. (S78).

II. Strained Shift Photocurrent Induced by Unpolarised Light

In this section, we show that in strained vdW materials and homostructures, the SPC induced by unpolarised
light is nonzero due to broken discrete rotational symmetry. For brevity, we will omit the implicit dependence of the
shift vector r(θ,k) in stacking configuration index η, spin s, interlayer potential difference ∆ and sublattice potential
difference δ in this section.
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The strained SPC induced by unpolarised light can be calculated by integrating j(θ) all distinct polarisation angles:

Jtot =

∫ π/2

−π/2
j(θ)dθ = C

∫ π/2

−π/2
dθ

∫
dkρ(k)|νθ(k)|2r(θ,k). (S92)

We can write |νθ(k)|2 = Vs(θ,k)+Va(θ,k), where Vs(θ,k) = |νx(k)|2 cos2 θ+|νy(k)|2 sin2 θ is the component symmetric
with respect to θ → −θ, and Va(θ,k) = 2Re

[
νx(k)ν∗y (k)

]
sin θ cos θ is the component antisymmetric with respect to

θ → −θ. Also, we note that ρ(k) is only dependent on the dispersion and is thus symmetric in θ. Then the integration
in Eq. (S92) can be rewritten as

Jtot = C

∫ π/2

0

dθ

∫
dkρ(k) [Vs(θ,k) (r(θ,k) + r(−θ,k)) + Va(θ,k) (r(θ,k)− r(−θ,k))] . (S93)

When strain is applied either parallel or perpendicular to a mirror axis, mirror symmetry about the mirror axis is
preserved. For instance, when strain is applied perpendicular or parallel to y in any of the vdW systems discussed
above (Bernal stacked BLG, G/hBN, monolayer TMD and 2H stacked bilayer TMD), time reversal symmetry T
and mirror symmetry My are preserved. As we now show, this symmetry dramatically constrain the integrand of
Eq. (S93).

To see this, we examine J tot
x and J tot

y separately. We first concentrate on J tot
x . We note that mirror symmetry

y [in particular, the first equation in Eq. (S23)] guarantees that rx(θ,k) + rx(−θ,k) is odd in ky while Vs(θ,k) is
even in k-space. Thus the term proportional to Vs(θ,k) in the integration in Eq. (S93) vanishes. Furthermore,
rx(θ,k) − rx(−θ,k) is even in ky while Va(θ,k) is odd [since νy(k) is odd while νx(k) is even]. Thus the term
proportional to Va(θ,k) also vanishes after integration. Therefore, J tot

x = 0 in the presence of T and My.
We now employ a similar argument for J tot

y . We note that that mirror symmetry about y [in particular, the second
equation in Eq. (S23)] guarantees that ry(θ,k) + ry(−θ,k) is even in ky so that the term proportional to Vs(θ,k) is
even. Furthermore, ry(θ,k)− ry(−θ,k) is odd in ky so that the term proportional to Va(θ,k) is also even in ky. Thus
J tot
y is finite and the SPC induced by unpolarised light is directed along the y axis. As a result, when strain is applied

either perpendicular or parallel to a mirror axis, Jtot is directed along the mirror axis, as discussed in the main text.
However, when strain is not applied either perpendicular or parallel to a mirror axis, Jtot does not generically point
in a symmetry determined direction; instead its direction is determined by the details of the strain, as discussed in
the main text.

Importantly, this argument (presented above) for the integrated SPC over all polarizations (i.e. SPC for unpolarized
light) applies for in the presence of any (and multiple) mirror planes. For instance, in the absence of strain, the vdW
materials and homostructures discussed above possess an in-plane rotational symmetry Cz3 . This means that vdW
materials discussed above possess multiple non-parallel mirror planes. Upon irradiation of unpolarised light and in an
unstrained system, it is impossible for Jtot to be directed along all these non-parallel reflection axes simultaneously,
and thus the integrated SPC has to vanish.

III. Hamiltonian of Bernal Stacked BLG

In this section, we derive the low-energy four-band Hamiltonian for Bernal stacked BLG from the tight-binding
model. Bernal stacked BLG (Fig. 1c in the main text) has a triangular lattice with primitive lattice vectors given by

a1 =

(
a

2
,

√
3a

2

)
, a2 =

(
a

2
, −
√

3a

2

)
, (S94)

where a = 0.246 nm. Each unit cell contains four atoms, two from the top layer (At, Bt) and two from the bottom
layer (Ab and Bb). In AB stacking configuration, the sublattice site of the top layer At is directly on top of the
sublattice site Bb of the bottom layer (referred to as the dimer site), while site Bt sits at the centre of the honeycomb
lattice of the bottom layer (referred to as the non-dimer site). In BA stacking. we have Bt directly on top of Ab

instead. As we remarked in the previous section, these two stacking configurations are obtained by flipping one about
the in-plane axis and they have the same dispersion relations.

Now we derive the four band tight-binding Hamiltonian of the system H(η) in the basis {ψAb
, ψBb

, ψAt
, ψBt

}. When
an interlayer electric potential difference is applied, the top and bottom lattice sites acquire different onsite energies

leading to nonzero on-diagonal terms in the tight-bindind Hamiltonian: H
(η)
AbAb

= H
(η)
BbBb

= ∆/2 and H
(η)
AtAt

= H
(η)
BtBt

=
−∆/2.
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Furthermore, the intralayer nearest-neighbour hopping from site A to site B is described the vectors

δ1 =

(
0,

a√
3

)
, δ2 =

(
a

2
, − a

2
√

3

)
, δ3 =

(
−a

2
, − a

2
√

3

)
. (S95)

Thus, the intralayer hopping in each layer is described by H
(η)
AbBb

= H
(η)
AtBt

= −γ0f(k), where γ0 ≈ 3 eV is the nearest
neighbour hopping constant and

f(k) =

3∑
l=1

eik·δl = e
i a√

3
ky + e

i( a
2 kx−

a
2
√

3
ky)

+ e
i(− a

2 kx−
a

2
√

3
ky)

= e
i a√

3
ky + 2e

−i a
2
√

3
ky cos

(a
2
kx

)
. (S96)

In AB stacking, since At is directly on top of Bb, the interlayer coupling at the dimer site is given by H
(AB)
AtBb

=

H
(AB)
BbAt

= γ1. The skew interlayer hopping from Ab to Bt at the non-dimer sites involves in-plane hopping described by

the in-plane vectors −δ1, −δ2 and −δ3, thus the skew interlayer coupling is given by H
(AB)
AbBt

= −γ3

∑3
l=1 e

ik·(−δl) =
−γ3f

∗(k). The next next nearest neighbour interlayer hopping between Ab and At as well as between Bb and Bt is
much smaller than the other terms and can be neglected here. Therefore, we arrive at the tight-binding Hamiltonian
for the AB stacked BLG:

H(AB)(k) =


∆
2 −γ0f(k) 0 −γ3f

∗(k)
−γ0f

∗(k) ∆
2 γ1 0

0 γ1 −∆
2 −γ0f(k)

−γ3f(k) 0 −γ0f
∗(k) −∆

2

 (S97)

In BA stacking, Bt is directly on top of Ab, and the interlayer coupling at the dimer site is H
(BA)
BtAb

= H
(BA)
AbBt

= γ1.

The skew interlayer hopping from Bb to At is given by the in-plane vectors δ1, δ2 and δ3, yielding H
(BA)
BbAt

= −γ3f(k).
Thus the Hamiltonian for the BA stacked BLG is

H(BA)(k) =


∆
2 −γ0f(k) 0 γ1

−γ0f
∗(k) ∆

2 −γ3f(k) 0
0 −γ3f

∗(k) −∆
2 −γ0f(k)

γ1 0 −γ0f
∗(k) −∆

2

 . (S98)

We note that for the Hamiltonians above, the band extrema occur at the corners of the Brillouin zone labeled by
K+ = ( 4π

3a , 0) and K− = −K+. At low energy, the tight-binding Hamiltonian can be approximated up to the linear
order of p = k−Kξ around each valley ξ = ±. By expanding f(k) around Kξ, we obtain

H(AB)(p) =


∆
2 ~vp† 0 ~v3p

~vp ∆
2 γ1 0

0 γ1 −∆
2 ~vp†

~v3p
† 0 ~vp −∆

2

 , H(BA)(p) =


∆
2 ~vp† 0 γ1

~vp ∆
2 ~v3p

† 0
0 ~v3p −∆

2 ~vp†
γ1 0 ~vp −∆

2

 , (S99)

where p = ξpx + ipy, v =
√

3aγ0/2~ is the Fermi velocity in each layer and v3 =
√

3aγ3/2~.

IV. Numerical Calculation of Shift Vector in AB stacked BLG for other polarizations

Using the four-band Hamiltonian derived in the previous section, we numerically calculate the weighted shift vectors
R(η)(∆, θ,p) in k-space in the vicinity of the Dirac point. In the main text, we have shown R(η)(∆, θ,p) in AB/BA
stacked BLG for the x-polarised electric at the K+ valley. Here we plot the R(AB)(∆, θ,p) at θ = π/2 (Fig. S1a and
b) and θ = 2π/3 (Fig. S1c and d) at K+ and K− valleys.

We note that for K± =
(
± 4π

3a , 0
)

and k measured from the Γ point, kx → −kx maps px at the K± valley to −px
at the K∓ valley, while ky → −ky maps py → −py at the same valley. Using these identities, we observe that for
the electric field polarisation along with the mirror plane (y-axis, θ = π/2), the shift vectors in Fig. S1a and b obey

the relations in Eq. (S22) and (S23). From px at the K+ valley to −px at the K− valley, R
(AB)
x switches sign and
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FIG. S1: (a,b) Plot of R(AB)(∆, θ = π/2,p) at the K+ (a) and K− (b) valley. (c,d) Plot of R(AB)(∆, θ = 2π/3,p) at the K+

(c) and K− (d) valley. Similar to that found in the main text, we have taken ∆ = 20 meV. All other parameters are the same
as Fig. 2 in the main text.

R
(AB)
y remains unchanged. For py → −py in each valley, R

(AB)
x is also odd while R

(AB)
y is even. This leads to a shift

photocurrent flowing along the y axis.
Furthermore, when the electric field is perpendicular to one of the reflection axis (θ = 2π/3), we observe that the

weighted shift vector component normal to the polarisation is even, while the component parallel to the polarisation
is odd (e.g. Fig. S1c and d), leading to a transverse shift photocurrent.
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