Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture

MPG-Autoren
/persons/resource/persons137778

Litschel,  Thomas
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons15815

Schwille,  Petra
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bashirzadeh, Y., Redford, S. A., Lorpaiboon, C., Groaz, A., Litschel, T., Schwille, P., et al. (2021). Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture. Communications Biology, 4(1): 1136. doi:10.1038/s42003-021-02653-6.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-5DF7-9
Zusammenfassung
The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins alpha-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, alpha-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that alpha-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of alpha-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers.
By encapsulating proteins in giant unilamellar vesicles, Bashirzadeh et al find that actin crosslinkers, alpha-actinin and fascin, can self-assemble with actin into complex structures that depend on the degree of confinement. Further analysis and modeling show that alpha-actinin and fascin sort to separate domains of these structures. These insights may be generalizable to other biopolymer networks containing crosslinkers.