English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

TDCOSMO - VI. Distance measurements in time-delay cosmography under the mass-sheet transformation

MPS-Authors
/persons/resource/persons196332

Suyu,  Sherry H.
Physical Cosmology, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons204047

Yildirim,  Akin
Physical Cosmology, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons250923

Komatsu,  Eiichiro
Physical Cosmology, MPI for Astrophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chen, G.-C.-F., Fassnacht, C. D., Suyu, S. H., Yildirim, A., Komatsu, E., & Bernal, J. L. (2021). TDCOSMO - VI. Distance measurements in time-delay cosmography under the mass-sheet transformation. Astronomy and Astrophysics, 652: A7. doi:10.1051/0004-6361/202039895.


Cite as: https://hdl.handle.net/21.11116/0000-0009-5F96-4
Abstract
Time-delay cosmography with gravitationally lensed quasars plays an important role in anchoring the absolute distance scale and hence measuring the Hubble constant, H0, independent of traditional distance ladder methodology. A current potential limitation of time-delay distance measurements is the mass-sheet transformation (MST), which leaves the lensed imaging unchanged but changes the distance measurements and the derived value of H0. In this work we show that the standard method of addressing the MST in time-delay cosmography, through a combination of high-resolution imaging and the measurement of the stellar velocity dispersion of the lensing galaxy, depends on the assumption that the ratio, Ds/Dds, of angular diameter distances to the background quasar and between the lensing galaxy and the quasar can be constrained. This is typically achieved through the assumption of a particular cosmological model. Previous work (TDCOSMO IV) addressed the mass-sheet degeneracy and derived H0 under the assumption of the ΛCDM model. In this paper we show that the mass-sheet degeneracy can be broken without relying on a specific cosmological model by combining lensing with relative distance indicators such as supernovae Type Ia and baryon acoustic oscillations, which constrain the shape of the expansion history and hence Ds/Dds. With this approach, we demonstrate that the mass-sheet degeneracy can be constrained in a cosmological model-independent way. Hence model-independent distance measurements in time-delay cosmography under MSTs can be obtained.