English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Three-Dimensional Atomically Resolved Analytical Imaging with a Field Ion Microscope

MPS-Authors
/persons/resource/persons208567

Katnagallu,  Shyam
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons256287

Morgado,  Felipe Ferraz
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons214807

Mouton,  Isabelle
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons185411

Gault,  Baptiste
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK;

/persons/resource/persons208581

Stephenson,  Leigh
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Katnagallu, S., Morgado, F. F., Mouton, I., Gault, B., & Stephenson, L. (2021). Three-Dimensional Atomically Resolved Analytical Imaging with a Field Ion Microscope. Microscopy and Microanalysis, 1-16. doi:10.1017/S1431927621012381.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6877-D
Abstract
Atom probe tomography (APT) helps elucidate the link between the nanoscale chemical variations and physical properties, but it has a limited structural resolution. Field ion microscopy (FIM), a predecessor technique to APT, is capable of attaining atomic resolution along certain sets of crystallographic planes albeit at the expense of elemental identification. We demonstrate how two commercially available atom probe instruments, one with a straight flight path and one fitted with a reflectron lens, can be used to acquire time-of-flight mass spectrometry data concomitant with a FIM experiment. We outline various experimental protocols making the use of temporal and spatial correlations to best discriminate field-evaporated signals from the large field-ionized background signal, demonstrating an unsophisticated yet efficient data mining strategy to provide this discrimination. We discuss the remaining experimental challenges that need to be addressed, notably concerned with accurate detection and identification of individual field-evaporated ions contained within the high field-ionized flux that contributes to a FIM image. Our hybrid experimental approach can, in principle, exhibit true atomic resolution with elemental discrimination capabilities, neither of which atom probe nor FIM can individually fully deliver - thereby making this new approach, here broadly termed analytical field ion microscopy (aFIM), unique. © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America.