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We predict that twisted bilayers of 1T-ZrS2 realize a novel and tunable platform to engineer two-
dimensional topological quantum phases dominated by strong spin-orbit interactions. At small twist
angles, ZrS2 heterostructures give rise to an emergent and twist-controlled moiré Kagomé lattice,
combining geometric frustration and strong spin-orbit coupling to give rise to a moiré quantum
spin Hall insulator with highly controllable and nearly-dispersionless bands. We devise a generic
pseudo-spin theory for group-IV transition metal dichalcogenides that relies on the two-component
character of the valence band maximum of the 1T structure at Γ, and study the emergence of a
robust quantum anomalous Hall phase as well as possible fractional Chern insulating states from
strong Coulomb repulsion at fractional fillings of the topological moiré Kagomé bands. Our results
establish group-IV transition metal dichalcogenide bilayers as a novel moiré platform to realize
strongly-correlated topological phases in a twist-tunable setting.

Twisted van der Waals heterostructures have recently
emerged as an intriguing and highly tunable platform
to realize unconventional electronic phases in two di-
mensions [1–4] and more. Spurred by the discovery of
Mott insulation and superconductivity in twisted bilayer
graphene [5, 6], remarkable progress in fabrication and
twist-angle control has lead to observations of correlated
insulating states or superconductivity in a variety of ma-
terials, including trilayer and double-bilayer graphene,
homo- and hetero-bilayers of twisted transition metal
dichalcogenides [7–18], and heterostructures at a twist
on hexagonal boron nitride substrates [19, 20]. At its
heart, this rich phenomenology stems from electronic in-
terference effects due to the moiré superlattice, which
can selectively quench kinetic energy scales to realize al-
most dispersionless bands, permitting a twist angle con-
trolled realization of regimes dominated by strong elec-
tronic interactions. At the same time, the drastic reduc-
tion of kinetic energy of the low-energy moiré bands im-
plies straightforward gate-tunable access to a wide range
of filling fractions, permitting wide-ranging experimental
access to the phase diagrams of paradigmatic models of
strongly-correlated electrons [2]. Consequently, the puta-
tive realization of strongly-correlated electron physics in
a tunable setting has garnered significant attention, re-
sulting in growing experimental evidence for novel corre-
lated phases, including unconventional superconductivity
[4, 21, 22].

Notably, and despite negligible intrinsic spin-orbit cou-
pling in graphene, these were found to include topological
states of matter. Here, the realization of the interaction-
induced quantum anomalous Hall effect without external

magnetic fields in twisted bilayer [23–25] and trilayer [26]
graphene has spurred numerous proposals for more exotic
fractionalized topological states of matter [27–30], which
however rely on a delicate interplay of spontaneous fer-
romagnetic order, valley polarization and substrate engi-
neering effects to induce the requisite non-trivial band
topology. Generalizations to twisted transition-metal
dichalcogenides have focused on telluride-based group VI
compounds with 2H structure in the monolayer which ex-
hibit an intrinsic quantum spin Hall effect [31], with the
quantum anomalous Hall effect recently observed [32] and
similarly expected to emerge from spontaneous valley po-
larization [33, 34].

Central to the present work, we demonstrate for
twisted bilayer ZrS2 with 1T structure that the paradigm
of twist-controlled suppression of the bare kinetic energy
scales can be straightforwardly extended to instead pro-
mote spin-orbit coupling to constitute the dominant en-
ergy scale at low energies, opening up a new and exotic
regime for experimental and theoretical investigation.
Remarkably, we find that the two-component character
of the valence band maximum in such two-dimensional
group IV transition metal dichalcogenides enters in an es-
sential manner, leading to the emergence of a clean moiré
Kagomé lattice with almost dispersionless quantum spin
Hall bands at small twist angles. We demonstrate that
this tunable realization of a ZrS2 moiré heterostructure
with strong spin-orbit coupling and strong interactions
can therefore provide a robust and novel platform to
probe the profound interplay of non-trivial band topol-
ogy and electronic correlations, and shed light on elusive
quantum phases beyond the purview of conventional con-
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FIG. 1. Moiré patterns of twisted ZrS2 bilayers. (a) Top and side view of the 1T structure of ZrS2. (b) The band
structure of ZrS2 monolayer hosts a valence band maximum at Γ composed of the px, py chalcogen orbital J = ±3/2 states,
with a spin-orbit splitting of ∼ 100 meV. (c,d) In aligned bilayers with AA or AB stacking, the valence band maximum at
Γ (composed of of antibonding states of px, py symmetry) is energetically separated by ∼ 50meV from bonding px, py states
and pz orbitals. Hence, antibonding px, py states compose the top-most moiré valence bands at small twist angles. (e) In
small-angle twisted heterostructures of ZrS2, the interlayer alignment interpolates from AA to AB/BA stacking as a function
of position in the moiré unit cell. The px, py antibonding states remain degenerate for both AA and AB/BA stacking in the
absence of spin-orbit coupling. Their overall energetic shift is encoded in (f) an effective scalar moiré superlattice potential,
with minima that form a moiré honeycomb lattice. (g) Crucially, the loss of rotational symmetry away from local AA, AB
stacking further splits the px, py states. This orbital splitting contribution to the moiré potential is maximal in three “domain
wall” regions “X” in the moiré unit cell [(e)]; upon exceeding the scalar potential, electrons in the top-most moiré valence band
form an emergent moiré Kagomé lattice [dashed lines in (e); guide to the eye].

densed matter systems.

ZrS2 is an exfoliable semiconductor with 1T structure
[35] in its ground state [Fig. 1(a)]. In contrast to group-
VI transition metal dichalcogenides such as MoS2 with
2H structure, the valence band maximum in ZrS2 and
other group-IV transition metal dichalcogenides is lo-
cated at Γ already in the monolayer and is composed
of two-fold degenerate chalcogen px, py orbitals. Spin-
orbit coupling lifts their degeneracy and introduces a
∼ 100meV gap [Fig. 1(b)]. This property readily car-
ries over to aligned bilayers with symmetric AA and AB
stacking configurations [Figs. 1(c), (d)]; here, the valence
band maximum at Γ follows from antibonding combina-
tions of the out-of-plane chalcogen px, py orbitals. These
are energetically separated from bonding combinations
by ∼ 80 − 100 meV [Fig. 1(c), (d)], with a secondary
local valence band maximum of pz orbitals furthermore
located close to Γ and similarly detuned by ∼ 50 meV
for AA stacking.

In twisted bilayers, the atomic interlayer registry in-

terpolates continuously between local AA, AB and BA
alignment as a function of position and a moiré pattern
with three-fold rotation symmetry forms [Fig. 1(e)]. At
sufficiently small twist angles, the energetic considera-
tions for aligned bilayers discussed above immediately
suggest that the top-most (highest energy) moiré valence
bands should be similarly composed of antibonding px,
py chalcogen orbitals. If spin-orbit coupling is neglected,
these are degenerate at Γ in both AA and AB regions
[Fig. 1(e)] by virtue of rotation symmetry. However, the
valence band edge differs between the two stackings, with
the smooth interpolation between local alignments in the
moiré unit cell encoded in an effective periodic scalar
moiré potential V (r) [Fig. 1(f)]. Minima of V (r) are lo-
cated at the AB and BA regions and form an effective
honeycomb lattice. Notably, for the purposes of captur-
ing the highest-energy moiré valence bands, the model
retains to an excellent approximation the full six-fold
rotation and mirror symmetries of the monolayer, even
though the macroscopic crystal is chiral. This situation
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FIG. 2. Emergent Kagomé lattice and continuum theory of twisted ZrS2 bilayers. (a) Anatomy of the moiré band
structure in the two-orbital pseudospin continuum theory, as a function of the scalar (V ) and pseudospin (V ′) potential, with
η = 0.15 and energies normalized to ~/2m?a20 ≡ 1. In the absence of V ′, a well-separated honeycomb lattice with two p orbitals
per sublattice emerges with increasing V [bottom left], directly analogous to twisted bilayer graphene. (b) The calculated
charge density of bands (I) is localized in a honeycomb pattern of AB/BA regions; however, the next lower-energy band
(II) already exhibits a Kagomé charge density pattern. Conversely, the pseudospin moiré potential V ′ favors charge patterns
localized in (III) the Kagomé “X” regions as well as on rings (IV) around the Kagomé hexagons. As a0 ∼ θ−1, an energetically
well-separated Kagomé moiré band structure emerges at sufficiently small twist angles [(a), right column, marked in blue]. (c)
Spin-orbit interactions lift the quadratic touching of Kagomé bands at Γ. The resulting band structure is gapped and realizes
a novel Kagomé moiré flat-band quantum spin Hall insulator with spin Chern numbers ±1 of the top and bottom Kagomé
bands. (d) depicts the ab initio band structure of twisted bilayers for three representative twist angles with [right column]
and without [left column] spin-orbit coupling, with the top-most valence bands demonstrating the emergent Kagome lattice.
Colored lines indicate the continuum model band structure, fitted to the top valence bands [see main text]. Additional deeper
pz orbital valence bands appear > 50meV below the band edge and are not accounted for in the continuum theory, however are
progressively separated energetically from the Kagomé bands as the twist angle is reduced. Importantly, spin-orbit interactions
split off a topological band with spin Chern number Cs = 1 [thick blue line], as discussed in the main text. (e) Charge density
distribution from our ab initio calculations confirms the emergent Kagomé band structure.

is in principle analogous to twisted bilayer MoS2 [36, 37],
which hosts a series of almost dispersionless bands of Mo
dz2 orbital character on an emergent moiré honeycomb
lattice.

Crucially, the loss of rotational symmetry away from
local AA, AB stacking lifts the orbital degeneracy be-
tween px, py antibonding orbitals (in the absence of spin-
orbit coupling), introducing a second energy scale into
the problem. In stark contrast to 2H TMD bilayers,
the two-component character of the Γ valley states en-
ters in an essential manner. From symmetry considera-
tions, their orbital splitting is expected to be maximal in
three “domain wall” regions “X” per moiré unit cell in
Fig. 1(e), in which the transition-metal atoms of both
layers form “stripes”, with the rotational symmetry of
the local stacking order reduced to C2. Contrary to the
scalar moiré potential, maxima of orbital px, py splitting
hence form a Kagomé pattern [Fig. 1(g)]. Remarkably, if
the resulting energetic gain exceeds the scalar potential
V (r), it becomes favorable for charge to migrate from
the honeycomb AB/BA regions to “X” regions, realizing
an emergent Kagomé lattice of s-like moiré orbitals in a
highly-tunable setting [Fig. 1(e)].

A minimal continuum model of this scenario readily

follows from the above symmetry considerations as

Ĥ = Ĥ0 + Ĥsoc + Ĥpot (1)

where Ĥ0 describes the two-fold degenerate antibonding
px, py chalcogen states

Ĥ0 = − ~2

2m?

{
(k2
x + k2

y)1̂ + η
[
(k2
x − k2

y)τ̂ z + 2kxkyτ̂x
]}
(2)

with the orbital degree of freedom represented via Pauli
matrices τ̂ . Here, m? denotes the effective average band
mass, and η = m+−m−

m++m−
parametrizes the ratio of light

(m−) and heavy (m+) hole p bands at Γ. Atomic spin-
orbit interactions

Ĥsoc =
λsoc

2
τ̂ yσ̂z (3)

lift the orbital degeneracy, opening up a gap at Γ as dis-
cussed in detail below. Here, σ̂z acts on spin. Central to
the emergence of the Kagomé lattice, the moiré poten-
tial acts non-trivially on the orbital pseudospin, and can
generically be written as a Fourier expansion

Ĥpot =
∑
n

Vn f
0
n(r) +

∑
n

V ′n

[
τ̂x f

(x)
n (r) + τ̂ z f

(z)
n (r)

]
(4)
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Here, n indexes the n-th moiré Brillouin zone. Vn pa-
rameterizes the Fourier modes of the scalar potential

in direct analogy to twisted WS2 [37], with f
(0)
n (r) =

cos(bn,1r) + cos(bn,2r) + cos(bn,3r) chosen to retain the
full six-fold rotation symmetry and bn,i describing the
three reciprocal lattice vectors i = 1, 2, 3 (related via C3

rotations) to the n-th Brillouin zone.

The pseudospin τ̂x, τ̂ z contributions to the po-
tential are related in the presence of (approximate)

mirror symmetry, with f
(x)
n (r) = −

√
3

2 cos(bn,1r) +
√

3
2 cos(bn,3r) and f

(z)
n (r) = 1

2 cos(bn,1r) − cos(bn,2r) +
1
2 cos(bn,3r). The salient physics is encoded already in

the lowest harmonic – with b1,1 = [2π,−2π/
√

3]/a0,
b1,2 = [0, 4π/

√
3]/a0, b1,3 = [2π, 2π/

√
3]/a0 and a0

the moiré lattice length, the scalar potential hosts
two minima in the AB and BA regions at r =
[1/2,±1/(2

√
3)]. Conversely, the pseudospin poten-

tial that determines the splitting of px, py orbitals
has three maxima in the Kagomé X regions at r =
[1/2, 0]a0, [1/4,

√
3/4]a0, [3/4,

√
3/4]a0. Up to an overall

energy scale, a minimal continuum model that includes
only the first harmonic will therefore depend on just three
dimensionless parameters η, 2V m?a2

0/~2, 2V ′m?a2
0/~2,

where a0 ∝ θ−1 scales with the twist angle. Local lattice
relaxation effects are encoded in the higher harmonics of
the potential; as the local stacking of AB and BA re-
gions arise energetic favorable, lattice relaxation results
in large domains with almost uniform AB or BA stack-
ing [see domains highlighted with red and purple dashed
lines in Fig. 1 (e)] with the salient stacking variation in
the X regions. These parameters can be obtained fitting
the band structure obtained from DFT calculations as
described below.

Fig. 2(a) depicts the structure of the resulting moiré
bands without spin-orbit coupling, as a function of scalar
V ≡ V1and pseudospin V ′ ≡ V ′1 potentials. For V ′ = 0,
the scalar potential V localizes the hole charge density
on a honeycomb lattice of AB/BA regions [Fig. 2(a),
left column; Fig. 2(b) (I)], and an energetically well-
separated set of honeycomb bands with Dirac points at
K, K′ emerges at the top of the valence band. These re-
tain a two-fold orbital px, py character, with the degener-
acy of the bands weakly broken due to orbital anisotropy
η 6= 0. This directly mirrors the low-energy band struc-
ture of twisted bilayer graphene, however with the two-
orbital structure resulting from the px, py degeneracy of
the constituent states at Γ as opposed to a valley degen-
eracy.

However, already the next lower in energy (fifth) moiré
valence band reveals upon closer inspection a charge den-
sity distribution with a Kagomé pattern [Fig. 2(b), pat-
tern (II)], localized in the “X” regions of the moiré unit
cell [Fig. 1(e)]. These states gain energy from a finite
pseudospin potential V ′, which lifts them to higher en-
ergies: Beyond a critical V ′, the fifth “Kagomé” band

and the bottom px, py honeycomb bands invert their en-
ergetic ordering at Γ. Consequently, the charge density
distribution of the top px, py bands shifts from AB/BA
honeycomb regions to “X” Kagomé sites [Fig. 2(b), pat-
tern (III)]. If the moiré potentials are sufficiently weak,
the three resulting bands that constitute the emergent
moiré Kagomé lattice couple to a fourth moiré orbital
centered on the hexagons of the lattice, with a charge
density distribution that forms a ring around the AA re-
gions of the moiré unit cell [Fig. 2(b), pattern (IV)]. As
the twist angle is further reduced, an energetically well-
separated set of three Kagomé lattice bands emerges as
the top-most set of moiré valence states [Fig. 2(b), pat-
terns (V), (VI)].

The above behavior closely matches the results from
large-scale ab initio calculations of the twisted moiré su-
percell, depicted in Fig. 2(d), left column, for three rep-
resentative twist angles [also see Supplementary Infor-
mation]. As the angle is reduced, a set of bands with a
Kagomé charge distribution at Γ splits off progressively
from deeper valence bands. For the larger twist angles
≥ 2.28◦ that are still within computational reach for
density functional calculations, this energetic separation
is not yet sufficient to completely separate the Kagomé
bands of chalcogen antibonding px, py character from
states with pz or bonding px, py character (< 50meV
below the band edge), not included in the continuum
theory. Nevertheless, the top-most Kagomé bands of in-
terest are already well-captured via the continuum model
for the smallest twist angle [Fig. 2(d), bottom-left] upon
accounting only for the lowest harmonic of the moiré po-
tential.

Crucially, the inclusion of spin-orbit coupling [Eq. (3)]
now opens up a gap at the Kagomé Dirac points and lifts
the quadratic band touching degeneracy at Γ [Fig. 2(c)],
reflected in ab initio simulations with spin-orbit interac-
tions [Fig. 2(d), right column]. As the top-most valence
states originate from px, py orbitals at small twist angles,
spin-flip spin-orbit interactions are negligible and spin-
z remains a good quantum number. Remarkably, this
results in three almost dispersionless moiré bands that
realize a novel Kagomé topological quantum spin Hall
insulator with spin Chern numbers Cs = ±1 for the first
and third flat band [Fig. 2(c), (d)]. In marked contrast
to conventional topological materials however, while su-
perlattice interference quenches the kinetic energy scales,
spin-orbit coupling λsoc enters as a bare atomic scale
and hence becomes the dominant energy scale that gov-
erns the low-energy physics of the moiré valence bands
in ZrS2. This highly-tunable materials realization of an
“ultra-strong” spin-orbit interaction regime in a moiré
heterostructure constitutes a central result of this paper.

To model the emergent top-most flat topological moiré
band in twisted ZrS2, we proceed with a fit of the pseu-
dospin continuum theory [Eq. (1)] to the spin-orbit-
coupled ab initio band structure for θ = 2.64◦ [Fig.
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FIG. 3. Twist angle dependence of the Kagomé Moiré lattice. (a) Band width and energetic separation of the top-
most Moiré valence band, extrapolated from the continuum theory as a function of twist angle. (b) Kagomé tight-binding
parameterization of the top three Moiré bands, with real and imaginary hoppings depicted schematically in (c). Shaded regions
denote larger twist angles for which the third Kagomé band does not remain well-isolated from lower-lying states; tight-binding
parameterization in this region fits only the top two bands. (d) Berry curvature at 2.64◦ for the first Moiré Kagomé valence
band, as well as (e) for the third band at 1.06◦. (f) Berry curvature fluctuations ∆Ω are suppressed as the twist angle is
reduced, approaching a Moiré realization of a Landau level. (g) Band structure of the continuum model at θ ≈ 1.06◦, 1.98◦.

2(d), middle-right panel]. As the minimal model of Eq.
(1) does not account for bonding px, py or pz states,
the third-highest ab initio valence band (−50meV be-
low the valence band edge) is composed primarily of
bonding px, py and pz orbitals and is excluded from the
fit. We note that this band separates energetically from
the three Kagomé moiré bands at lower twist angles.
We obtain excellent agreement for the top two bands
of px, py antibonding character using η = 0.33, m? =
0.27m0, λsoc = 57meV, V1 = 5.5meV, V ′1 = −9.3meV,
V2 = 11.5meV, V ′2 = −5.1meV. Scaling with twist angle
similarly matches the ab initio band structure at 2.45◦

[Fig. 2(d), bottom-right panel]. As expected, the top-
most band is topologically non-trivial with spin Chern
number Cs = ±1. Fig. 2(e) compares the correspond-
ing charge density distributions at Γ for ab initio and
continuum model calculations; both exhibit comparable
Kagomé patterns as well as a competing band at lower en-
ergies with a ring-shaped charge pattern around the AA
region, which similarly becomes energetically separated
from Kagomé bands at lower twist angles [Fig. 2(a)].

A key advantage of the continuum theory is the pos-
sibility to study the behavior at small twist angles in a
computationally feasible manner. Fig. 3(a) depicts the
band width of the top-most topological moiré Kagomé
band, as well as the single-particle gap to the next deeper
valence band, as a function of twist angle a0 ∼ θ−1. The
band width of the top-most topological band decreases

exponentially with twist angle, whereas the ratio between
band width and band gap saturates below ≈ 2◦ and ap-
proaches one. Below this twist angle, the three Kagomé
bands become fully isolated in energy from deeper va-
lence states [Fig. 3(g)]. This immediately suggests a
fruitful tight-binding parameterization at ultra-small an-
gles, presuming that local lattice relaxation effects re-
main manageable. Results are shown in Fig. 3(b) for
a tight-binding model depicted schematically in (c), but
including up to 8th-neighbor hopping to ensure a good
fit over all angles [see Supplementary Information]. For
small angles � 2◦, the top three bands become well-
captured by a nearest-neighbor Kagomé tight-binding
model with imaginary hoppings. Third-neighbor hop-
ping t9 through the hexagons are leading corrections to
this model and follow from the elliptical shapes of the
charge density distribution at the Kagomé “X” sites.

The sizable imaginary nearest-neighbor hopping [Fig.
3(b)] is a direct consequence of the strong spin-orbit cou-
pling limit and can be interpreted as a finite effective
staggered magnetic flux through the elementary triangles
of the Kagomé lattice. It lifts the quadratic touching of
flat and dispersive Kagomé bands and opens up a gap at
the Dirac points, realizing a time-reversal-invariant ver-
sion of a parent model for fractional Chern insulators
[38, 39]. Here, uniformity of the Berry curvature is a key
figure of merit [40] and determines, jointly with the ideal
droplet condition for the Fubini-Study metric [41–43], the
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(K1,K2). Inset depicts the characteristic spectral flow under insertion of a magnetic flux through the torus.

propensity for flat Chern bands to host fractional quan-
tum Hall phases. Figs. 3(d), (e) depict the Berry curva-
ture for the top-most and third topological Kagomé moiré
band, for two representative twist angles, with Berry cur-
vature fluctuations (∆Ω)2 =

∫
BZ

[Ω(k) −
√

3C/8π2]2dk
quantified in (f), where C = ±1 is the Chern num-
ber. The Berry curvature flattens monotonically as the
twist angle is reduced, with fluctuations substantially
suppressed for the third Kagomé valence band at small
angles.

The tunable realization of isolated topological flat
bands in twisted ZrS2 is an ideal starting point for the
stabilization of a host of correlated topological states
of matter, ranging from the quantum anomalous Hall
effect to elusive fractional Chern insulator and frac-
tional topological insulator phases. To investigate the
role of electronic correlations, we augment the effec-
tive tight-binding description [Fig. 3] via a screened
Coulomb repulsion, constrained for simplicity to a lo-
cal Hubbard (U

∑
i n̂i↑n̂i↓) and nearest-neighbor density

((U ′/2)
∑
〈ij〉σσ′ n̂iσn̂jσ′) interaction. Suppose first that

the top-most topological moiré Kagomé band is tuned
to half filling via electrostatic gating. A non-trivial
spin Chern number precludes a straightforward Wan-
nier tight-binding representation of the band. Instead,
as deeper fully-filled valence bands are energetically sep-
arated, the low-energy behavior can be captured via pro-
jecting Coulomb interactions U,U ′ to the half-filled flat
topological band, in direct analogy to lowest Landau level
projections for the fractional quantum Hall effect. The
resulting interacting problem is governed by an effective

Hamiltonian

Ĥeff =
∑
kσ

εkĉ
†
kσ ĉkσ +

1

L

∑
kk′q
σσ′

V σσ
′

kk′q ĉk,σ ĉk′,σ′ ĉ
†
k′−q,σ′ ĉ

†
k+q,σ

(5)

where ĉ†kσ, ĉkσ create/annihilate electrons in the flat
band, εk denotes the residual band dispersion, L is the
system size, and

V σσ
′

kk′q =
1

2

∑
αα′

vαα′(q) u
(ασ)
k u

(α′σ′)
k′

[
u

(α′σ′)
k′−q u

(ασ)
k+q

]?
(6)

is the Coulomb repulsion projected to the Bloch states

u
(ασ)
k of the top-most band, with

v(q) =

 U U ′ cos(ka1

2 ) U ′ cos(ka2

2 )

U ′ cos(ka1

2 ) U U ′ cos(ka3

2 )

U ′ cos(ka2

2 ) U ′ cos(ka3

2 ) U

 (7)

Here, momenta k,k′,q are defined in the moiré Brillouin
zone, ai denote the Moiré lattice vectors, and α, σ denote
the sublattice and spin degrees of freedom.

Since a sufficiently short-ranged interaction U > U ′

mainly imparts a local energetic penalty for electron pairs
of opposite spin occupying the same Kagomé “X” sites, a
flat-band ferromagnetic instability generically ensues [44]
at half filling of the top-most quantum spin Hall band,
in direct analogy to quantum Hall ferromagnetism [45].
The resulting spontaneous spin-polarized state is gapped
and aligned in the z direction – it exhibits a quantum
anomalous Hall effect by virtue of filling a quantum spin
Hall band for one spin component, and becomes an ex-
act zero-energy ground state in the absence of dispersion
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[46]. Fig. 4(a) depicts the corresponding phase diagram
as a function of twist angle and interaction strength U
vs band width W of the top-most band, evaluated from
exact diagonalization of Eq. (5) on a 4× 4 unit cell clus-
ter. A robust quantum anomalous Hall state emerges for
interactions on the order of four times the moiré band
width and remains robust over a wide range of twist an-
gles. Notably, the underlying mechanism is distinct from
the observed quantum anomalous Hall effect in twisted
bilayer graphene, relying instead on the intrinsic topo-
logically non-trivial moiré band structure due to strong
spin-orbit coupling and obviating the necessity for con-
current valley polarization and substrate effects.

Persistence of the ferromagnetic instability for frac-
tional fillings of the Kagomeé flat bands naturally sug-
gests the possibility to stabilize a variety of Abelian and
non-Abelian fractional quantum Hall states in the ab-
sence of external magnetic fields [47], by analogy to a
fractionally-filled Landau level. To this end, we focus
on the Laughlin ν = 1/3 state at 1/6 hole doping, and
study the interacting problem at small twist angles in
exact diagonalization. Analogous to the half-filled case,
electrons in the almost-flat band can avoid local Coulomb
repulsion U via spontaneous spin polarization, yielding a
robust ferromagnetic instability as a function of U [Fig.
4(b), right axis, dashed line] over all investigated twist
angles. However, spontaneous spin polarization due to U
now leaves a single Chern band at 1/3 hole doping, with
the resulting electronic phase governed by longer-ranged
Coulomb interactions U ′. To study the propensity to
realize a Laughlin state, we numerically investigate the
resulting phase diagram as function of bandwidth W/U ′

[Fig. 4(b), left axis]. For W = 0, corresponding to the
Landau level limit of a perfectly-flat Chern band, ex-
act diagonalization calculations for 6 × 5 unit cells indi-
cate the robust stabilization of a fractional Chern insu-
lator. This phase is characterized by a three-fold ground
state degeneracy for periodic boundary conditions [Fig.
4(c)] with a gap to well-separated many-body excitations
which persists as a function of system size. These ground
states lie in three total momentum sectors that match the
generalized Pauli principle for FCIs [48], flow into each
other upon adiabatic insertion of a magnetic flux through
handles of the torus (periodic boundary conditions) and
remain energetically separated from excitations, confirm-
ing the ν = 1/3 FCI [39, 48]. These conclusions remain
largely independent of the twist angle, and the FCI per-
sists upon inclusion of finite band dispersion W until the
many-body excitation gap closes for W/U ′ ∼ 0.3 [Fig.
4(b), false color].

Having established a robust correlated quantum
anomalous Hall phase at half filling and evidence for
a ν = 1/3 fractional Chern insulator at one-sixth hole
doping, an interesting follow-up question concerns the
role of proximal deeper moiré valence bands, beyond the
single-band approximation. For interactions that exceed

the single-particle gap to other bands but remain smaller
than the overall band width of the three Kagomé bands,
the robustness of fractional Chern insulator phases has
been well-documented [49], in direct analogy to Landau
level mixing in the conventional quantum Hall effect. A
more substantial challenge however stems from details of
possible longer-ranged electron interactions and exchange
processes, which could serve to either enhance or sup-
press the stability of the fractionalized phases at differ-
ent filling fractions. These processes sensitively depend
on the screening environment and gating [50], and mi-
croscopic calculations present a substantial methodolog-
ical obstacle for twisted materials [51, 52]. Conversely,
for sufficiently small twist angles, if the Coulomb repul-
sion exceeds the overall band width of the three Kagomé
bands, sufficient screening could serve to form a local
moment at overall half filling ν = 3/2. Such a Kagomé
Mott insulator would constitute a Moiré realization of a
paradigmatic frustrated magnetic model, which has been
under intense scrutiny for the potential to host an elusive
quantum spin liquid phase.

Beyond the (fractional) quantum anomalous Hall ef-
fect, the realization of flat-band quantum spin Hall insu-
lators further opens up the possibility to realize a myr-
iad of unconventional ordered states of matter with non-
trivial topology, including time-reversal invariant frac-
tionalized phases or topological superconductors. Con-
sequently, twisted ZrS2 bilayers constitute a promising
and tunable materials platform for such investigations,
granting access to a novel and exotic regime of ultra-
strong spin-orbit coupling that is not readily realizable
in conventional crystalline solid-state systems. More
broadly, a natural question concerns the extension of sim-
ilar ideas of pseudospin potential engineering and strong
spin-orbit coupling to other transition-metal dichalco-
genide heterostructures such as TiS2 and HfS2 with
multi-component character of the valence band edge. At
the same time, the emergence of a moiré Kagomé lattice
from the fortuitous but robust interplay of geometry and
interlayer coupling at small twist angles opens up a new
pathway towards a moiré realization of magnetic phases
in a paradigmatic frustrated system.
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nandes, Ángel Rubio, and A. N. Pasupathy, (2020),
arXiv:2009.11645 [cond-mat.str-el].

[13] H. S. Arora, R. Polski, Y. Zhang, A. Thomson, Y. Choi,
H. Kim, Z. Lin, I. Z. Wilson, X. Xu, J.-H. Chu, et al.,
Nature 583, 379 (2020).

[14] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi,
et al., Nature 579, 56 (2020).

[15] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo,
D. H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vish-
wanath, et al., Nature 583, 221 (2020).

[16] Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M.
Park, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, Nature 583, 215 (2020).

[17] M. He, Y. Li, J. Cai, Y. Liu, K. Watanabe, T. Taniguchi,
X. Xu, and M. Yankowitz, Nat. Phys. (2020).

[18] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes,
C. Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim,
et al., Nat. Mater. 19, 861 (2020).

[19] G. Chen, L. Jiang, S. Wu, B. Lv, H. Li, K. Watanabe,
T. Taniguchi, Z. Shi, Y. Zhang, and F. Wang, Nature
Phys. 15, 237 (2019).

[20] G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. Fox,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi,
et al., Nature 572, 215 (2019).

[21] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir,
I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang,
A. Bachtold, A. H. MacDonald, and D. K. Efetov, Na-
ture 574, 653 (2019).

[22] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-
Bigorda, K. Watanabe, T. Taniguchi, T. Senthil, and
P. Jarillo-Herrero, Phys. Rev. Lett. 124, 076801 (2020).

[23] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney,
K. Watanabe, T. Taniguchi, M. A. Kastner, and
D. Goldhaber-Gordon, Science 365, 605 (2019).

[24] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu,
K. Watanabe, T. Taniguchi, L. Balents, and A. F.
Young, Science 367, 900 (2020).

[25] S. Wu, Z. Zhang, K. Watanabe, T. Taniguchi, and E. Y.
Andrei, Nature Mat. 20, 488 (2021).

[26] G. Chen, A. L. Sharpe, E. J. Fox, Y. H. Zhang, S. Wang,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi,
Z. Shi, T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and
F. Wang, Nature 579, 56 (2020).

[27] Z. Liu, A. Abouelkomsan, and E. J. Bergholtz,
arXiv:2004.09522 (2020).

[28] A. Abouelkomsan, Z. Liu, and E. J. Bergholtz, Phys.
Rev. Lett. 124, 106803 (2019).

[29] C. Repellin and T. Senthil, arXiv:1912.11469 (2019).
[30] P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A. Vish-

wanath, arXiv:1912.09634 (2019).
[31] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H.

MacDonald, Phys. Rev. Lett. 122, 086402 (2018),
arXiv:1807.03311.

[32] T. Li, S. Jiang, B. Shen, Y. Zhang, L. Li, T. Devakul,
K. Watanabe, T. Taniguchi, L. Fu, J. Shan, and K. F.
Mak, arXiv:2107.01796 (2021).

[33] Y. Zhang, T. Devakul, and L. Fu, arXiv:2107.02167
(2021).

[34] Y. M. Xie, C. P. Zhang, J. X. Hu, K. F. Mak, and K. T.
Law, arXiv:2106.13991 (2021).

[35] M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen,
Y. Chen, M. Cui, J. Zhang, C. Cai, et al., Journal of the
American Chemical Society 137, 7051 (2015).

[36] L. Xian, M. Claassen, D. Kiese, M. M. Scherer, S. Trebst,
D. M. Kennes, and A. Rubio, arXiv:2004.02964 (2020).



9

[37] M. Angeli and A. H. MacDonald, Proc. Nat. Acad. Sci.
118, e2021826118 (2021).

[38] E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett.
106, 236802 (2010).

[39] Y. L. Wu, B. A. Bernevig, and N. Regnault, Phys. Rev.
B 85, 075116 (2011).

[40] S. A. Parameswaran, R. Roy, and S. L. Sondhi, Phys.
Rev. B 85, 241308 (2011).

[41] M. Claassen, C. H. Lee, R. Thomale, X. L. Qi, and T. P.
Devereaux, Phys. Rev. Lett. 114, 236802 (2015).
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