Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mermin-Wagner fluctuations in 2D amorphous solids

MPG-Autoren
/persons/resource/persons267396

Keim,  Peter
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Illing, B., Fritschi, S., Kaiser, H., Klix, C. L., Maret, G., & Keim, P. (2017). Mermin-Wagner fluctuations in 2D amorphous solids. Proceedings of the National Academy of Sciences of the United States of America, 114(8), 1856-1861. doi:10.1073/pnas.1612964114.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-84E6-E
Zusammenfassung
In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter
28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—
and the first computer simulations foretelling 2D crystals (at least
in tiny systems). The lack of broken symmetries proposed by
D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural
impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared
displacement of atoms is not limited. Comparing experimental
data from 3D and 2D amorphous solids with 2D crystals, we
disentangle Mermin–Wagner fluctuations from glassy structural
relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size:
Periodicity is not a requirement for Mermin–Wagner fluctuations,
which conserve the homogeneity of space on long scales.