Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pentacene and tetracene molecules and films on H/Si(111): level alignment from hybrid density functional theory

MPG-Autoren

Janke,  S. M.
Department of Mechanical Engineering and Materials Science, Duke University;
Fritz Haber Institute of the Max Planck Society;

/persons/resource/persons21421

Rossi,  M.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Fritz Haber Institute of the Max Planck Society;

Levchenko,  S. V.
Skolkovo Institute of Science and Technology;
Fritz Haber Institute of the Max Planck Society;

Kokott,  S.
Fritz Haber Institute of the Max Planck Society;

Scheffler,  M.
Fritz Haber Institute of the Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

document.pdf
(Postprint), 8MB

Ergänzendes Material (frei zugänglich)

035002_suppdata.pdf
(Ergänzendes Material), 5MB

Zitation

Janke, S. M., Rossi, M., Levchenko, S. V., Kokott, S., Scheffler, M., & Blum, V. (2020). Pentacene and tetracene molecules and films on H/Si(111): level alignment from hybrid density functional theory. Electronic Structure, 2(3): 035002. doi:10.1088/2516-1075/ab9bb5.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-86AD-D
Zusammenfassung
The electronic properties of hybrid organic–inorganic semiconductor interfaces depend strongly on the alignment of the electronic carrier levels in the organic/inorganic components. In the present work, we address this energy level alignment from first principles theory for two paradigmatic organic–inorganic semiconductor interfaces, the singlet fission materials tetracene and pentacene on H/Si(111), using all-electron density functional theory calculations with a hybrid exchange–correlation functional. For isolated tetracene on H/Si(111), a type I-like heterojunction (lowest-energy electron and hole states on Si) is found. For isolated pentacene, the molecular and semiconductor valence band edges are degenerate. For monolayer films, we show how to construct supercell geometries with up to 1192 atoms, which minimize the strain between the inorganic surface and an organic monolayer film. Based on these models, we predict the formation of type II heterojunctions (electron states on Si, hole-like states on the organic species) for both acenes, indicating that charge separation at the interface between the organic and inorganic components is favored. The paper discusses the steps needed to find appropriate low-energy interface geometries for weakly bonded organic molecules and films on inorganic substrates from first principles, a necessary prerequisite for any computational level alignment prediction.