Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Large-scale mapping of cortical synaptic projections with extracellular electrode arrays

MPG-Autoren
/persons/resource/persons208214

Shein-Idelson,  Mark
Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society;

/persons/resource/persons208140

Pammer,  Lorenz
Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society;

/persons/resource/persons93375

Hemberger,  Mike
Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society;

/persons/resource/persons208073

Laurent,  Gilles
Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shein-Idelson, M., Pammer, L., Hemberger, M., & Laurent, G. (2017). Large-scale mapping of cortical synaptic projections with extracellular electrode arrays. Nature methods, 14(9), 882-890. doi:10.1038/nmeth.4393.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-7B1E-4
Zusammenfassung
Understanding curcuit computation in the nervous system requires sampling activity over large neural populations and maximizing the number of features that can be extracted . By combining planar arrays of extracullular electrodes with the three-layered cortex of turtles, we show that synaptic signals induced along individual axons as well as action poteintials can be easily captured. Two types of information can be extracted from these signals, the neuronal subtype (inhibitory or excitatory)-whose identification is more reliable than with traditional measures such as action potential width - and a (partial) spatial map of functional axonal projections from individual neurons. Because our approach is algorhytmic, it can be carried out in parellel on hundreds of simultaneoulsy recoreded neurons. Combining our approach with soma triangulation, we reveal an axonal projectionbias among a population of pyramidal neurons in turtle cortex and confirm this bias through anatomical reconstructions.