Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Giant Rashba-Type Spin Splitting in Bi/Ag(111) from Asymmetric Interatomic-Hopping

MPG-Autoren
/persons/resource/persons195722

Rhim,  Jun-Won
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hong, J., Rhim, J.-W., Song, I., Kim, C., Park, S. R., & Shim, J. H. (2019). Giant Rashba-Type Spin Splitting in Bi/Ag(111) from Asymmetric Interatomic-Hopping. Journal of the Physical Society of Japan, 88(12): 124705. doi:10.7566/JPSJ.88.124705.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-DA28-9
Zusammenfassung
Rashba-type spin splitting (RSS) has recently drawn added attention due to its central role in the field of spintronics. In that regards, designing materials with giant RSS is highly desirable for practical spintronic applications, and thus disclosing the origin of the giant RSS could pave the way. Here, we theoretically demonstrate that the giant RSS observed in Bi/Ag(111) alloy system emerges from the difference in kinetic energy or interatomic-hopping strength, not from a uniform electric field. Our density functional theory calculation and tight-binding analysis show that depending on the chirality of orbital angular momentum (OAM), the Bi orbital forms an asymmetric charge distribution in the direction towards or away from the Ag atom. As a result, opposite OAM chirality results in difference in hopping strength between Bi and Ag orbitals, and this kinetic energy difference dominates the size of RSS. This new interpretation on the RSS successfully explains the giant RSS in Bi/Ag(111) surface states and has implication for the RSS mechanism in general.