English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Polycyclic aromatic hydrocarbons (PAHs) and their alkylated-, nitro- and oxy-derivatives in the atmosphere over the Mediterranean and Middle

MPS-Authors
/persons/resource/persons246704

Wietzoreck,  Marco
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons246986

Bandowe,  Benjamin A. Musa
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons249621

Celik,  Siddika
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100898

Crowley,  John N.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100914

Drewnick,  Frank
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230536

Eger,  Philipp
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons239549

Friedrich,  Nils
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons239553

Rohloff,  Roland
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons192706

Tadic,  Ivan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230525

Tauer,  Sebastian
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230415

Wilson,  Jake
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100983

Harder,  Hartwig
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101095

Lammel,  Gerhard
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wietzoreck, M., Kyprianou, M., Bandowe, B. A. M., Celik, S., Crowley, J. N., Drewnick, F., et al. (2022). Polycyclic aromatic hydrocarbons (PAHs) and their alkylated-, nitro- and oxy-derivatives in the atmosphere over the Mediterranean and Middle. Atmospheric Chemistry and Physics Discussions, 22. doi:10.5194/acp-2022-32.


Cite as: https://hdl.handle.net/21.11116/0000-0009-DE9C-E
Abstract
Polycyclic aromatic hydrocarbons (PAHs), their alkylated (RPAHs), nitrated (NPAHs) and oxygenated (OPAHs) derivatives are air pollutants. Many of these substances are long-lived, can undergo long-range atmospheric transport and adversely affect human health upon exposure. However, the occurrence and fate of these air pollutants has hardly been studied in the marine atmosphere. In this study, we report the atmospheric concentrations over the Mediterranean Sea, the Red Sea, the Arabian Sea, the Gulf of Oman and the Arabian Gulf, determined during the AQABA (Air Quality and Climate Change in the Arabian Basin) project, a comprehensive ship-borne campaign in summer 2017. The average concentrations of ∑27PAHs, ∑19RPAHs, ∑11OPAHs and ∑17NPAHs, in the gas and particulate phase, were 2.85 ± 3.35 ng m−3, 0.83 ± 0.87 ng m−3, 0.24 ± 0.25 ng m−3 and 4.34 ± 7.37 pg m−3, respectively. The Arabian Sea region was the cleanest for all substance classes, with concentrations among the lowest ever reported. Over the Mediterranean Sea, we found the highest average burden of ∑26PAHs and ∑11OPAHs, while the ∑17NPAHs were most abundant over the Arabian Gulf (known also as Persian Gulf). 1,4 Naphthoquinone (1,4-O2NAP) followed by 9-fluorenone and 9,10-anthraquinone were the most abundant studied OPAHs in most samples. The NPAH composition pattern varied significantly across the regions, with 2 nitronaphthalene (2-NNAP) being the most abundant NPAH. According to source apportionment investigations, the main sources of PAH derivatives in the region were ship exhaust emissions, residual oil combustion and continental pollution. All OPAHs and NPAHs except 2-NFLT, which were frequently detected during the campaign, showed elevated concentrations in fresh shipping emissions. In contrast, 2-nitrofluoranthene (2-NFLT) and 2-nitropyrene (2-NPYR) were highly abundant in aged shipping emissions due to secondary formation. Apart from 2-NFLT and 2-NPYR, also benz(a)anthracene-7,12-dione and 1,4-O2NAP had significant photochemical sources. Another finding was that the highest concentrations of PAHs, OPAHs and NPAHs were found in the sub-micrometre fraction of particulate matter (PM1).