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All macromolecular crystals contain some extent of disorder. The diffraction from such crystals
contains diffuse scattering in addition to Bragg peaks and this scattering contains information
about correlated displacements in the constituent molecules. While much work has been performed
recently in decoding the dynamics of the crystalline ordering, the goal of understanding the internal
dynamics of the molecules within a unit cell has been out-of-reach. In this article, we propose a
general framework to extract the internal conformational modes of a macromolecule from diffuse
scattering data. We combine insights on the distribution of diffuse scattering from short- and
long-range disorder with a Bayesian global optimization algorithm to obtain the best fitting internal
motion modes to the data. To illustrate the efficacy of the method, we apply it to a publicly available
dataset from triclinic lysozyme. Our mostly parameter-free approach can enable the recovery of a
much richer, dynamic structure from macromolecular crystallography.

X-ray crystallography remains the preeminent tech-
nique to determine the structures of macromolecules at
atomic resolution. During a crystallography experiment,
in addition to the bright and sharp Bragg peaks used
for crystallographic analysis, one also observes weaker
scattering at all angles, collectively termed diffuse scat-
tering. The Bragg peak intensities encode information
about the average electron density in the unit cell of the
crystal, which in turn is used to generate a model of the
average atomic positions and their variance (B-factors or
ADPs) [1]. Part of the diffuse scattering is composed of
trivial contributions from the Compton scattering, bulk
solvent scattering, air scatter and other parasitic scat-
tering from beam line components. But crucially, when
the crystal is not perfectly ordered, it also contains pho-
tons scattered from the proteins themselves. For brevity,
in the rest of the article, we will refer to this disorder-
induced scatter as diffuse scattering, while keeping in
mind that the other contributions must also be accounted
for while preprocessing the data [2, 3].

If one assumes the disorder is not too large, the dis-
placements of individual atoms are expected to follow
a normal distribution (an assumption borne out by the
success of the B-factor formalism in crystallographic re-
finement). Within this limit, the measured diffuse scat-
tering is a function of the two-point correlation function
of all atomic displacements. This means that one has
direct access to equilibrium dynamics of proteins via cor-
relations in their atomic displacements. In recent years,
there has been an upsurge in interest in such data, driven
by the desire to understand proteins as more than static
objects since their equilibrium dynamics play a crucial
role in their function. With modern detectors and X-ray
sources, we can now measure these weak intensities with
sufficient quality to enable interpretation [4].
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Over the past three decades many models of motion
have been proposed to describe the diffuse scattering in-
cluding liquid-like motion [5–8], rigid-body motion [9–
12], lattice dynamics [3, 13] and normal mode analy-
sis [14–17]. Another approach has been to examine the
diffuse scattering predicted by molecular dynamics (MD)
simulations of ever-larger systems [3, 18–21]. In the lat-
ter case, if MD predictions agree with the observed dif-
fuse scattering, one can analyze the trajectories to gain
insights into eqilibrium protein dynamics.

It has also been observed that agreement between ex-
perimental and calculated diffuse maps improve when
motion due to coupled displacements of neighboring
molecules in the lattice is included [22]. Recently, Meis-
burger, Case and Ando (MCA) reported a carefully pro-
cessed dataset on triclinic lysozyme and analyzed it with
a lattice dynamics normal-mode model [3], leading to
the highest correlation coefficients with the experimen-
tal data yet. Unfortunately, these strong results still do
not provide insights into functionally relevant dynam-
ics of the proteins, since intermolecular interactions in a
crystal are not likely to be relevant in the native envi-
ronment. The long term goal of extracting a dynamical
structure from macromolecular crystallography data re-
quires a different approach, which we describe below.

In order to understand the conformational landscape
sampled by crystallized proteins from their diffuse scat-
tering, we employ three concepts which have not been
utilized previously in the field. The first is to capital-
ize on the separation of diffuse scattering from long- and
short-range correlations in reciprocal space. Secondly,
we develop a Bayesian optimization pipeline to refine the
dynamical parameters of our model which minimizes the
number of computationally expensive calculations of the
scattering from given parameters. Finally, we use re-
strained molecular dynamics to provide a basis for fit-
ting against the measured diffuse scattering which better
identifies the dominant modes in crystallized proteins.

We will expand upon each of these pillars as well as de-
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FIG. 1. Toy model and sample system. (a) Diffuse scattering expected from an equally populated two-state model combined
with rigid body translational disorder. The two states are shown in the insets. (b) Schematic of lattice dynamics of disorder
(exponentially decaying correlations). Lighter colors represent lattice points further from their ideal positions. (c) Diffuse
scattering when the unit cells are displaced according to the lattice in (b) and each unit cell is randomly in one of the two
states. One can clearly see that other than the ‘halos’ around Bragg peaks (shown in the red box), the smooth diffuse intensity
is the same as the model shown in (a). Both (a) and (c) intensities are shown on a logarithmic scale for clarity. (d) Slice
through the experimental 3D diffuse intensity distribution, showing both sharp and smooth features. (e) Same slice as (d), but
with the sharp ‘halos’ surrounding each Bragg peak masked out. (e) Pearson cross-correlation between a simple disorder model
with rigid molecules and exponentially decaying intermolecular correlations and the experimental data with and without the
halo features. Higher CC values obtained when the halo features are included contain the relatively trivial information that
the ‘halos’ are bright and that they surround reciprocal lattice points. We also show the CC values obtained by MCA using
their more sophisticated lattice model for intermolecular displacements.

scribing the dataset and system on which we will apply
our approach in the results section. We show a signifi-
cant improvement in the fit to the measured data upon
inclusion of an optimized internal dynamics model. This
analysis can also be extended to other systems and ex-
perimental datasets.

RESULTS

Short- and long-range correlations. The first prop-
erty of diffuse scattering we exploit is that long-range
correlations in displacements produce sharp intensity fea-
tures and vice versa. As an extreme example, if the dis-
placements are completely uncorrelated between atoms
(correlation length is zero), the diffuse scattering is un-
structured and contains no information apart from the
average amount of disorder [23]. The other extreme is
if the displacements of all atoms are fully correlated, in

which case there is no disorder, and the “diffuse” scat-
tering consists of just the Bragg peaks.

A special crossover happens when the correlation
length increases past the unit cell size. Above this limit,
if we assume that the crystal is homogeneous, then even
though the atoms in each unit cell are displaced ran-
domly, the probability distribution of the displacements
described by the covariance matrix is the same for all unit
cells. This means that the covariance matrix of atomic
displacements has the symmetry of the crystal, and so
too should the diffuse scattering produced by such long-
range disorder, resulting in scattering in and around the
reciprocal lattice points. This form of diffuse scattering
has been observed and attributed to long range liquid-
like correlations [22] and thermal acoustic phonon dy-
namics [3, 13]. In fact, such ‘halos’ around Bragg peaks
are expected whenever intermolecular correlations mono-
tonically decay with distance smoothly, as we expect if no
special phonon modes are excited (see Methods section
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‘Diffuse scattering from decaying intermolecular correla-
tions’ for a mathematical justification).

If the dynamics of each unit cell are independent, then
the diffuse scattering does not ‘see’ the reciprocal lat-
tice at all. One example of this is uncorrelated rigid
body translational (RBT) disorder [10] where the diffuse
scattering is just the molecular transform weighted by
the complement of the Debye-Waller factor. But this
could also be coupled with conformational variations as
described by simple models like liquid-like motion (LLM)
which extend the RBT model to allow relaxation of strict
rigidity when pairs of atoms are far apart. Such intra-
molecular correlations are the ones relevant to the struc-
tural flexibility of the molecule itself.

In general, when both intra- and inter-molecular cor-
relations are present, their relative contributions to the
diffuse scattering at a given q are strongly dependent
upon its distance to the nearest reciprocal lattice point.
In Fig. 1(a-c) we illustrate the reciprocal space separa-
tion of diffuse scattering from long- and short-range cor-
relations with a toy model. Figure 1(a) shows the diffuse
scattering from a crystal where the unit cell can be in one
of two states (shown in inset) with random but equal oc-
cupancy and with some random translational disorder.
This translational disorder is correlated across unit cells
and is shown in Fig. 1(b) where only lattice points are
shown and colored by their displacement magnitude. If
one replaces each lattice point randomly by one of the two
states, the crystal diffraction is shown in Fig. 1(c), where
one can see the ‘halos’ from the distorted lattice on top
of the smooth scattering from the two-state model. This
kind of separation is derived from some basic assumptions
in the Methods section ‘Diffuse scattering from separable
correlations’.

Thus, in many cases, one can separate the scattering
from inter- and intra-unit cell correlations in reciprocal
space. The smooth diffuse scattering far from the Bragg
peak ‘halos’ are sensitive to intra-unit cell or internal
displacement correlations. This has been implicitly rec-
ognized earlier in attempts to “filter-out” these ‘halos’
to access the internal dynamics [2, 7]. We adapt an ap-
proach of masking out the halo features to avoid artifacts
due to filtering and since our optimization algorithm can
tolerate some missing data.

Another important point which one notes is that the
long-range intermolecular correlations do have an effect
on the scattering far from Bragg peaks. This is in the
form of a rigid body translation component to the dis-
order within a unit cell. This is not to say that the
molecules are rigid, rather that a significant part of the
total disorder may be incorporated in a concerted motion
due to lattice effects, but each molecule may be confor-
mationally different on top of that.

Model system. We apply our approach to the dataset
collected by MCA on triclinic lysozyme crystals (PDB:
6o2h, CXIDB: 128) [3]. A central slice through their
measured intensity distribution is shown in Fig. 1(d). In

addition to being carefully analyzed in terms of back-
ground characterization and merging, the triclinic P1 lat-
tice also has the advantage of having a single asymmetric
unit per unit cell, avoiding possible complications due to
molecules being in different orientations. The authors ob-
serve that the dominant features were ‘halos’ surround-
ing Bragg peaks showing a 1/|q−qBragg|2 intensity falloff,
resembling the well-known behavior of thermal acoustic
phonons. These are modes where the displacement of one
molecule induces displacements in its neighbors, resulting
in longitudinal waves with long correlation lengths com-
pared to the lattice constants. MCA analyze these ‘ha-
los’ to reconstruct the connectivity network of the crystal
while assuming the molecules themselves to be rigid. A
small improvement is observed by allowing the molecu-
lar structure to vary according to a previously predicted
normal mode.

Since our primary interest lies in understanding the in-
ternal dynamics, we mask the regions of reciprocal space
close to reciprocal lattice points and use the rest to opti-
mize our dynamics model for a single protein. This has
the additional computational benefit of needing to only
simulate the MD trajectory of a single molecule, rather
than a super-cell [3, 21], making it more computation-
ally accessible as a technique. Figure 1(e) shows a slice
through the masked intensities for the lysozyme model
dataset. One effect of this masking is that the correla-
tion coefficient between the measured and predicted data
is lower than if the ‘halos’ were retained. This is due to
two reasons, first that the measured intensities in this re-
gion are weaker, and hence noisier. The other, more im-
portant reason is that any model with ‘halos’ will have a
relatively high Pearson correlation coefficient (CC) sim-
ply because it predicts high values near the Bragg peaks.

This is highlighted in Fig. 1(f) where the CC is calcu-
lated with and without masking. A rigid-body transla-
tional disorder model is used for the intra-cell dynamics,
whose predicted scattering is just the q-weighted molecu-
lar transform. The anisotropic CC is around 0.4 for most
of the resolution range when comparing against masked
data. However, the introduction of even a simple com-
mon multiplicative halo function increases the CC to 0.75
(see Methods section for estimation of ‘halos’). The “lat-
tice” model with more sophisticated ‘halos’ from MCA is
shown for comparison.

Refinement framework. We now turn our attention
to determining what internal variability modes best de-
scribe the diffuse scattering far from the Bragg ‘halos’.
In the rest of this study, we will focus on this masked
diffuse scattering since this limits us to correlations at
length scales much less than the lattice constants.

As discussed above, within the harmonic approxima-
tion, this diffuse scattering is a function of the pair cor-
relation tensor Caa′ between atoms a and a′ within the
molecule. Unfortunately, this mapping is not invertible
since the number of independent measurements, which

is of the order O
[
(dprotein/dresolution)

3
]

is much smaller
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FIG. 2. Reconstruction pipeline. (a) Flow-chart of pipeline to estimate principal component (PC) internal dynamics modes and
their weights. Molecular dynamics is used to estimate energetically favorable internal modes and their weights are determined
using Bayesian optimization by fitting against the measured diffuse scattering data. (b) Distribution of objective function
values from different Monte Carlo runs with the same parameters. The width of this distribution is used to parameterize the
Gaussian process regressor used in the Bayesian optimization. (c) Convergence plot showing the evolution of the best objective
function with iteration number. This is the output for a 2-parameter optimization of liquid-like motion parameters, σ (rms
displacement) and γ (correlation length) for demonstration. (d) Reconstructed surrogate objective function. (e) Points sampled
in σ − γ space, with denser sampling close to the optimum.

than the number of unknowns, O[n2
atoms] for protein crys-

tals. This means that there should be many Caa′ solu-
tions which generate the same diffuse scattering. But
almost all those solutions will be highly unphysical, cor-
responding to motions which have a very high free energy
cost. Thus, one would like to optimize the Caa′ matrix
within a subspace of physically reasonable distortions of
the molecule.

We use molecular dynamics (MD) to generate this
subspace. Any MD trajectory can be converted to a
(3N × 3N) Caa′ matrix by calculating the covariance of
the displacements of all 3 components of all atoms over
the trajectory. This matrix can then be diagonalized to
calculate the so-called “essential dynamics” of the tra-
jectory [24]. It has been observed that most of the 3N
modes generated as the eigenvectors of this diagonaliza-
tion are occupied with low amplitude, collectively giving
rise to effects similar to uncorrelated motion of the atoms.
There are only a few essential modes which describe the
low free-energy parts of the motion in the trajectory.

Now the trajectory itself can be used to predict the
diffuse scattering, but this has had limited success pre-
dicting scattering features [20]. We adopt the hybrid
approach of relying on MD to generate the basis of likely
modes, but refine the weights of the modes against the

measured diffuse scattering.
The first step in performing this refinement is the for-

ward calculation of the diffuse scattering given a set of
modes and their relative weights. By weight, we mean
the amplitude of random oscillations along that mode. If
the average position and structure of the molecule is rep-
resented by the 3N -dimensional vector 〈r〉 and the i-th
displacement mode is ∆i, the distorted molecule has the
coordinates

R = 〈R〉+
∑
i

αi∆i (1)

where αi is a scalar which is the magnitude of the dis-
tortion along mode i. The weights to be optimized are
the standard deviations of the random numbers αi. In
order to calculate the diffuse scattering, a large number
of randomly distorted molecules are generated to make
an ensemble of structures corresponding to a given set
of mode weights. The Guinier equation is then used to
calculate the diffuse scattering as follows

ID(q) = 〈|Fn(q)|2〉n − |〈Fn(q)〉n|2 (2)

where Fn(q) is the molecular transform of the n-th dis-
torted molecule. One immediate feature of this kind of
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calculation is that it is noisy, on top of the noise in the
measured data. This Monte Carlo sampling of the molec-
ular distortions means that in order to reduce the noise in
the calculation, one requires a large number of samples,
making it expensive to evaluate.

An optimization method purpose-built for such prob-
lems is Bayesian global optimization (BGO) [25–28].
In this method, a noise-aware surrogate function is fit
against the measurements. This surrogate function is
fast to evaluate and so can be optimized using standard
methods. The method then also predicts the optimal
choice for the next sample. Thus, it is ideal for situa-
tions where one has a black-box, expensive to evaluate,
noisy forward function without gradients. The goal is not
just to optimize the objective function, but also to min-
imize the number of evaluations of our expensive func-
tion. The objective function we employ is the anisotropic
cross-correlation coefficient in a relevant resolution range
(Eq. 13).

A flow chart of the whole reconstruction algorithm is
shown in Fig. 2(a). Figure 2(b) shows the noise in the
objective function for a particular set of weights as a func-
tion of the number of Monte Carlo samples. To illustrate
the method, we show the results of the algorithm for a 2-
parameter optimization of the liquid-like motion param-
eters σ (rms of displacement) and γ (correlation length).
Figure 2(c) shows the convergence of the best objective
function with iteration number. Figure 2(d) and (e) show
the reconstructed surrogate function as a function of σ
and γ and the sampled points respectively. Details of the
optimization pipeline are given in the Methods section.

Position-restrained molecular dynamics. In order
to apply the framework designed above, we need a ba-
sis set of dynamical modes which can describe the co-
variance matrix of atomic displacements. We generate
this basis from a molecular dynamics simulation using
the ideas of ‘essential dynamics’ [24]. Briefly, one gener-
ates a molecular dynamics (MD) trajectory, from which
the displacement covariance matrix is calculated. This
matrix is diagonalized to generate eigen-modes and one
observes that, usually, only a few modes account for the
bulk of the correlated motion.

Proteins in crystalline environments have more con-
straints to their motion than those in solution due to the
presence of the neighboring molecules. One way to ac-
count for this is to simulate a super-lattice with multiple
unit cells of the crystal [3, 21], which can be computation-
ally expensive. We choose an alternative strategy where
we simulate a single molecule but apply additional posi-
tional restraints to all non-hydrogen atoms. The strength
of the restraining force is a function of the crystallograph-
ically refined B-factor of that atom and the effective B-
factor of the atom from an unrestrained MD simulation.
If the root mean squared fluctuation (RMSF) of an atom
from an MD trajectory after rigid body alignment is σ,
the effective B-factor is 4π2σ2.

For an isolated atom simulated at temperature T , a

force constant of F results in a B-factor of kBT/F [29].
One can use this to estimate the effective force constant
on each atom i from the intrinsic MD force fields, FMD

i .
The total restraining force to produce the measured B-
factors should be F exp

i = kBT/B
exp
i . For our model

system, unrestrained MD almost always produces much
higher atomic fluctuations than the experimental data.
Thus, one can calculate an additional restraining force,
F res
i = F exp

i − FMD
i . But this is true only in the case

where atomic displacements are independent. The pres-
ence of structured diffuse scattering means that displace-
ments are correlated and so restraining just one atom
reduces the fluctuations of many others by suppressing
otherwise favored modes of motion.

In our system, we found a reasonable agreement be-
tween restrained-MD and experimental B-factors by us-
ing force constants 200 times lower than those predicted
by the above calculation (see Fig. S1 for details) The
agreement was not perfect, but is sufficient to signif-
icantly improve the correlation with the experimental
data.

Application to triclinic lysozyme. The experimen-
tal data was masked as described above in the section
on short- and long-range correlations by masking out
a spherical region around each reciprocal lattice point
whose radius was 3/7-th of the inter-peak spacing. This
region was spherical in hkl space, but ellipsoidal in
isotropic reciprocal space since the lattice was triclinic. A
slice through the masked intensities is shown in Fig. 1(b).

In order to generate an ensemble of structures from
which to calculate the principal component modes, we
performed a 1µs simulation of a single solvated lysozyme
molecule with average structure given by the crystallo-
graphic structure (PDB: 6o2h). Position restraints were
applied as described above in the restrained MD sec-
tion and the correlation coefficient (CC) with the masked
diffuse scattering of the trajectory itself is shown in
Fig. 3(a). The covariance matrix of fluctuations of the
positions was diagonalized to generate the principal com-
ponent dynamical modes and their relative weights.

This data was compared against the masked experi-
mental data. Various Bayesian optimization runs were
performed, and the results are summarized in Fig. 3(b).
The base model was isotropic rigid body translation
(RBT), which generates an average CC of 0.44 in the
(3.3Å-1.6Å) resolution range. The weights of the prin-
cipal component modes were optimized along with rigid
body translation as described above. That resulted in a
significant increase in the average CC in the same res-
olution range to 0.60 with the inclusion of this internal
dynamics (RBT+INT). With the inclusion of liquid-like
motion (LLM) and no internal dynamics, the average CC
in that range was 0.60 (RBT+LLM). The optimization
of internal dynamics in the presence of liquid-like mo-
tion increased the CC to 0.62 (RBT+LLM+INT) (data
not shown for clarity). The more modest improvement is
partially explained by the effect that LLM-like effects can

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.02.11.429988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.429988
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

b

a

C
 RBT 

RBT+ 
INTrstrn 

RBT+ 
INTrstrn,free 

RBT+ 
INTunrstrn 

<CC>d 0.44 0.60 0.60 0.47 
 

FIG. 3. Cross-Correlation between masked experimental data
and simulated diffuse intensity. (a) Diffuse scattering calcu-
lated from unrestrained and restrained MD trajectories. (b)
Different short-range models: rigid-body translation (RBT)
and RBT + internal modes (RBT+INT) with RBT σ = 0.46
Å. (c) Summary of average cross-correlation (CC) in the res-
olution range d, 3.3Å-1.6Å for different models.

result from many equally weighted modes, each of whom
involve the concerted motion of a part of the molecule.

For validation of our INT model we performed
Bayesian optimization with top 10 unrestrained MD
modes which gave a CC of 0.44 in the same resolution
range, which is the same as what we get with RBT only,
showing that the wrong choice of basis does not improve
the fit to the data even though additional parameters are
refined. We also performed an optimization by excluding
the Brillouin zones around 10% of the Bragg peaks and
calculated the CCwork and CCfree in the standard way
(see Fig. S2). The average CCwork was 0.61 while CCfree

calculated just from the excluded voxels in the dataset
was 0.60.

Figure 4 illustrates the most prominent mode found in
the (RBT+INT) optimization. This mode describes mo-
tions between conformations which are present in crys-

tallized lysozyme Fig. 4(a). To describe the internal mo-
tion of this mode, the displacement of the Cα backbone
is shown in Fig. 4(b). The β-lobe (THR40 to CYS94)
shows higher motion compare to the α-lobe (ARG5 to
SER36 and ILE98 to LEU129). The displacement is low
for active site GLU35 and ASP52. Some internal defor-
mation is observed in the β-lobe Fig. 4(c-d). Around the
hinge region, ASN39 shows significant movement. This
and other prominent modes are illustrated in Supplemen-
tary Movie S1.

DISCUSSION

Proteins are inherently dynamic objects, with their
conformational variation often playing a crucial role in
their function. While conventional crystallography can
routinely provide high resolution static structures, they
provide no direct information about correlated motion
within the molecule [4]. Diffuse scattering, which is al-
ways present but usually discarded, is affected by the pair
correlation of the displacements, and hence is strongly
influenced by whether different atoms are displaced syn-
chronously or asynchronously and to what extent.

In this article, we demonstrate a method to fit the in-
ternal dynamics of a protein to its diffuse scattering. The
first step in this process is the partitioning of the effect of
conformational motions from lattice dynamics in recipro-
cal space for homogeneous crystals. This separation can
be detected in the form of e.g. ‘halos’ around reciprocal
lattice points, and the signal far from such lattice-induced
features is dominated by internal structural variation of
the protein within a unit cell. Once the relevant part
of the experimental data is identified, we use molecular
dynamics to obtain a basis space for dynamical modes
whose weights are optimized using a Bayesian optimiza-
tion procedure.

As a proof of principle, we apply this method to the
diffuse scattering from triclinic lysozyme crystals [3]. Our
first observation is that the basis space generated from
the MD simulation of isolated proteins in solution does
not fit the data well, suggesting that the dominant modes
in solution are poorly represented in the crystalline envi-
ronment. Better agreement with the data was found by
applying additional restraining force fields which more
closely align the fluctuations in the atomic positions to
the experimental B-factors. The optimized dominant
modes improve the correlation coefficient with the ex-
perimental data to 0.60 from the 0.45 value obtained
from a rigid body model of the protein. Note that we
have to include rigid body motion along with the internal
modes to obtain good agreement, which may explain the
poor agreement observed in previous studies incorporat-
ing only internal dynamics which hold the center-of-mass
of the molecule fixed [22]. The strongest conformational
mode in the crystalline environment predicted from the
optimization is shown in Fig. 4.

Apart from the initial analysis of the ‘halos’, the whole
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FIG. 4. Visualization of dominant mode of motion. (a) Conformations along the dominant principal mode. The mode is shown
in both directions black arrows. (b) Cα-atom displacement for this mode. The α and β lobe atoms are shown within cyan
and green dotted lines. (c-d) Cα atoms displacement in two different conformations shown in green(far) and red(close).The
distance between ASN37-ASN39, TRP63-ASP101, ASN59-ALA107 are shown to understand the motion. Every 10th Cα atom
is colored in blue. The active site residue GLU35 and ASP52 shown in yellow. See Movie S1 for a visualization of this and
other modes with non-negligible weights.

procedure is mostly parameter-free. With further re-
finements to the pipeline, we envision the analysis of
such internal dynamics to be routinely performed on
crystallographic datasets to create a dynamic model of
the molecule, and not just the coordinates plus B-factor
static picture we currently extract. One future direction
of improvement is a better scheme for restrained MD
simulations such that the first few modes are the most
relevant to the crystalline dynamics. At the other end,
the optimization scheme could also be improved to al-
low us to increase the number of modes which can be
simultaneously optimized. Of course, this also requires
improvements in the collection and processing of the ex-
perimental data, especially with regards to reducing and
characterizing the background scattering.

METHODS

Diffuse scattering from decaying intermolecular
correlations. Following the convention of [23], the po-

sition of atom a in cell c is rac = rc + ra and the total
intensity from a disordered crystal is given by

I(q) =
∑
cc′

Lcc′(q)
∑
aa′

[Iaa′(q)×

e−2π
2qᵀ(Ua+Ua′ )qe4π

2qᵀCaca′c′q
]

(3)

where Lcc′(q) = e2πi(rc−rc′ )

Iaa′(q) = fa(q)f∗a′(q)e2πi(ra−ra′ )

where Ua is the 3x3 variance matrix of atomic displace-
ments, also called the anisotropic displacement param-
eter (ADP) and Caca′c′ is the covariance matrix of the
displacements of atoms ac and a′c′.

Here we analyze the diffuse scattering when the in-
termolecular correlations are non-negative and smoothly
decaying as a function of the separation between the unit
cells. For simplicity the molecules themselves are as-
sumed to translate as rigid units. The next subsection
discusses the case when this latter assumption is not true.
This generalizes the derivation of scattering for liquid-like
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motion in [23]. From the above mentioned assumptions,
let Caca′c′ = Ccc′ be a function of only (rc − rc′) for all
a, a′. Then, Eq. 3 becomes

I(q) =
∑
cc′

Lcc′(q)e4π
2qᵀCcc′q

∑
aa′

Iaa′(q)e−2π
2qᵀ(Ua+Ua′ )q

(4)

= IB(q)
∑
cc′

Lcc′(q)e4π
2qᵀCcc′q (5)

where IB(q) is just the Bragg intensity distribution ob-
tained from the Fourier transform of the average unit
cell. The exponential in the weighted lattice sum can be
expanded to give

I(q) = IB(q)
∞∑
n=0

(2π)2n

n!

∑
cc′

Lcc′(q) (qᵀCcc′q)
n

(6)

Expanding the Lcc′ term and including the assumption
that Ccc′ is only a function of rcc′ = rc − rc′ , we can see
that the sum only depends upon the separation rcc′ . This
allows us to insert the integral term

∫
d3u δ(u−rcc′) and

get

I(q) =IB(q)
∞∑
n=0

[
(2π)2n

n!
×

∑
cc′

∫
du δ(u− rcc′)e

2πiq.u (qᵀC(u)q)
n

]
(7)

The integral is now just a Fourier transform integral,

I(q) =IB(q)
∞∑
n=0

[
(2π)2n

n!
×

Fu

(
(qᵀC(u)q)

n
∑
cc′

δ(u− rcc′)

)
(q)

]
(8)

where F represents the Fourier transform operation.
From the convolution theorem,

I(q) = IB(q)
∞∑
n=0

(2π)2n

n!
Fu [(qᵀC(u)q)

n
] (q)⊗L(q) (9)

where L(q) is the lattice sum generated by the Fourier
transform of an ideal lattice. The n = 0 term corresponds
to the Bragg intensities while the other terms contribute
to the diffuse scattering. This series represents a sum
of broadened reciprocal lattices where the higher order
terms are weighted towards high resolution due to the
q2n dependence. Cn(u) gets sharper as n increases which
has the reverse effect on its Fourier transform, broadening
the convolution kernel for higher n.

Thus, we get the result that when lattice interactions
result in correlations which decay with inter-molecular
separation, the diffuse scattering is given by a series of
broadened Bragg peaks (‘halos’) where the peaks get
broader at higher resolution.

Diffuse scattering from separable correlations. In
this section, we analyze the diffuse scattering caused
by displacement correlations that can be separated into
intra- and inter-molecular terms. Thus, the covariance
matrix Caca′c′ between atoms ac and a′c′ can be de-
scribed as the sum of two terms

Caca′c′ = δcc′Caa′ + Ccc′ (10)

In this formulation, atoms within a molecule have cor-
related displacements governed by Caa′ but the interac-
tion between molecules is governed purely by Ccc′ for all
atoms in the molecule. Physically, this corresponds to
different energy scales or mechanisms for internal inter-
actions versus those for lattice interactions.

Then Eq. 3 becomes

I(q) =
∑
cc′

Lcc′(q)e4π
2qᵀCcc′q

×
∑
aa′

Iaa′(q)e−2π
2qᵀ(Ua+Ua′ )qe4π

2δcc′q
ᵀCaa′q

(11)

Separating the two cases when c = c′ and c 6= c′ and then
completing the sum, we get

I(q) = IB(q)
∑
cc′

Lcc′(q)e4π
2qᵀCcc′q

+Nc
∑
aa′

Iaa′(q)e−2π
2qᵀ(Ua+Ua′ )q

(
e4π

2qᵀCaa′q − 1
)

(12)

The first term results in the ‘halos’ as discussed in the
previous subsection while the second term is independent
of the lattice periodicity and only depends on the internal
dynamics of the molecule, Caa′ .

The target smooth diffuse scattering map which cor-
responds to the short-range correlations, was generated
from experimental data by masking out a spherical region
around each reciprocal lattice point(‘halos’).

Simple model for estimation of ‘halos’. To illus-
trate the effects of including ‘halos’ on the CC metric, a
simple uniform ‘halo’ model was estimated directly from
the experimental data. The ‘halos’ were simulated by
broadening the Bragg intensities by a ‘halo’ kernel, whose
shape was estimated as described below.

The signal in each Brillouin zone was averaged, lead-
ing to a 7× 7× 7 voxel volume. The minimum value was
subtracted and the peak was exponentiated by a variable
exponent α and tiled out to generate a lattice-sum func-
tion. This function was multiplied to the rigid-body dif-
fuse scattering to generate the predicted intensities with
‘halos’. A one-dimensional scan was performed to opti-
mize the α parameter, leading to a value of 3.8 used in
estimating the CC values shown in Fig. 1(c).

Molecular dynamics simulations. MD simulations
were performed using GROMACS 2019.4 [30] using
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OPLS-AA/L all-atom [31] parameters for protein and
OPLS-2009L parameters for nitrate ions [32]. The start-
ing structure was generated using coordinates from PDB
ID 6o2h (conformation A for lysozyme with seven ni-
trate ions, one chloride ion and crystal waters). Next,
this model was solvated with a TIP3P water box of di-
mension 60× 67×74�A and neutralized with one chloride
ion. After minimization (steepest decent), the model was
equilibrated for 1 ns with position restraints on protein
atoms. Then, two sets of simulation runs were performed
in NPT conditions to keep the temperature and pressure
stable around 295 K and 1 bar with 2 fs time steps. For
unrestrained-MD, we gradually reduced the position re-
straints on protein atoms to zero over 0.2 µs and then
recorded coordinates every 10 ps for 1.7 µs.

For restrained-MD, we applied positional restraints on
protein atoms to the equilibrated model (see Fig. S1 for
details) during the 1µs production run to maintain the
experimental B-factors.

Diffuse scattering calculation. For diffuse scatter-
ing calculation from internal dynamics, the trajectory
was fitted with respect to the backbone of the start-
ing configuration, comprising the last 150000 frames for
unrestrained-MD and last 90000 frames for restrained-
MD. To generate the essential modes of motion from MD
trajectory we calculated a (3N × 3N) covariance matrix
of the displacements of all 3 components of all N atoms
over the trajectory. This matrix was then diagonalized to
calculate the essential modes of the trajectory. We used
VMD, NMWiz to visualize the modes [33, 34].

For a given set of coordinates or mode variance vector
(or covariance matrix), the diffuse scattering was calcu-
lated using the Guinier equation (Eq. 2, in results ‘Re-
finement framework’ section).

Bayesian global optimization (BGO). We imple-
mented Bayesian optimization with Gaussian process
regressors using the scikit-optimize Python package
(v0.8)[35]. Since the goal was to maximize the correlation
between experimental and simulated diffuse intensity, the
objective function was defined as,

obj(s) = 1.− corrcoef(Icalc(s), Itarget) (13)

where the correlation was calculated after subtracting the

radial averages of both terms and was averaged over the
resolution range of 3.3-1.6Å.

The larger the number of Monte Carlo simulation steps
used to generate Icalc, the lower and less noisy the value
of the objective function (see Fig. 2(b)). To compromise
between speed and precision, we used 1000 samples dur-
ing the optimization while the final CC was calculated
using 5000 samples. We used BGO to find the minimum
of the objective function over the range of one or multiple
input parameters, s, in as few iterations as possible. The
Gaussian process surrogate model gives an estimate of
the objective function which can be used to direct future
sampling. For acquiring more samples we used gp hedge
acquisition function to minimize over the Gaussian poste-
rior distribution with the lbfgs acquisition optimizer. A
noise level of 1×10−7 was used during optimization with
n restarts optimizer = 2. We performed various op-
timization runs with respect to masked diffuse data with
different short-range models, e.g., 1-parameter optimiza-
tion of rigid-body translation (RBT) σ, 2-parameters op-
timization of the liquid-like motion (LLM) parameters
σ and γ, 10-parameters optimization of internal modes
weights along with RBT σ = 0.46 Å (see Fig. S3) etc.
For internal modes optimization we ran BGO 128 times
from random initial starting estimates. We noted that
excluding some failed runs, most of the optimized s val-
ues could be clustered around a single point. For conve-
nience, we estimated the best fit internal mode weights
by calculating the median value of the results from the
128 runs.

Data availability

The experimental data used in this study were previ-
ously published on the CXIDB (ID: 128). The molec-
ular dynamics trajectories and optimization outputs are
available from the corresponding author upon reasonable
request.

Code availability

The code used to perform the calculations here can be
found at https://github.com/AyyerLab/diffuser.
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