Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Live imaging of endogenous protein dynamics in zebrafish using chromobodies

MPG-Autoren
/persons/resource/persons239392

Panza,  P
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274261

Söllner,  C
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Panza, P., Maier, J., Schmees, C., Rothbauer, U., & Söllner, C. (2015). Live imaging of endogenous protein dynamics in zebrafish using chromobodies. Development, 142(10), 1879-1884. doi:10.1242/dev.118943.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-7E55-A
Zusammenfassung
Chromobodies are intracellular nanoprobes that combine the specificity of antibodies with the convenience of live fluorescence imaging in a flexible, DNA-encoded reagent. Here, we present the first application of this technique to an intact living vertebrate organism. We generated zebrafish lines expressing chromobodies that trace the major cytoskeletal component actin and the cell cycle marker PCNA with spatial and temporal specificity. Using these chromobodies, we captured full localization dynamics of the endogenous antigens in different cell types and at different stages of development. For the first time, the chromobody technology enables live imaging of endogenous subcellular structures in an animal, with the remarkable advantage of avoiding target protein overexpression or tagging. In combination with improved chromobody selection systems, we anticipate a rapid adaptation of this technique to new intracellular antigens and model organisms, allowing the faithful description of cellular and molecular processes in their dynamic state.